
Titlepage

Algorithmic randomness test for a class of
measures

Péter Gács

Computer Science Department
Boston University

Coverfest

Péter Gács (Boston University) Randomness for a class Coverfest 1 / 29



Introduction Martin-Löf’s theory of randomness

Martin-Löf’s theory of randomness

(As presented by Levin). Let X be the space Σ∗ of finite strings, or
the space ΣN of infinite strings. Let µ be a probability measure over
X. A test

fµ(x)

quantifies the nonrandomness of outcome x ∈ X with respect to µ.
In Martin-Löf’s theory, measure µ is assumed to be “computable”
and fixed. Required:
∫

fµ(x)µ(dx)¶ 1. (The measure of “non-random” objects is
small.)
f is lower semicomputable in x. (Sooner or later we will
recognize non-randomness.)

Test t is universal if ∀f ∃c> 0 ∀x fµ(x)< c · tµ(x).

Theorem
There is a universal test t̃µ(x).
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Introduction Test in terms of complexity

Test in terms of complexity

I assume familiarity with description (Kolmogorov) complexity. Let
X = Σ∗. For x ∈ X, denote the complexity (the prefix version) of x
by

H(x)

(same as K(x) in Li-Vitányi). Let d̃µ(x) = log t̃µ(x), called the
deficiency of randomness of x with respect to µ.

Theorem
The following holds, for constants cµ: Over the set of finite strings,

d̃µ(x)
+=− logµ(x)−H(x) + cµ.

Over the set of infinite strings,

d̃µ(x)
+= sup

n
− logµ(x¶n)−H(x¶n) + cµ.
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Introduction Uniform tests

Arbitrary measures

Restriction to computable measures is unnatural (it is particularly
baffling to probabilists). How to extend the definition to arbitrary
measures? Idea: just use (over X = Σ∗):

− logµ(x)−H(x).

Alas, this test has undesireable properties (does not “conserve
randomness”).
New idea (following early work of Levin): test fµ(x):
∫

fµ(x)µ(dx)¶ 1.

f is lower semicomputable in the pair (µ, x).

What does this mean? If we mean that µ is defined by an infinite
string S with fS(x), (lower semi)computable from (S, x) then
different descriptions of the same S may give different tests.
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Introduction Uniform tests

Other idea: equip the space of measures with a computability
structure, so that one can talk about (lower semi)computability in
µ itself, independent of its the particular description. In other
words, the dependence on µ must be extensional. Levin has done
this for infinite binary sequences.
This approach is attractive, but we also leads to some unexpected
results (neutral measure).
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Continuous computability

Constructive topology

Computability extended: instead of only about random strings, to
speak of random real numbers, even about a random path of the
Brownian motion (non-compact space). (For the special case of
Brownian motion the concept has been worked out already by
Asarin.)
Here, I will only work with metric spaces.
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Continuous computability Metric space

Computable metric space

X= (X, d, D,α).

A distance function d over X.

A fixed countable dense set D⊆ X (so, X is separable).

An enumeration α of D.

Condition: d(x, y) is computable for x, y ∈ D.
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Continuous computability Continuity and computability

Continuity and computability

Some concepts of topology, and their constructive versions:

Basis of open balls: balls with center in the dense set D and
rational radius.

Open set: a union of basis elements.

R.e. open set: a union of a r.e. set of basis elements.
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Continuous computability Continuity and computability

Let f : X→ Y between metric spaces.

Continuous: f−1(V) is open for all basis elements V ⊆ Y.

Computable: f−1(V) is r.e. open, uniformly in the enumerated
basis elements V.

Lower semicomputable: a constructive version of “lower
semicontinuity”: the set

{ (x, r) : f(x)> r }

is a r.e. open subset of X ×Q.

Computable point: x ∈ X: if the constant function 0 7→ x is.

Effective compactness: If for every k one can compute a covering
of X by basic balls of radius ¶ 1/k.

Péter Gács (Boston University) Randomness for a class Coverfest 9 / 29
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Continuous computability Continuity and computability

The following observation is useful, for a computable metric space
X:

Proposition
Let f :⊆ X→ R+ be a lower semicomputable function. Then it can be
extended to a total lower semicomputable function g : X→ R+.
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Continuous computability Measures

Topology of measures

We will always require X to be a complete computable metric space.

Weak convergence: µi→ µ if µif → µf for all bounded continuous
functions f . Can be metrized using, for example, the Prokhorov
distance.

Dense set of measures: finite rational combinations of measures of
form δx for x ∈ D.

This turns the set of probability measures into a computable
complete metric space M(X).
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Measure-dependent tests

Measure-dependent tests

Definition (µ-test)
A µ-test is a (possibly partial) function fν(x) with

fν(x) is lower semicomputable in (ν , x).
∫

fµ(x)µ(dx)¶ 1.

It is a uniform test if it is a ν-test for each ν .

Theorem (Hoyrup, Rojas)
There is a universal uniform test tµ(x): for all µ and each µ-test fµ(x)
there is a constant ct such that for all x we have

fµ(x)< cttµ(x).

Note that the universal uniform test tµ(x) dominates even the
µ-tests for fixed µ.
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Class tests

Class tests

Another way to avoid the problem of uncomputable measures is to
test whether an object is random with respect to any measure in a
whole (natural) class C . Say, whether there is a 0< p< 1 such that

x = x1x2 . . .

is random with respect to the Bernoulli measure with parameter p.

Definition
f(x) is a class test for class C of measures if

It is lower semicomputable in x.
∫

f(x)µ(dx)¶ 1 for all µ ∈ C .
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Class tests Minimization

Minimization

Given the universal uniform test tµ(x), there is a natural candidate
for a class test:

tC (x) =min
µ∈C

tµ(x).

Theorem
Assume that the class C is effectively compact. Then tC (x) is a class
test and it is universal (dominates all other class tests for C ).

Levin has noted the existence of class tests long ago. Examples of
natural effectively compact classes: Bernoulli, m-state Markov,
stationary.
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Class tests Martin-Löf’s approach

Martin-Löf’s approach

Martin-Löf also defined Bernoulli tests. We present them in the
integral-constraint version. Denote

B(n, k) = {x ∈ Bn :
∑

i

x(i) = k }.

Definition

A combinatorial Bernoulli test is a function f : B∗→ R+ with the
following constraints:

It is lower semicomputable.

It is monotonic with respect to the prefix relation.

For all 0¶ k¶ n we have
�n

k

�−1∑

x∈B(n,k) f(x)¶ 1.
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Class tests Martin-Löf’s approach

Standard methods show:

Proposition
There is a universal combinatorial Bernoulli test.

Fix a universal combinatorial Bernoulli test b(x) and extend it to
infinite sequences ξ by b(ξ) = supn b(ξ¶n).
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Class tests Martin-Löf’s approach

Let tB(ξ) be a universal class test for Bernoulli measures, for
infinite sequences.

Theorem

We have b(ξ) ∗= tB(ξ).

In words: a sequence is nonrandom with respect to all Bernoulli
measures if and only if it is rejected by a universal combinatorial
Bernoulli test; moreover, even the degree of nonrandomness for
random sequences, defined in the two ways, is the same.
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Orthogonality Bernoulli sequences

Orthogonality
Bernoulli sequences

Let 0< p< 1, and x = x1x2 . . . an infinite sequence, with

Sn(x) = x1+ · · ·+ xn.

Then x is Bernoulli random with respect to p if
a x is random with respect to the classB of Bernoulli measures.

b Sn(x)/n→ p.

Requirement b (as convergence in general) can be replaced with a
stronger one, say:

|Sn(x)/n− p|< n−1/3 for all but finitely many n.

We want to generalize this observation.
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Orthogonality Separating test

Separating test

Definition
For a class C of measures over a computable metric space
X= (X, d, D,α), a lower semicomputable function s : X ×C → R+ is
a separating test for a subclass C ′ ⊆C if

sµ(·) is a test for each µ ∈ C .

if µ or µ′ ∈ C ′ and µ 6= ν then sµ(x)∨ sν(x) =∞ for all x ∈ X.

We call an element x typical for µ ∈ C ′ if sµ(x)<∞.

A typical element determines uniquely the measure µ for which it
is typical.
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Orthogonality Separating test

Example
For a binary sequence x, and for p ∈ [0,1] the function

sp(x) = sBp
(x) = c · sup{k : |S2k(x)− 2kp|> 20.6k }

is a separation test for the Bernoulli classB , for an appropriately
chosen constant c.
In creating this test we exploited the existence of a computable
convergence speed in the law of large numbers.

A generalization of the Bernoulli example:

Example

C is the class of m-state stationary Markov chains, C ′ the class of
ergodic chains.
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Orthogonality Separating test

When a separating test exists, it helps structuring randomness tests:

Theorem

Let C be an effectively compact class of measures, let tµ(x) be the
universal uniform test and let tC (x) be a universal class test for C .
Assume that sµ(x) is a separating test for C ′ ⊆C . Then we have the
representation

tµ(x)
∗= tC (x)∨ sµ(x)

for all µ ∈ C ′.

The theorem separates the randomness test into two parts. One
part tests randomness with respect to the class C , the other
typicality with respect to the measure µ.
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Orthogonality Separating test

In the Bernoulli example,

Part tB(x) checks “Bernoulliness”, that is independence. It
encompasses all the irregularity criteria.

Part sp(x) checks (crudely) for the law of large numbers:
whether relative frequency converges (fast) to p.

If the independence of the sequence is taken for granted, we may
assume that the class test is satisfied. What remains is typicality
testing, similar to ordinary statistical parameter testing.

Remark
Separation is the only requirement of the test sµ(x), otherwise, for
example in the Bernoulli test case, no matter how crude the
convergence criterion expressed by sµ(x), the maximum
tC (x)∨ sµ(x) is always (essentially) the same universal test.
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Orthogonality Stationary processes

Stationary processes

Much more complicated case: arbitrary stationary processes (say
0-1 valued).
The separating test that we gave for the Bernoulli measures (and
can be given for the above simple Markov chains) makes use of a
known speed of convergence in the law of large numbers.
V’yugin proved that for arbitrary stationary processes, no recursive
speed of convergence can be guaranteed in the Ergodic Theorem
(which is the appropriate generalization of the law of large
numbers).

Question
What can be said about the convergence speed for ergodic
processes, at least in the countable-state Markov case (such is
V’yugin’s example).
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Desireable test properties

Desireable test properties

Randomness with respect to computable measures has
certain—intuitively meaningful—monotonicity:
µ¶ cν ⇒ if x is random with respect to µ it is random with
respect to ν .

This property does not survive for the uniform test.

Example
Let

µ0 uniform over [0,1], µ1 uniform over [0,1/2],

µ2 uniform over [1/2,1].

With p< 1/2 be random with respect to µ0, let
ν1 = pµ1+ (1− p)µ2. Then p is not random with respect to ν1,
though but µ0 ¶ p−1ν1.

There is still a question whether all the good properties can be
preserved in an appropriate definition.
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Neutral measure

Neutral measure

If S is a sequence describing µ, and a test tS(x) is computed as a
function of the sequence S (intensional, or “via oracle S” as
opposed to our extensional definition) then one can compute from
S an object x with µ({x}) = 0, so there is a nonrandom object for µ.
But if we require (as we did) tests to be intensional in µ then this is
not true anymore:

Theorem (Levin’s neutral measure)
If X is compact then there is a measure M with the property that for
all x, tM(x)¶ 1.

Levin called this measure “apriori probability”, I use the more
neutral term neutral measure.
For our test definition, this measure will not have nice
computability properties.
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Randomness conservation

Randomness conservation

Theorem
Let f : X→ Y be computable. Then

tf∗µ(f(x))
∗
< tµ(x).

There is a more general theorem, for computable random
transitions.
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Relation to complexity

Relation to complexity

The extensional nature of the test makes it hard to relate it to
description complexity, in the case of noncomputable measures.
Here, more research is needed.
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Information Relative algorithmic entropy

Information
Relative algorithmic entropy

Hν(x) =− log tν(x)

is a generalization of complexity (algorithmic entropy). Indeed,
generalizing to non-probability measures ν (example: the counting
measure #)

H#(x)
+= H(x).

This is in analogy to the definition of relative
(information-theoretical) entropy of µ with respect to ν ,

Hν(µ) =−
∫

log
dµ

dν
dµ,

(which is the negative of the so-called Kullback distance). Special
cases: ν = # gives ordinary entropy. For ν = Lebesgue measure
gives −
∫

f(x) log f(x)dx.
Péter Gács (Boston University) Randomness for a class Coverfest 28 / 29



Information Addition theorem

Addition theorem

Let us generalize the well-known addition theorem

H(x, y) += H(x) +H(y | x, H(x)).

Theorem (General Addition)

Hµ×ν(x, y) += Hµ(x | ν) +Hν(y | x, Hµ(x | ν), µ).

The proof is somewhat subtle.

Question
Applications?
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