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ABSTRACT. Toom’s north-east-self voting cellular automaton rule R is known to suppress small minorities. A
variant which we call R+ is also known to turn an arbitrary initial configuration into a homogenous one (without
changing the ones that were homogenous to start with). Here we show that R+ always increases a certain property
of sets called thickness. This result is intended as a step towards a proof of the fast convergence towards consensus
under R+. The latter is observable experimentally, even in the presence of some noise.

1. INTRODUCTION

1.1. Cellular automata. Cellular automata are useful as models of some physical and biological phenom-
ena and of computing devices. To define a cellular automaton, first a set S of possible local states is given. In
the present paper, this is the two-element set {0, 1}. Then, a set W of sites is given. In the present paper, this
is the two-dimensional integer lattice Z2. A configuration, or global state, x over a subset B of W is a function
that assigns a state x[p] ∈ S to each element p of B. An evolution x[t, p] over a time interval t1, . . . , t2 and
a set B of sites is a function that assigns a global state x[t, ·] over B to all t = t1, . . . , t2. A neighborhood is a
finite set G = {g1, . . . , gk} of elements of Z2. A transition rule is a function M : Sk → S. An evolution x[t, p]
is called a trajectory of the transition rule M if the relation

(1) x[t + 1, p] = M(x[t, p + g1], . . . , x[t, p + gk])

holds for all t, p. To obtain a trajectory over the whole space W, we can start from an arbitrary initial
configuration x[0, ·] and apply the local transformation (1) to get the configurations x[1, ·], x[2, ·], . . .. The
rule (1) is analogous to a partial differential equation.

Most work done with cellular automata is experimental. It seems to follow from the nature of the broader
subject (“chaos”) involving the iteration of transformations that exact results are difficult to obtain. The
reason seems to be that a trajectory of an arbitrary transition rule is like an arbitrary computation; and most
nontrivial problems concerning arbitrary computations are undecidable.

Most of the exact work concerns probabilistic cellular automata, i.e. ones in which the value of the tran-
sition rule M is a probability distribution over S. As a simple example, let us consider a deterministic rule
M and an initial configuration x[0, ·]. We begin to apply the relation (1) to compute x[t + 1, p] but occa-
sionally, (these occasions occur, say, independently with a low probability $), we will violate the rule and
take a different value for x[t + 1, p]. The random process obtained in this way can be called, informally, a
$-perturbation of the trajectory obtained from x[0, ·].

The most thoroughly investigated problem concerning probabilistic cellular automata is a problem anal-
ogous to the phase transition problem of equilibrium systems (like the Ising model of ferromagnetism).
Given a probabilistic transition rule, the problem corresponding to the phase-transition problem of equilib-
rium systems is whether the evolution erases all information concerning the initial configuration. In that
case, it is said that the system does not have a phase transition.

The known equilibrium models that exhibit phase transition are not known to be stable: if the parameters
are slightly perturbed (e.g. an outside magnetic field turned on) the phase transition might disappear. In
contrast, there are cellular automata exhibiting a stable phase transition. It was not a trivial problem to
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find such cellular automata. Indeed, let us look at probabilistic rules obtained by the perturbation of a
deterministic one. If the rule is the identity, i.e. x[t + 1, p] = x[t, p], then this rule remembers the initial
configuration, as long as it is not perturbed. If it is perturbed appropriately then the information in the
configuration x[t, ·] about x[0, ·] converges fast to 0. Also, most local majority voting rules seem to lose all
information fast when perturbed appropriately.

1.2. Toom’s rule. The first rules exhibiting stable phase transition were found by Andrei Toom. A general
theory of them is given in [Too80].

One of Toom’s rules is defined with the neighborhood

G = {(0, 0), (0, 1), (1, 0)}

and the transition function M which is the majority function Maj(x, y, z). In other words, an evolution x[t, p]
is a trajectory of Toom’s rule R if for all t, p where it is applicable, the following relation holds:

x[t + 1, p] = Maj(x[t, p], x[t, p + (0, 1)], x[t, p + (1, 0)]).

We will also write
x[t + 1, ·] = R(x[t, ·]).

The rule R says that to compute the next value in time of trajectory x at some site we have to compute the
majority of the current values at the site and its northern and eastern neighbors.

For s = 0, 1, let hs be the homogenous configuration for which hs[p] = s for all sites p. The north-east-
self voting rule R is known to suppress small minorities, even in the presence of noise. If started from a
homogenous configuration then the one bit information saying whether this configuration was h0 or h1, is
preserved.

There are many variants of the rule R, all of which have the noise-suppressing property. One of these
was used in [GR88] to define a simple three-dimensional rule that can not only store an infinite amount
of information about the initial state but can also simulate the trajectory of an arbitrary one-dimensional
deterministic rule, despite perturbation.

Given the simplicity of the rule R and its two stable configurations, it is natural to investigate the effect
of repeated applications of R to an arbitrary configuration that is close to neither h0 to h1. We will identify
a configuration x with the set of sites a where x[a] = 1. Therefore we can talk about the application of R to
a set.

Let G be the graph over W in which each point is connected to north, south, east, west, north-west,
south-east. (The graph is undirected in the sense that with each directed edge, it also contains the reverse
edge.) A subset of W is called connected if it is connected in G. Let S =

⋃

i Si be a set with connected
components Si. The simple Lemma 3.1 proved later in this paper says that the rule R does not break up and
does not connect the components Si. For the plane W = Z2, the simple Lemma 2.1 stated later says that
Toom’s Rule “shrinks” each of the components, in terms of the size measure called span.

If the space W is the torus Z2
n then the rule R still shrinks those connected sets that are isomorphic to

subsets of Z2. These components will be called simple. Let us characterize them. The increment of each
directed edge ((a1, b1), (a2, b2)) of G is the vector (a2 − a1, b2 − b1). The absolute value of both coordinates
of this vector is 6 1. The total increment along a path is the sum of the increments, without reduction modn.
A closed path (cycle) is simple if its total increment is 0. It is easy to see that a connected subset of W is
simple if and only if it does not contain a non-simple cycle. Now it is easy to verify the following theorem,
proved in [G89].

Theorem 1.1. Let S be a subset of W. The set Ri(S) becomes eventually empty as i → ∞ if and only if all components
of S are simple.

Thus the minimal sets not erased by the iteration of R are cycles that wind at least once around the torus.
Toom’s rule will not break up such cycles. It actually leaves many of them invariant, possibly shifting them.
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1.3. Global simplification. There is some interest in trying to find a variant of Toom’s rule that still pre-
serves the stability of the homogenous states hs but whose iterations force every configuration x eventually
into some H(x) = h0 or h1. Since there are only two homogenous configurations, there will be configura-
tions x, x′ differing only in one site, where H(x) = h0 and H(x′) = h1.

The main interest of such rules comes from the insight they give into the mechanism of global simplification
of an arbitrary configuration necessary for such a property. Of interest is also the opportunity to investigate
the noise-sensitivity of the simplification, i.e., the size of the attraction domains.

A possible application of such a rule is in situations where a consensus must be forced from an arbibrary
configuration. The paper [G89] shows such a situation. Consensus problems, or, in a more extravagant
terminology, Byzantine Generals Problems, are central in the area of Computer Science called Distributed
Computing.
Consensus in the absence of failures. Theorem 1.1 above suggests a modification of the rule R with the
desired property. Since the only configurations not erased by R are those containing non-simple cycles, we
should try to force all those cycles to h1. This is achieved by biasing the rule R slightly in the direction of
1’s, while still preserving the shrinking property given in Lemma 2.1. We obtain such a rule R+ as follows.
To compute the state R+(x)[p], of cell p after applying R+ to the configuration x, apply the rule R twice to x,
then take the maximum of the states of the neighbors p, p + (0,−1), p + (−1, 0). The theorem below shows
that R+ indeed has the desired limiting consensus property. Of course, such a property is interesting only
in connection with the presence of at least two stable configurations.

Theorem 1.2. There is a constant c such that the following holds. Let S be an arbitrary subset of W = Z2
n. Then

(R+)cn(S) = h0 or h1.

A proof was given in [G89]. Let us sketch here a more direct proof. It uses the following lemma
from [G89] saying that the rule R+ first makes a set fat before erasing it. The proof is given, for the sake of
completeness, in subsection 2.2.

Lemma 1.3. Let S be a connected subset of Z2 with the property that (R+)2i(S) 6= ∅. Then (R+)i(S) has at least
i2/2 elements.

The rule R+ still has the property of rule R that it does not break up connected components. But, contrary
to the rule R, it can join several components. The following lemma shows how the number of components
gets smaller, provided no non-simple component occurs. (If a non-simple component occurs then the rule
R+ blows it up anyway, in 6 n steps, to occupy the whole space.)

Lemma 1.4. Let C ⊂ W = Z2
n have p components, and D = (R+)2i(C) have q components, all of them simple. If

i > n
√

8/p then q 6 0.75p.

Proof. Let C1, . . . , Cp be the components of C and D1, . . . , Dq the components of D. Then there is a disjoint
union {1, . . . , p} = I1,∪ · · · ∪ Iq such that

Dj = (R+)2i(
⋃

k∈Ij

Ck).

Let K be the set of those j for which Ij consists of a single element i j. These j belong to components Cij that
are large enough and survive the 2i applications of R+ without having to merge with other components. It
follows from Lemma 1.3 that |K|(i2/2) 6 n2, i.e., |K| 6 2(n/i)2, since otherwise, the number of elements of
the set

(R+)i(
⋃

j∈K

Cij )

would be greater than the number n2 of elements of W. Of course, we have q − |K| 6 p/2. Combining
these, we have

q 6 p/2 + 2(n/i)2.
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With i > n
√

8/p, we have q 6 0.75p. �

Proof of Theorem 1.2. Let us apply the last lemma repeatedly with

Ck+1 = (R+)2ik (Ck),

where pk is the number of components of Ck, and ik = dn
√

8/pke. We get pk+1 6 0.75pk, hence the number
of components decreases to 1 fast. The times 2ik form, at the same time, approximately a geometric series
in which even the largest term, obtained with pk = 2, is at most 4n. Therefore the sum of this series is still
6 cn for an appropriate constant c. �

Consensus in the presence of failures. The sensitivity of the simplification property indicates difficulties
if some violations of the rule are permitted, especially if these violations are not probabilistic but can be
malicious. It still follows easily from Theorem 1.2 that R+ achieves near-consensus in O(n2) steps, even
if o(n) of the local transitions during this procedure were malicious failures. Indeed, in ∼ n2 steps, there
is a time interval of size cn with the constant c of Theorem 1.2 without failures. During this interval,
homogeneity is achieved, and given the stability of the rule R+, the o(n) failures cannot overturn it.

Eventually, we would like to show that near-consensus is achieved under the same conditions, already
in O(n) steps. This seems true but difficult to prove. If failures are permitted the monotonicity disappears.
Components can not only be joined but also split. The argument of Lemma 1.4 can be summarized thus.

Small components either disappear or join to survive, therefore their number decreases fast.
Large components become temporarily fat therefore their number becomes small.

If components can also be split then it is possible that small components join temporarily to survive, then
failures split them again, and thus their number does not decrease.

Hope is given by an observation indicating a property that is a strengthening of Lemma 1.3. This lemma
says that R+ makes sets fatter before erasing them. The strengthening would say that the sets are made not
only fat in the sense of containing many points, but also “thick”, in the sense of becoming harder to split.

Informally, a set can be called k-thick if for all i < k, cutting off a piece of size 6i from it, we need a cutting
set of size approximately i. The present paper proves that R+ indeed has a thickness-increasing property.
Thus, if R+ joins two large components and has k failure-free steps to work on the union then the union
cannot be split into two large components again by fewer than k failures. This application is the informal
justification of the notion of thickness.

The proof of the thickness-increasing property is a lot of drudgery. Its claim to attention rests less on any
aesthetic appeal than on being one of the few examples for the rigorous analysis of an interesting global
behavior of an important cellular automaton.

2. SOME GEOMETRICAL DEFINITIONS

2.1. Tiles. Let us call a tile a triangle Q(p) consisting of a point p and its northern and eastern neighbors.
Let us call p the center of the tile. We write

e1(p) = p, e2(p) = p + (1, 0), e3(p) = p + (0, 1),

Q(p) = {e1(p), e2(p), e3(p)}.(2)

The “center” of the tile is thus really one of the corners. But it is better to view the center as identical with
the tile itself. In illustrations, it is better to draw the tiles to be rotationally symmetric. The “center” of the
tile is then the site at its bottom.

If the set S intersects a tile in at least two points then we say that it holds the tile. The set R(S) contains a
point p iff S holds the tile with center p. We say that two tiles are neighbors if they intersect, or, equivalently,
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FIGURE 1. The graph G and a tile, drawn in the original and in the symmetrical fashion.

if their centers are neighbors. As mentioned above, it is convenient to think of the graph of tiles instead of
the centers themselves, identifying the set R(S) with the set of those tiles held by the elements of S. Let

Q(E) =
⋃

a∈E

Q(a).

2.2. Triangles. Let us define the linear functions

L1(α, β) = −α, L2(α, β) = −β, L3(α, β) = α + β.

The triangle L(a, b, c) is defined as follows:

L(a, b, c) = { p : L1(p) 6 a, L2(p) 6 b, L3(p) 6 c }.

The deflation of the triangle I = L(a, b, c) by the amount d is defined as follows:

D(I, d) = L(a − d, b − d, c − d).

The span of the above triangle is the length of its base, and is given by

span(I) = a + b + c.

For a set I of triangles we have

D(I , d) = { D(I, d) : I ∈ I },

span(I) = ∑
I∈I

span(I).

For a set E of lattice points, let span(E, d) be min span(I) where the minimum is taken over sets I of
triangles covering E with their d-deflation, i.e. for which E ⊂

⋃

D(I , d). Here,
⋃

D(I , d) =
⋃

I∈I

D(I, d).

Let
defl = 2.

We write

span(E) = span(E, 0),

Span(E) = span(E, defl ).
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The following lemma is easy to verify.

Lemma 2.1. For a connected set E of lattice points, let span(E, d) > 0. Then

span(R(E), d) = span(E, d) − 1, span(Q(E), d) = span(E, d) + 1.

The number span(E, 1/3) will be called the discrete span of E. The discrete span of a single point is 1. Two
points are neighbors in G iff the discrete span of their pair is 6 2, i.e. iff the triangles of size 1 around them
intersect. The following lemma is easy to verify.

Lemma 2.2. • If two triangles I1, I2 intersect then there is a trangle I of size span(I1) + span(I2) containing
I1 ∪ I2.

• If two sets A1, A2 have neighboring points and Aj is contained in D(Ij, 1/3) for triangles Ij then there is a
trangle I of size span(I1) + span(I2) such that A1 ∪ A2 is contained in D(I, 1/3).

Proof of Lemma 1.3. Let S be a connected subset of Z2 with the property that (R+)2i(S) is not empty. We
have to give a lower bound on the set (R+)i(S).

It is easy to verify the following commutation property of the rules R and Q:

QR(S) ⊂ RQ(S).

It follows that

(R+)i(S) ⊂ QiR2i(S).

If (R+)2i(S) is not empty then span(S, 1/3) > 2i. It follows from Lemma 2.1 that R2i(S) is not empty. The
set Qi(R2i(S)) then contains a full triangle of span i, which contains (i + 1)(i + 2)/2 elements. �

The following lemma was used in the definition

3. THE MAIN RESULT

3.1. The effect of Toom’s rule on components. Suppose that the set S consists of the connected compo-
nents S1, . . . , Sn. Connectedness is understood here in the graph G. The next statement shows that Toom’s
rule does not break up or connect components. More precisely, it implies that the components of R(S) are
the nonempty ones among the sets R(Si). This statement will not be used directly but is useful for getting
some feeling for the way Toom’s rule acts.

Fact 3.1. Let S be a subset of W.

(a): If S is connected then R(S) is connected or empty.
(b): If E is a connected subset of R(S) then S ∩ Q(E) is connected.

Proof. Proof of (a). Let a and b be two points in R(S). Let a1 be a point of S in Q(a), and b1 a point of S in
Q(b). These points are connected in S by a path. Each edge of the path is contained in exactly one tile held
by S. We have obtained a path of tiles connecting the tile with center a to the tile with center b. The centers
of these tiles form a path connecting a and b in R(S).

Proof of (b). Let a, b be two points in S0 = S ∩ Q(E). We have to find a path in S0 connecting them.
Since the set E is connected it is enough to find such a path when a, b are in two neighboring tiles, and then
work step-by-step. If the intersection point of the two neighbor tiles is in S0 then a, b are clearly connected
through it. Otherwise, S0 contains the edge in both tiles opposite the intersection. It is easy to see from
Figure 2 that these two edges have an edge of G connecting them. �



A TOOM RULE THAT INCREASES THE THICKNESS OF SETS 7

g

g g

T
T
T
TT �

�
�
��

g

g g

T
T
T
TT �

�
�
��

w w
a b

r
r
r
r
r r

r
r
r
r

FIGURE 2. To the proof of Lemma 3.1 (b).

3.2. Cuts and thickness. For a subset A of S, let bS(A) be the set of all elements of S r A that are neighbors
of an element of A.

The triple (C, A1, A2) of disjoint subsets of a connected set S in W is called a cut of S with parameters |C|, m
if every path in S from A1 to A2 passes through an element of C, and

m = min
j=1,2

Span(Aj ∪ C).

If there is no path from A1 to A2 then (∅, A1, A2) is a cut. The cut is called closed if

(bS(A1) ∪ bS(A2)) ⊂ C.

Generally, our constructions will yield a cut (C, A1, A2) that is not necessarily closed. It can be made closed
by adding to Aj all elements of S reachable from A j on paths without passing through C. This operation
does not increase the cutting set but increases the sets A j. A cut is connected if both sets A j ∪ C for j = 1, 2
are connected.

Let Θ(S, α) (the α-thickness of S) denote the smallest number k such that S has a (not necessarily con-
nected) cut with parameters k, m with m > αk. If no such k exists then the α-thickness is ∞. If the α-thickness
of a large set S is k then a set of cardinality < k cannot cut off from S a subset of span > αk, i.e. the set S
does not have large parts connected to the main body only on thin bridges. The main result is the following
theorem, showing that the rule

R+ = Q ◦ R2

increases the thickness.

Theorem 3.2 (Main theorem). We have

Θ(R+(S), 6) > Θ(S, 6) + 1.

As an example let us look at the set on Figure 3.2 before and after the application of the rule R+. The
narrow connection between the two parts became wider.

3.3. Auxiliary notions of thickness. The rule R itself does not increase the thickness of a set. It cannot
even be said that the thickness is preserved. Though connections between large parts of the set do not seem
to become narrower, some of these parts may become larger, as the example in Figure 3.3 shows. In this
example, the three thin connections holding the central reversed triangle did not become thicker, but this
reversed triangle became bigger.

To take these adverse effects into account we need an auxiliary notion. Let ϑ(S, α, β) (the (α, β)-thickness
of S) denote the smallest number k such that S has a connected cut with parameters k, m with m > αk + β.
Notice that the difference is not only in the extra argument β but in that it deals only with connected cuts.
Its relation to Θ(S, α) is shown by the following theorem.
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FIGURE 3. The rule R+ increases thickness.
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Theorem 3.3.
Θ(S, α) = ϑ(S, α, 0).

Before proving this theorem, we need the following lemma.

Lemma 3.4. Let (C, A, B) be a closed cut of S with |C| < ϑ(S, α, β). Let us break A∪C into components U1, U2, . . .,
and B ∪ C similarly into components V1, V2, . . .. Then we have either

Span(Ui) 6 α|Ui ∩ C| + β
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for all i, or
Span(Vj) 6 α|Vj ∩ C| + β

for all j.

Proof. Suppose that the first relation does not hold. Without loss of generality, let us assume that

(3) Span(U1) > α|U1 ∩ C| + β.

Let j be arbitrary. Let C′ = U1 ∩ Vj. Then C′ ⊂ C. Let A′ = U1 r C′, B′ = Vj r C′.
The triple (C′, A′, B′) is a connected closed cut of S. The connectedness follows immediately from the

definition. To show that it is a closed cut, we have to show bS(A′) ⊂ C′. The relation A′ ⊂ A implies
bS(A′) ⊂ A ∪ bS(A) ⊂ A ∪ C, and hence, since A′ ∪ C′ is a component of A ∪ C, we have bS(A′) ⊂ C′.

It follows from the fact that (C′, A′, B′) is a connected cut and from ϑ(S, α, β) > |C| that

min(Span(U1), Span(Vj)) 6 α|C′| + β.

This, together with (3), implies
Span(Vj) 6 α|Vj ∩ C| + β.

�

Proof of Theorem 3.3. Let S be a set with ϑ(S, α, 0) > k. We will estimate Θ(S, α). Let (C, A, B) be a closed
cut of S with |C| = k. Let us break A ∪ C into components U1, U2, . . ., and B ∪ C similarly into components
V1, V2, . . .. Then, lemma 3.4 says that we have either

(4) Span(Ui) 6 α|Ui ∩ C|

for all i, or
Span(Vj) 6 α|Vj ∩ C|

for all j. Without loss of generality, assume that (4) holds. Then we have

Span(A ∪ C) 6 ∑
i

Span(Ui) 6 α|C|.

�

When β > 0 then the relation between our notion of τ thickness defined (for technical reasons to become
clear later) with connected cuts and a notion defined with arbitrary cuts is not as simple as above. The
reason can be seen from the last summation in the above proof. If we had α|Ui ∩ C| + β instead of α|Ui ∩ C|
then the summation would bring in nβ where n is the number of terms.

3.4. Outline of the proof of the main theorem. The following theorem, to be proved later, shows that the
original Toom rule “almost” preserves thickness.

Theorem 3.5. If β 6 3defl − 3 then

ϑ(R(S), α, β + 2) > ϑ(S, α, β).

The following theorem, to be proved later, says that the rule Q increases thickness.

Theorem 3.6. Suppose that β 6 3defl − 2. Then

ϑ(Q(S), α, β + 2 − α) > ϑ(S, α, β) + 1.

Proof of Theorem 3.2. We apply the above theorems to R,R and Q consecutively, with α = 6 throughout, but
with β = 0, 2, 4 in the three stages. �
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FIGURE 5. The pairs of tiles with centers in Pi(a).

4. THE EFFECT OF TOOM’S RULE ON THICKNESS

Proof of Theorem 3.5. Let U = R(S). Let (C, A1, A2) be a connected cut of U with |C| < k. Without loss of
generality, we can assume that it is a closed cut. Our goal is to estimate min j=1,2 Span(Aj ∪ C). We will find
a certain cut (C′, B1, B2) of S.

For each element a of C, we define an element a′ in S ∩ Q(a), and set C′ = { a′ : a ∈ C }. To define a′,
remember the notation ei from (2). Let us group the neighbors of a in three connected pairs Pi(a) (i = 1, 2, 3)
where

Pi(a) = { b 6= a : ei(a) ∈ Q(b) }.
The pair Pi(a) consists of the centers of those tiles containing the corner ei(a).

For each i, the pair Pi may intersect one of the sets A j. It cannot intersect both since A1 and A2 are
separated by C.

• Suppose that only one pair, say Pi, is intersected by A1, and ei(a) ∈ S. Then let a′ = ei(a).
• Suppose that two pairs are intersected by A1, and the third one, say Pi, is not, and ei(a) ∈ S. Then

let a′ = ei(a).
• In all other cases, we choose a′ arbitrarily from the set Q(a) ∩ S.

Now let
Bj = (S ∩ Q(Aj)) r C′.

Lemma 4.1. The triple (C′, B1, B2) is a cut.

Proof. It is enough to prove that if there is a path between some elements b j ∈ Bj for j = 1, 2 then this path
passes through an element of C′. Let b1 = v1, v2, . . . , vn = b2 be such a path. For both j = 1, 2, the element
bj is contained in a tile Q(aj) for some aj ∈ Aj. Let q be the last p such that vp ∈ Q(a) for some a in A1. Let
Q(w) be the tile containing the pair {vq, vq+1}. Then w ∈ C, since (C, A1, A2) is a closed cut. It is easy to see
from the definition above that w′ is either vq or vq+1. �

Let us complete the proof of Theorem 3.5. We replace the cut (C′, B1, B2) with the closed cut (C′, B1, B2)

where Bi ⊂ Bi. Let U1, . . . , Un be the components of B1 ∪ C′, and V1, V2, . . . the components of B2 ∪ C′. It
follows from Lemma 3.4 that either

(5) Span(Ui) 6 α|Ui ∩ C′| + β

for all i, or
Span(Vj) 6 α|Vj ∩ C′| + β
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for all j. Let us suppose without loss of generality that (5) holds. It follows from the definition of C′ and B1
that the tile Q(a) intersects B1 ∪ C′ for all a ∈ A1 ∪ C. Let

Wi = { a ∈ A1 ∪ C : Q(a) ∩ Ui 6= 0 },

U′
i = Q(Wi).

Then
⋃

i Wi = A1 ∪ C, Ui ⊂ U′
i . It follows from the connectedness of Ui that span(Ui, defl ) = span(Ii) for

a triangle Ii such that Ui ⊂ D(Ii, defl ). Then the triangle Ji = D(Ii, defl − 1) contains U ′
i , and the triangle

R(Ji) contains Wi. Let Ki = D(R(Ji),−1/3), i.e. the blowup of R(Ji) by 1/3.
Let us call the sets Wi, Wj neighbors if they either intersect or have neighboring elements. It follows from

the connectedness or
⋃

i Wi that the set {W1, W1, . . .} is connected under this neighbor relation. Indeed,
we constructed Ki in such a way that Wi ⊂ D(Ki, 1/3). Therefore if Wi and Wj are neighbors then Ki
and Kj intersect. Let us call two triangles Ki, Kj neighbors if they intersect. Then from the fact that the set
{W1, W2, . . .} is connected under the neighbor relation, it follows that the set {K1, K2, . . .} is also connected
under its neighbor relation.

According to Lemma 2.2, if triangles I, J intersect then there is a triangle containing their union whose
span is 6 span(I) ∪ span(J). It follows that there is a triangle K containing

⋃

i Ki such that span(K) 6

∑i span(Ki). As we know, span(Ki, d) = span(Ji) + 3d − 1 for any nonnegative d. It follows from (5) that

span(Ki, 1/3) = span(Ji) + 1 − 1 = span(Ii) − 3(defl − 1)

6 α|Ui ∩ C′| + β − 3defl + 3.

We have therefore

span(K) 6 α ∑
i
|Ui ∩ C′| + n(β − 3defl + 3)

6 α|C′| + n(β − 3defl + 3)

Finally,

span(A1 ∪ C, defl ) 6 span(K, defl − 1/3)

6 α|C′| + n(β − 3defl + 3) + 3defl − 1.

6 α|C| + β + 2,

where we used the assumption β 6 3defl − 3 to imply that the coefficient of n is not positive, therefore we
can replace n with 1. �

5. THE EFFECT OF INFLATION ON THICKNESS

Proof of Theorem 3.6. For a subset E of Q(S), let

Q−1(E, S) = { a ∈ S : Q(a) ∩ E 6= ∅ }.

Suppose that (C, R1, R2) is a connected cut of Q(S) with |C| 6 ϑ(S, α, β). Without loss of generality, we
can assume that it is a closed cut. Our goal is to estimate min j=1,2 Span(Rj). From the fact that R1, R2 are
separated by a cut, it follows that the sets Q−1(Rj, S) are disjoint. Let

Sj = Q−1(Rj, S).

Lemma 5.1. We have
Rj ⊂ Q(Sj) ⊂ Rj ∪ C

for j = 1, 2.
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Proof. The first relation follows immediately from the definition. For the second relation, note that

Q(Sj) ⊂ Rj ∪ bS(Rj)

which is contained in Rj ∪ C by the closedness of the cut (C, R1, R2). �

Now we proceed similarly to the proof of Theorem 3.5. However, we are trying to make the new cutting
set C′ smaller than the old one.

Lemma 5.2. Let us use the notation introduced above. There is an element x of C, and a mapping a → a′ defined on
C r {x} such that we have a ∈ Q(a′), and with

C′ = { a′ : a 6= x }, S′
j = Sj r C′

the triple (C′, S′
1, S′

2) is a cut of S.

The proof of this lemma is left to the next section.
Now we conclude the proof of Theorem 3.6 analogously to the end of the proof of Theorem 3.5. Let

(C′, S′
1, S′

2) be closed cut such that S′
j ⊂ S′

j. Let U1, U2, . . . be the components of S′
1 ∪ C′, and V1, V2, . . . the

components of S′
2 ∪ C′. It follows from Lemma 3.4 that either

(6) Span(Ui) 6 α|Ui ∩ C′| + β

for all i, or
Span(Vj) 6 α|Vj ∩ C′| + β

for all j. Let us suppose without loss of generality that (6) holds. Let Wi = Q(Ui). Let us remember the
superfluous element x, and define W0 = {x}. It follows from our construction that

R1 ∪ C ⊂
⋃

i

Wi.

It follows from the connectedness of Ui that Span(Ui) = span(Ui, defl ) = span(Ii) for a triangle Ii such
that Ui ⊂ Ji = D(Ii, defl ). Then Wi ⊂ Q(Ji). Let Ki = D(Q(Ji),−1/3) for i > 0, and D({x},−1/3) for i = 0.
Just as in the proof of Theorem 3.5, we can conclude that there is a triangle K containing

⋃

i Ki such that
span(K) 6 ∑i span(Ki). It follows from (6) that, for i > 0,

span(Ki) = span(Ji) + 1 + 1 = span(Ii) − 3defl + 2

6 α|Ui ∩ C′| + β − 3defl + 2.

We have therefore

span(K) 6 α ∑
i
|Ui ∩ C′| + n(β − 3defl + 2) + span(K0)

6 α|C′| + n(β − 3defl + 2) + 1.

Finally,

span(R1 ∪ C, defl ) 6 span(K, defl − 1/3)

6 α|C′| + n(β − 3defl + 2) + 1 + 3defl − 1

6 α(|C| − 1) + β + 2 = α|C| + β + 2 − α

where we used the assumption β 6 3defl − 2 to imply that the coefficient of n is not positive, therefore we
can replace n with 1. �
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FIGURE 6. The tiles Q(bi(t)).

6. CUTTING THE PRE-IMAGE WITH FEWER POINTS

6.1. Conditions for a cut in the pre-image.

Proof of Lemma 5.2. In later parts of the proof, we will give an algorithm for the definition of the distinct
elements a1, a2, . . ., the number s with as = x, and the sets

C′
t = { a′i : i 6 t, i 6= s }.

Let St
i = Si r C′

t. Let C′
0 = ∅. Assume that a1, . . . , at and C′

t−1 have already been defined. First we see that,
given a1, a2, . . . , at, what conditions must be satisfied by s and a′t to make (C′, S′

1, S′
2) a cut of S.

The element at is contained in three tiles Q(bi(t)) for i = 1, 2, 3. They are numbered in such a way that

at = ei(bi(t)).

Let us write B(t) = {b1(t), b2(t), b3(t)}.
We say that at is superfluous if one of the St−1

j does not intersect the set B(t). We will choose a1, a2, . . .
later in such a way that there is a t such that at is superfluous.

Condition 6.1. The point as is the first superfluous element of the sequence a1, a2, . . .. ♦

If at is not superfluous then there is a b and j such that

{b} = B(t) ∩ St−1
j .

Such a b is called eligible for t. Let E(t) be the set of those (one or two) elements of B(t) that are eligible for t.

Condition 6.2. If at is not superfluous then a′t ∈ E(t). ♦

Lemma 6.3. If conditions 6.1 and 6.2 are satisfied then (C′, S′
1, S′

2) is a cut of S.

Proof. Suppose that there is a path u1, . . . , un going from S′
1 to S′

2 in S. Let up be the first element of the
path that is not in S′

1. We will prove that it is in C′. The point a in the intersection of Q(up−1) and Q(up) is
the neighbor of an element of R1, since it is in Q(up−1). If it is an element of R1 itself then up ∈ S1. Since
up 6∈ S′

1, it follows that up ∈ C′ and we are done.
Suppose therefore that a 6∈ R1. Then a ∈ C, since (C, R1, R2) is a closed cut. Let t be such that a = at.

Then up−1 ∈ St−1
1 . If up 6∈ C′

t−1 then up ∈ St−1
2 , by the definition of S2. Then at is not superfluous, and by

Condition 6.2, a′t is either up−1 or up. �



14 PETER GÁCS
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FIGURE 7. Backward and forward tiles, with r = 2.

6.2. The choice of a′t and at+1. After Lemma 6.3, what is left from Lemma 5.2 to prove is that the sequences
at, a′t can be chosen satisfying Condition 6.2 in such a way that one of the at is superfluous.

The construction will contain an appropriately chosen constant r = 1, 2 or 3. If

(7) at−1 ∈ Q(br(t))

then we say that a forward choice is made at time t. In this case, at is in corner r of the tile containing both at
and at−1. We call this tile the backward tile. The value of the linear function Lr is greater on at−1 than on at.
Let us call the two other tiles containing at the forward tiles.

The set
F(t) = B(t) ∩ (St−1

1 ∪ St−1
2 ) r {br}

is the set of the centers of one or two forward tiles for t. In case of a forward choice, the corner r of one of
the forward tiles is chosen for at+1. Suppose that there is a b in F(t) satisfying

(8) er(b) ∈ C r {a1, . . . , at}.

Then choosing at+1 as such a b would make a strong forward choice.
If, in addition to (7), we also have at+1 = er(a′t) then we say that a strong forward choice is made.

Condition 6.4. Suppose that there is a b in E(t) ∩ F(t) satisfying (8). Then at+1 is such a b, and with a′t = b a
strong forward choice is made. ♦

Conditions 6.2, 6.4 are the only ones restricting the choice of a′t and at+1 for t > 1. Otherwise, the choice
is arbitrary.

Lemma 6.5. Suppose that no superfluous ai was found for i = 1, . . . , t, all earlier choices (if any) were forward, and

(9) F(t) ∩ St−1
j 6= ∅ for j = 1, 2.

Then there is a b in F(t) satisfying (8) and therefore a forward choice can be made. If there is a b in E(t) ∩ F(t)
satisfying (8) then all choices beginning with t are strongly forward, until a superfluous node is found.

Proof. By the assumption (9), the elements of F(t) are contained in two different sets S j. It follows from
Lemma 5.1 that the two forward tiles are contained in different sets R j ∪ C. There is an edge between the
corners r of the two forward tiles. Since C separates R j, it must contain one of these points er(b). Since all
our earlier choices were forward, the function Lr is strictly decreasing on the sequence a1, a2, . . . , at, er(b).
Therefore it is not possible that er(b) is equal to one of the earlier elements of the sequence, and hence (8) is
satisfied.
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If a b in F(t)∩ E(t) can be found satisfying (8) then according to Condition 6.4, the strong forward choice
a′t = b, at+1 = er(b) is made. From a′t 6∈ St

1 ∪ St
2, it follows that either at+1 is superfluous or E(t + 1) =

F(t + 1) = B(t + 1) r {a′t}. In the latter case, the conditions of the present lemma are satisfied for t + 1,
implying that the next choice is also strong forward, etc. �

6.3. The choice of r, a1, a′1 and a2.

Condition 6.6. (1) If a1 can be chosen superfluous then it is chosen so.
(2) If a1 cannot be chosen superfluous but it can be chosen to make |E(1)| > 1 then it is chosen so. In

this case, r is chosen to make E(1) = F(1).
♦

If the second case of the above condition occurs then all conditions of Lemma 6.5 are satisfied with t = 1.

Condition 6.7. Suppose that none of the choices of Condition 6.6 are possible, and r, a1, a′1, a2 can be chosen
to either make a2 superfluous or to satisfy the conditions of Lemma 6.5 with t = 2. Then they are chosen
so. ♦

Lemma 6.8. The elements r, a1, a′1, a2 can always be chosen in such a way that either Condition 6.6 or Condition 6.7
applies.

Before giving the proof of this lemma, let us finish, with its help, the proof of Lemma 5.2. The complete
algorithm of choosing at, a′t, r is as follows. Choose a1 to satisfy Condition 6.6. If the second part applies
then choose r accordingly. If Condition 6.7 applies then choose r, a′1, a2 to satisfy Conditions 6.2 and 6.7.
From now on, choose a′t, at+1 to satisfy Conditions 6.2 and 6.4.

A superfluous at will always found. Indeed, if the first part of Condition 6.6 applies then a1 is super-
fluous. If the second part applies then the conditions of Lemma 6.5 are satisfied with t = 1. If Condition
6.7 applies then they are satisfied with t = 2. From this time on, strong forward choices can be made until
a superfluous at is found. This is unavoidable since C is finite and hence we cannot go on making strong
forward choices forever. �

Proof of Lemma 6.8. Suppose that the statement of the lemma does not hold. We will arrive at a contradic-
tion. Choose a1 arbitrarily. We have |E(1)| = 1. We can choose r to get |F(1)| = 2, E(1) ⊂ F(1). We
will show that we can then make a forward choice (not strong) for each t and recreate the conditions (9)
indefinitely. This is the desired contradiction since our set is finite.

Assume that we succeeded until t. By lemma 6.5, there is a b in F(t) such that (8) holds. If b ∈ E(t) then
with the choice a1 = at, a′1 = b, a2 = er(b) Condition 6.7 would apply, and we assumed this is impossible.
Therefore b 6∈ E(t).

Without loss of generality, let us assume

E(t) = {b1(t)} ⊂ St−1
1 , r = 2.

Then b 6= b1(t). From b ∈ F(t), it follows that b 6= b2(t), hence b = b3(t). Since at is not superfluous, the
assumption E(t) = {b1(t)} implies

B(t) ∩ St−1
1 = {b1(t)}, B(t) ∩ St−1

2 = {b2(t), b3(t)}.

Let us show b1(t + 1) ∈ St−1
1 . It is easy to check that the two tiles Q(b1(t)) and Q(b1(t + 1)) intersect in

a = e2(b1(t)) = e3(b1(t + 1)). If b1(t + 1) belonged to St−1
2 then, by Lemma 5.1, the tile Q(b1(t + 1)) would

be contained in R2 ∪C while for similar reason, the tile Q(b1(t)) is contained in R1 ∪C. Then the intersection
point a would have to belong to C. But then we could satisfy (8) with b = b1(t) ∈ E(t).

We have b3(t + 1) ∈ St−1
2 . Indeed, if it belonged to St−1

1 then the choice a1 = at+1, a2 = at would again
satisfy all conditions of Lemma 6.5 which we supposed is impossible. We found that the neighborhood of
at+1 is just a shift of the neighborhood of at. This could continue indefinitely. �
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FIGURE 8. To the proof of Lemma 6.8. The tiles Q(b1(t)) and Q(b1(t + 1)) belong to S1.

7. CONCLUSION

Let us make a remark on the possible extension of the present work. The presence of failures seems to
necessitate a more complicated notion of thickness, and it is not clear what the appropriate generalization
of the main theorem should be in that case.

A variant of the main theorem can probably be proven where the size of the cutting set is measured in
terms of its span instead of number of elements. If the proof of that variant is significantly simpler then it
should replace the present theorem.

The stability property of the rules analogous to Toom’s rules can also be proved for continuous-time
systems. In such systems, the transition rule is not applied simultaneously at all sites, rather each site
applies it at random times. It seems that the consensus property of slightly biased Toom rules holds also
for this situation. Though the methods used in the present paper seem to depend on synchrony, especially
the fact that the inflation operation is carried out all at once, it is hoped that the concepts will be useful in
extensions to these related problems.
Acknowledgement: The author is thankful to the anonymous referee for the careful and thorough reading
and helpful remarks.
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