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Abstract

We prove that the reliable computation of any Boolean function with sensitivity s requires
Ω(s log s) gates if the gates of the circuit fail independently with a fixed positive proba-
bility. This theorem was stated by Dobrushin and Ortyukov in 1977, but their proof was
found by Pippenger, Stamoulis and Tsitsiklis to contain some errors. We save the original
structure of the proof of Dobrushin and Ortyukov, correcting two points in the probabilis-
tic argument.

1 Introduction

In this paper, we prove lower bounds on the number of gates needed to compute Boolean
functions by circuits with noisy gates. We say that a gate fails if its output is incorrect. Let
us fix a bound ε ∈ (0, 1/2) on the failure probability of the gates and a bound p ∈ (0, 1/2)
on the probability that the value computed by the circuit is incorrect. These parameters
which will be held constant throughout the paper, and dependence on them will not be
explicitly indicated either in the defined concepts like redundancy, or in the O() and Ω()
notation.

A noisy gate fails with a probability bounded by ε. A noisy circuit has noisy gates that fail
independently.

A noisy circuit is reliable if the value computed by the circuit on any given input is
correct with probability ≥ 1 − p. The size of a reliable noisy circuit has to be larger than
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the size needed for circuits using only correct gates. By the noisy complexity of a function we
mean the minimum number of gates needed for the reliable computation of the function.
Note that in this model the circuit cannot be more reliable than its last gate. For a given
function, the ratio of its noisy and noiseless complexities is called the redundancy of the
noisy computation of the function.

The following upper bounds are known for the noisy computation of Boolean functions.
The results of von Neumann [9], Dobrushin and Ortyukov [3] and Pippenger [11] prove
that if a function can be computed by a noiseless circuit of size L, then O(L log L) noisy
gates are sufficient for the reliable computation of the function. Pippenger [11] proved
that any function depending on n variables can be computed by O(2n/n) noisy gates.
Since the noiseless computation of almost all Boolean functions requires Ω(2n/n) gates
(Shannon [15], Muller [8]), this means that for almost all functions the redundancy of their
noisy computation is just a constant. Pippenger [11] also exhibited specific functions with
constant redundancy. For the noisy computation of any function of n variables over a
complete basis Φ, Uhlig [16] proved upper bounds arbitrarily close to ρ(Φ)2n/n as ε → 0,
where ρ(Φ) is a constant depending on Φ, and ρ(Φ)2n/n is the asymptotic bound for the
noiseless complexity of almost all Boolean functions of n variables (Lupanov [7]).

These are rather surprising results. It is natural to ask whether there exist functions with
nonconstant redundancy or whether the O(L log L) upper bound of [9],[3],[11] is tight for
some functions. It is also desirable to exhibit such functions.

Dobrushin and Ortyukov in their 1977 paper [2] stated the following theorem providing
answers to this important problem: The computation of any function with sensitivity s re-
quires Ω(s log s) gates if the gates of the circuit fail independently with a fixed probability
ε ∈ (0, 1/2), but the value computed by the circuit on any input is incorrect with probabil-
ity not greater than p ∈ (0, 1/3). Thus, in particular, the reliable computation of the parity
or the “or” functions of n variables requires Ω(n log n) noisy gates.

Unfortunately, as noticed by Pippenger, Stamoulis and Tsitsiklis [12], the proof in [2] is
incorrect. Pippenger, Stamoulis and Tsitsiklis [12] pointed out the questionable arguments
in the proof, and suggested that part of the strategy seemed hopelessly flawed. They gave
in [12] an Ω(n log n) lower bound for the parity function, keeping part of the approach of
Dobrushin and Ortyukov, but replacing a significant part of their proof with entirely new
arguments using specific properties of the parity function. The more general statement
about any function with given sensitivity remained unproven.

In this paper we prove that functions with sensitivity s do indeed require Ω(s log s)
noisy gates for their reliable computation. We can prove the stronger Ω(b log b) lower
bound, where b is block sensitivity rather than sensitivity. (See Definition 6.1.) The re-
sults hold for circuits with arbitrary constant fan-in gates. Our proof uses the original
Dobrushin-Ortyukov strategy, proving the correct probabilistic lemmas to carry it out. We
give two different proofs. The first stays closer to the steps of Dobrushin and Ortyukov
and works for circuits with error probability at most p ∈ (0, 1/4). The second proof works
for p ∈ (0, 1/2), thus it gives a stronger result than the original theorem.

We note that these are the only known lower bounds proving nonconstant redundancy
for functions other than the parity function, and they allow to prove maximal Ω(log L)
redundancy of noisy computation over arbitrary constant fan-in basis for a large class of
functions, including all symmetric functions.

Recently we learned that the paper of Reischuk and Schmeltz [13] gives an independent
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proof of the Ω(s log s) lower bound. A preliminary version of our paper appeared in [5].

2 The main theorem

Let f be a Boolean function of n variables. Let x = (x1, . . . , xn) be any input string. Denote
by x` the input string which differs from x only in the `-th bit, i.e. x`

i = xi for each i 6= `

and x`
`
= ¬x`.

Definition 2.1 The function f is sensitive to the `-th bit on x if f (x) 6= f (x`). The sensitivity
of f on x is the number of bits to which f is sensitive on x. The sensitivity of f is the
maximum over all x of the sensitivity of f on x.

We consider Boolean circuits with gates having constant fan-in and computing functions
from a finite set Φ. A complete basis is a set of functions such that any Boolean function can
be represented by their composition. Φ may or may not be a complete basis. We assume
only that any circuit C computing a particular function f uses constant fan-in gates com-
puting functions from a finite set ΦC, such that f can be represented by the composition of
functions from ΦC.

Let n(ΦC) be the maximum fan-in of the gates computing functions from the set ΦC. Let
ng denote the fan-in of gate g.

Definition 2.2 Let z ∈ {0, 1}ng . Denote by g(z) the value of the function that the gate g has
to compute, on input z. We say that the gate g fails, if receiving input z it outputs a value
different from g(z).

The main theorem gives the lower bound for the case that the gates fail independently
with a fixed probability ε ∈ (0, 1/2). It has been argued (Pippenger [11]) that for prov-
ing lower bounds this is the best model to consider, as opposed to proving upper bounds,
where the assumption that the gates fail independently with probability at most ε ∈ (0, 1/2)
is more appropriate.

Definition 2.3 Denote by C(x) the random value computed by the circuit C on input x. We
say that a circuit computes f with error probability at most p if the probability that C(x) 6= f (x)
is at most p for any input x.

In the whole following exposition, the notation v = Ω(w) means that there is a constant
c > 0 depending on parameters p, ε, etc. but not on the Boolean function f to be computed,
such that v ≥ cw.

The main theorem is stated below:

Theorem 2.4 Let ε and p be any constants so that ε ∈ (0, 1/2), p ∈ (0, 1/2). Let f be any
Boolean function with sensitivity s. Suppose a circuit whose gates fail independently with fixed
probability ε computes f with error probability at most p . Then the number of gates of the circuit
is Ω(s log s).

Corollary 2.5 The redundancy of the noisy computation by Boolean circuits of any function of n
variables with O(n) noiseless complexity and Ω(n) sensitivity is Ω(log n).
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Corollary 2.5 applies to a large class of functions. In particular the following statement
holds:

Corollary 2.6 The redundancy of the noisy computation by Boolean circuits of any nonconstant
symmetric function of n variables is Ω(log n).

We note that there is a difference between the redundancies of noisy computations by
circuits and by decision trees. A similar model of noisy computation is considered by Feige
et al. [4] for Boolean decision trees. The nodes of the tree are allowed to be independently
faulty with some probability, and the result of the computation has to be correct with at
least a fixed probability for every input. Feige et al. [4] give bounds for the depth of noisy
decision trees computing symmetric functions. These bounds show that some nonconstant
symmetric functions have constant redundancy of noisy computation by decision trees.

Corollary 2.7 There exist Boolean functions of n variables with constant redundancy of noisy
computation by decision trees and Ω(log n) redundancy of noisy computation by circuits.

3 Noisy wires

Following Dobrushin and Ortyukov, for the proof of the main theorem, we consider an
equivalent problem.

Let C be a circuit satisfying the condition that if its gates fail independently with proba-
bility ε then the circuit computes f with error probability at most p.

As suggested in [2], consider the case when not only the gates but the wires of C may
fail as well. We say that a wire fails when it transmits an incorrect value.

Let δ ∈ [0, ε/n(ΦC)] and suppose that the wires of C fail independently, each with prob-
ability δ. This means that the input y ∈ {0, 1}ng received by gate g may be different from
the input t ∈ {0, 1}ng that the gate should have received.

The following statement is proved as Lemma 3.1 in [2]: Let ε ∈ (0, 1/2), δ ∈ [0, ε/n(ΦC)].
Then for any gate g of the circuit C there exist unique values ηg(y, δ) ∈ [0, 1] such that if
the wires of C fail independently with probability δ and the gate g fails with probability
ηg(y, δ) when receiving input y, then the probability that the output of g is different from
g(t) (where t is the input entering the input wires of the gate) is equal to ε.

Consider now the behavior of circuit C in two different failure modes. In the first mode
the wires of the circuit are correct and the gates fail independently with probability ε ∈
(0, 1/2). In the second mode, each wire fails independently with fixed probability δ ∈
[0, ε/n(ΦC)] and each gate fails independently with probability ηg(y, δ) when receiving
y. Lemma 3.2 of [2] shows that these two failure modes are equivalent in the sense that
the circuit C computes f with the same error probability: for any input x and any gate
g, the output of g differs from the output computed by the same gate in an error-free
computation of C on input x with the same probability in both modes. Thus to prove
Theorem 2.4 it suffices to prove a lower bound for the size of C computing f with error
probability at most p with errors occurring at both the wires and the gates. More precisely,
we shall prove the following.
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Theorem 3.1 Let δ and p be any constants so that δ ∈ (0, 1/2), p ∈ (0, 1/2). Let f be any
function with sensitivity s. Let C be a circuit such that its wires fail independently with fixed prob-
ability δ and each gate g fails independently with probability ηg(y, δ) when receiving y. Suppose C
computes f with error probability at most p. Then the number of gates of C is Ω(s log s).

4 Probabilistic lemmas

In this section we prove a few statements which we will need for the proof of the main
theorem.

Lemma 4.1 Let H1, . . . , Hn be independent events, γ ∈ (0, 1) and Pr[
⋃n

i=1 Hi] ≤ γ. Then

Pr[
n

⋃

i=1

Hi] ≥ (1 − γ)
n

∑
i=1

Pr[Hi] .

Proof:

Pr[
n

⋃

i=1

Hi] ≥
n

∑
i=1

Pr[Hi ∩ (¬
⋃

j 6=i

Hj)]

≥
n

∑
i=1

Pr[Hi] (1 − Pr[
n

⋃

j=1

Hj])

≥ (1 − γ)
n

∑
i=1

Pr[Hi] .

Lemma 4.2 Let E be an event, p and c constants from (0, 1). Let H and G be independent events
such that Pr[G] ≥ c and Pr[E | H] ≥ 1 − p. Then

Pr[E | H ∩ G] ≥ 1 − p
c

.

Proof:
Pr[E | H ∩ G] = 1 − Pr[¬E | H ∩ G] .

Pr[¬E | H ∩ G] =
Pr[¬E ∩ H ∩ G]

Pr[H ∩ G]
≤ Pr[¬E ∩ H]

Pr[H ∩ G]

=
Pr[¬E | H] Pr[H]

Pr[H] Pr[G]
≤ p

c
.

Lemma 4.3 Let E be an event and p ∈ (0, 1) a constant. Let H1, . . . , Hn be independent events
such that Pr[E | Hi] ≥ 1 − p for ∀i. Then

Pr[E |
n

⋃

i=1

Hi] ≥ (1 −√
p)2 .
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Proof:
We prove that if the conditions of the lemma hold then for any c ∈ (0, 1)

Pr[E |
n

⋃

i=1

Hi] ≥ (1 − p
c
)(1 − c) . (1)

Taking c =
√p we get the statement of the lemma.

Let us use the notation Gi = ¬(H1 ∪ . . .∪ Hi). Then the events H1, H2 ∩ G1, . . ., Hk+1 ∩ Gk
do not intersect and

n
⋃

i=1

Hi = H1∪̇(H2 ∩ G1)∪̇(H3 ∩ G2)∪̇ . . . ∪̇(Hn ∩ Gn−1) ,

Pr[G1] ≥ Pr[G2] ≥ . . . ≥ Pr[Gn−1] . (2)

Fix any constant c ∈ (0, 1). Suppose
Pr[Gk] ≥ c for some k. Then since H`+1 and G` are independent events, by Lemma 4.2
and (2) the following holds for each 1 ≤ ` ≤ k:

Pr[E | H`+1 ∩ G`] ≥ 1 − p
c

.

Since
⋃k+1

i=1 Hi = H1∪̇(H2 ∩ G1)∪̇ . . . ∪̇(Hk+1 ∩ Gk) we get that

if Pr[Gk] ≥ c then Pr[E |
k+1
⋃

i=1

Hi] ≥ 1 − p
c

. (3)

This proves (1) if Pr[Gn−1] ≥ c.
If Pr[Gn−1] < c and Pr[G1] ≥ c then consider the largest index k such that Pr[Gk] ≥ c.

Thus 1 ≤ k < n − 1 and
Pr[Gk] ≥ c but Pr[Gk+1] < c .

By (3) Pr[E | ⋃k+1
i=1 Hi] ≥ 1 − (p/c), and

Pr[
k+1
⋃

i=1

Hi] ≥ 1 − c since
k+1
⋃

i=1

Hi = ¬Gk+1 .

We get

Pr[E |
n

⋃

i=1

Hi] ≥ Pr[E |
k+1
⋃

i=1

Hi] Pr[
k+1
⋃

i=1

Hi]

≥ (1 − p
c
)(1 − c) .

If Pr[G1] < c then Pr[H1] ≥ 1 − c and

Pr[E |
n

⋃

i=1

Hi] ≥ Pr[E | H1] Pr[H1]

≥ (1 − p)(1 − c)

> (1 − p
c
)(1 − c)

which concludes the proof of Lemma 4.3.
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Lemma 4.4 Let E be an event and let Hi (i = 1, 2, . . .) be independent events, with Pr[E] = p,
Pr[E | Hi] = λi, Pr[Hi] = qi > 0. Then

∑
i

qi

1 − qi
(λi − p)2 ≤ p.

This lemma says that if p is small and the λi are large then the qi must be small. In partic-
ular, if we also have λi ≥ 1 − p > 1/2 then simple substitution gives

∑
i

qi ≤
p

(1 − 2p)2 .

Proof: Let fi(ω) be the indicator function of the event Hi and g be the indicator function
of the event E where ω runs through the elementary events of our probability space. For
two functions u(ω), v(ω), let (u, v) denote the expected value of u(ω)v(ω). Let

hi(ω) =
fi(ω) − qi

√

qi(1 − qi)
.

The independence of the events Hi implies that (hi, hj) = 1 if i = j and 0 otherwise, i.e.,
that the hi form an orthonormal set of vectors with respect to the scalar product (u, v). The
length of the projection of g onto hi is (g, hi), therefore we have

p = (g, g) ≥ ∑
i

(g, hi)
2 = ∑

i

((g, fi) − pqi)
2

qi(1 − qi)

= ∑
i

(λi − p)2 qi

1 − qi
.

5 Proof of the main theorem

We prove the “noisy wires” version (Theorem 3.1).
Let z be an input such that f has maximum sensitivity on z. Let S ⊂ {1, . . . , n} be the set

of indices so that ` ∈ S if and only if f is sensitive to the `-th bit on input z. Then |S| = s,
where s is the sensitivity of f .

For each ` ∈ S denote by B` the set of all wires originating from the `-th input of the
circuit. Let m` = |B`|.

For any set β ⊂ B`, let H(β) be the event that the wires belonging to β fail and the other
wires of B` are correct.

Denote by β` the subset of B` where

max
β⊂B`

Pr[C(z`) = f (z`) | H(β)]

is obtained. Note that β` may or may not be the empty set.
By the conditions of the theorem, C computes f with error probability at most p, which

means that Pr[C(z`) = f (z`)] ≥ 1 − p. Thus,

Pr[C(z`) = f (z`) | H(β`)] ≥ 1 − p . (4)
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Denote by H` the event that the wires of B` not belonging to β` fail and the wires of β`

are correct. In other words: H` = H(B` \ β`).
Since f is sensitive to the `-th bit on z

Pr[C(z) 6= f (z) | H`] = Pr[C(z`) = f (z`) | H(β`)] .

By (4) this means that for each ` ∈ S

Pr[C(z) 6= f (z) | H`] ≥ 1 − p .

H` are independent events since the wires fail independently.
First we prove the theorem for the case p ∈ (0, 1/4): We apply Lemma 4.3 and get

Pr[C(z) 6= f (z) |
⋃

`∈S

H`] ≥ (1 −√
p)2.

Using this inequality, from

p ≥ Pr[C(z) 6= f (z)]

≥ Pr[C(z) 6= f (z) |
⋃

`∈S

H`] Pr[
⋃

`∈S

H`]

we conclude that
Pr[

⋃

`∈S

H`] ≤
p

(1 −√p)2 . (5)

p/(1 −√p)2 ∈ (0, 1) since p ∈ (0, 1/4). Applying Lemma 4.1 we get

Pr[
⋃

`∈S

H`] ≥ (1 − p
(1 −√p)2 ) ∑

`∈S
Pr[H`] . (6)

Using
Pr[H`] = (1 − δ)|β` |δm`−|β`| ≥ δm` (7)

where δ is the failure probability of the wires, from (5) and (6) follows

p
1 − 2√p

≥ ∑
`∈S

δm` .

Then p
1 − 2√p

≥ s(∏
`∈S

δm`)1/s

by the inequality between the arithmetic and geometric means. Taking the logarithm we
conclude

∑
`∈S

m` ≥
s

log(1/δ)
log( s

1 − 2√p
p

) . (8)

Since the maximum fan-in of the gates of the circuit n(ΦC) is constant, (8) means that
the number of gates in the circuit is Ω(s log s), and this completes the proof of the theorem
for p ∈ (0, 1/4).
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For proving the theorem for p ∈ (0, 1/2) we apply Lemma 4.4, which gives

p
(1 − 2p)2 ≥ ∑

`∈S
Pr[H`] .

Using (7) this means
p

(1 − 2p)2 ≥ ∑
`∈S

δm` .

By the above arguments, this completes the proof of the theorem.

6 Block sensitivity

Let f be a Boolean function of n variables, x = (x1, . . . , xn) any input and S any subset of
indices, S ⊂ {1, . . . , n}. Denote by xS the input obtained from x by complementing all bits
with indices from S and keeping the other bits of x unchanged.

Definition 6.1 The function f is sensitive to S on input x if f (x) 6= f (xS). The block sensitiv-
ity of f on x is the largest number b such that there exist b disjoint sets S1, . . . , Sb such that
for all 1 ≤ i ≤ b, f is sensitive to Si on x. The block sensitivity of f is the maximum over all
x of the block sensitivity of f on x.

This measure of complexity was introduced by Nisan in [10]. Clearly for any function

block sensitivity ≥ sensitivity .

It is shown in [10] that for all monotone functions, the sensitivity equals the block sensitiv-
ity, but for non-monotone functions the inequality may be strict. A function with quadratic
gap between sensitivity and block sensitivity is exhibited by Rubinstein [14].

Theorem 6.2 Let ε and p be any constants so that ε ∈ (0, 1/2), p ∈ (0, 1/2). Let f be any
Boolean function with block sensitivity b. If a circuit whose gates fail independently with fixed
probability ε computes f with error probability at most p, then the number of gates of the circuit is
at least Ω(b log b).

Proof: Let the block sensitivity of f be maximum on input z, and let S1, . . . , Sb be disjoint
sets so that for all 1 ≤ i ≤ b, f is sensitive to Si on z. We can apply the proof of Theorem 2.4
by defining Bi for 1 ≤ i ≤ b as the set of all wires originating from the inputs with indices
from Si.

Corollary 6.3 The redundancy of the noisy computation by Boolean circuits of any function of n
variables with O(n) noiseless complexity and Ω(n) block sensitivity is Ω(log n).

7 Discussion and open problems

Note that the O(L log L) upper bound construction [9], [3], [11] works for monotone cir-
cuits as well, since it can be realized using only gates computing the majority function in
addition to the gates of the original noiseless circuit. Let Lm( f ) be the noiseless complexity
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of computing the monotone function f by monotone circuits. Theorem 2.4 shows that for
some functions f , Ω(Lm( f ) log Lm( f )) noisy gates are necessary for the reliable computa-
tion of f by monotone circuits. Is it still true that the redundancy of the noisy computation
of almost all monotone functions by monotone circuits with noisy gates is constant? An-
dreev [1] showed that this is true for a different failure model, where the gates of the circuit
do not fail independently, but the number of faulty gates is at most 2o(n).

Considering arbitrary circuits, it would be interesting to prove lower bounds stronger
than Ω(n log n) for the size of reliable circuits with noisy gates computing explicit func-
tions of n variables. This might be a very difficult problem: if such a lower bound holds
for the computation of a function f by unrestricted circuits with gates from a finite com-
plete basis, then the noiseless complexity of that function must be superlinear (in n). Thus
exhibiting such a function would solve another fundamental open problem.

But this question is open even for restricted models: there are no bounds proving non-
constant redundancy of noisy computation for an explicit function known to have Ω(n log n)
noiseless complexity of computation by circuits with gates computing functions from some
(incomplete) finite set Φ, for example by monotone circuits.

The lower bound result looks strange if we think of our computation as part of some
larger computation. More precisely, let us restrict attention to fault-tolerant Boolean cir-
cuits in which there is a notion of time: each gate has an integer (its time level) assigned
to it and its output goes to a gate on the next time level. For such a fault-tolerant circuit,
the lower bound result seems to imply an exponential blowup, if we apply the theorem of
the present paper repeatedly to different levels. However, the theorem is generally appli-
cable only to the very first step of such a fault-tolerant computation. Indeed, if the input x
under consideration is not the original input but some intermediate result then the earlier
parts of the computation could make sure that x is “good” in some sense (with high prob-
ability). We can then restrict the function to be computed to the set of good inputs. Now,
the partial Boolean function defined on just the good inputs may not have any sensitivity
at all. This is indeed the typical case: the good inputs are those that contain the relevant
information with redundancy: the function to be computed will not therefore be changed
by the change of a single input bit.

If we consider computations in which the input is allowed to be in the form of some
(simple) redundant code then it is not known whether the n log n lower bound still holds.
A log n width-redundancy is certainly not necessary if instead of the repetition code, a
more sophisticated algebraic code is used. (See [6] where a code with constant redundancy
is used.) The Boolean circuits derivable from these cellular automata constructions have a
width that is only constant times larger than the width of the original (not fault-tolerant)
circuit to be simulated.

It must be added that the depth of the circuits derived from [6] increases by a logarithmic
factor. There is no lower-bound result saying that this latter increase is necessary, or, as it
could be conjectured, that the product of the “spatial” and “time” -redundancies of a fault-
tolerant computation must sometimes be logaritmic. Even the formulation of such a lower-
bound hypothesis causes some difficulties since it probably must include some restriction
on the error-correcting code permitted for the input, to make sure the computation is not
hidden in the code.
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Appendix

We sketch briefly the problems with the proof in [2].
The events H` were defined in [2] as in this paper. Instead of

⋃

`∈S H` the authors of [2]
considered the event that exactly one of the H` occurs, which they denoted by ˜⋃

`∈SH`.
As part of the proof of Lemma 3.3 in [2] the authors claimed to prove the following

statement:
For all γ ∈ (0, 1/2), the fact that Pr[ ˜⋃

`∈SH`] ≤ γ implies that

Pr[ ˜⋃

`∈S
H`] ≥ (1 − 2γ) ∑

`∈S
Pr[H`] . (9)

This statement does not hold. Consider for example the case when for all ` ∈ S, Pr[H`] = d
for some d ∈ (0, 1). As pointed out in [12] the statement of Lemma 3.3 in [2] does not hold
either.

The other questionable part of the proof, as mentioned in [12], is that from

Pr[C(z) 6= f (z) | H`] ≥ 1 − p for all ` ∈ S

the authors of [2] conclude without suggesting a proof that

Pr[C(z) 6= f (z) | ˜⋃

`∈S
H`] ≥ 1 − p .

It is shown in [12] that for an arbitrary event E, Pr[E | H`] ≥ 1 − p for all ` ∈ S does not
imply

Pr[E | ˜⋃

`∈S
H`] ≥ 1 − p .

The relation Pr[C(z) 6= f (z) | ˜⋃
`∈SH`] ≥ 1 − p does not seem to hold for the events

considered in [2] either. We note that for these particular events it is possible to prove
some weaker lower bounds such as:

Pr[C(z) 6= f (z) | ˜⋃

`∈S
H`] ≥ 1 − p

1 − p/(1 −√p)2 .

This lower bound, however, does not eliminate the difficulty of repairing (9).
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