
Reliable Cellular Automata with Self-Organization

Peter Gács ∗

Computer Science Department
Boston University

gacs@bu.edu

January 24, 2024 (last printing)

Abstract

In a probabilistic cellular automaton in which all local transitions
have positive probability, the problem of keeping a bit of information in-
definitely is nontrivial, even in an infinite automaton. Still, there is a so-
lution in 2 dimensions, and this solution can be used to construct a simple
3-dimensional discrete-time universal fault-tolerant cellular automaton.
This technique does not help much to solve the following problems: re-
membering a bit of information in 1 dimension; computing in dimensions
lower than 3; computing in any dimension with non-synchronized tran-
sitions.

Our more complex technique organizes the cells in blocks that per-
form a reliable simulation of a second (generalized) cellular automaton.
The cells of the latter automaton are also organized in blocks, simulat-
ing even more reliably a third automaton, etc. Since all this (a possibly
infinite hierarchy) is organized in “software”, it must be under repair
all the time from damage caused by errors. A large part of the prob-
lem is essentially self-stabilization recovering from a mess of arbitrary
size and content. The present paper constructs an asynchronous one-
dimensional fault-tolerant cellular automaton, with the further feature
of “self-organization”. The latter means that unless a large amount of
input information must be given, the initial configuration can be chosen
homogeneous.

This is a corrected and strengthened version of the journal article [17].

∗Partially supported by NSF grant CR-920484. The author also thanks the IBM Alma-
den Research Center and the Center for Wiskunde and Informatica (Amsterdam) for their
support during the long gestation of this project.

Contents

Contents 2
1 Introduction . 4

1.1 Historical remarks . 5
1.2 Hierarchical constructions 6
1.3 New features . 7
1.4 Overview of the paper 8

2 Cellular automata . 11
2.1 Deterministic cellular automata 12
2.2 Fields of a local state 13
2.3 Probabilistic cellular automata 15
2.4 Continuous-time probabilistic cellular automata 17
2.5 Perturbation . 18

3 Some results . 20
3.1 Information storage . 20
3.2 Computation . 22

4 Codes . 24
4.1 Colonies . 25
4.2 Block codes . 26
4.3 Generalized cellular automata (media) 28
4.4 Block simulations . 32
4.5 A single-fault-tolerant block simulation 35
4.6 General simulations . 37

5 Hierarchy . 40
5.1 Hierarchical codes . 40
5.2 Amplifiers . 45
5.3 Information storage: proof from an amplifier assumption 45
5.4 Error-correcting codes 47
5.5 Major difficulties . 50

6 Results for the finite space . 52
6.1 Relaxation time and ergodicity 52
6.2 Information storage and computation 57

7 More restrictions on media . 59
7.1 Trajectories . 59
7.2 Strong trajectories . 63
7.3 Canonical simulations 64
7.4 Primitive variable-period media 70

8 Synchronization . 75

2

3

9 Some simulations . 79
9.1 Functions defined by programs 79
9.2 The rule language . 81
9.3 A basic block simulation 89

10 Robust media . 97
10.1 Damage . 97
10.2 Computation . 100

11 Amplifiers . 107
12 Outline of the program . 113

12.1 Cell kinds . 114
12.2 A colony work period 116
12.3 Timing . 119
12.4 Plan of the rest of the proof 120

13 Local consistency . 121
13.1 Local maintenance . 121
13.2 Fitting neighbors . 123
13.3 Edges . 126

14 Killing and creation . 128
14.1 Killing . 128
14.2 Birth, creation, adaptation 129
14.3 Growth . 133
14.4 Germ growth . 134
14.5 Healing rules . 138
14.6 Continuity . 144

15 Gaps . 146
15.1 Paths . 146
15.2 Running gaps . 150
15.3 Non-damage gaps are large 159

16 Attribution, progress . 163
17 Healing . 169
18 Communication . 171
19 Computation . 178

19.1 Coding and decoding . 178
19.2 Sending and retrieval . 184
19.3 Computation rules . 186
19.4 Lifting . 193

20 The simulated medium is robust 194
20.1 Legality . 194
20.2 Robust media properties 200
20.3 The amplifier parameters 203

4

21 Self-organization . 204
21.1 Color control . 204
21.2 Colony birth . 209
21.3 Lifting the simulation level 215
21.4 Computing supported by self-organization 217

22 Some applications and open problems 225
22.1 Non-periodic Gibbs states 225
22.2 Some open problems . 226

Bibliography 228

1 Introduction

A cellular automaton is a homogenous array of identical, locally communi-
cating finite-state automata. Traditionally, the model is called interacting
particle system when time is continuous. By choosing the transition function
appropriately, a cellular automaton can perform an arbitrary computation.
Indeed, for any one-tape Turing machine one can construct a one-dimensional
cellular automaton simulating it step-for-step.

Fault-tolerant information storage and computation in cellular automata
is a natural and challenging mathematical problem but there are also some
arguments indicating an eventual practical significance of the subject, since
there are advantages in uniform structure for parallel computers.

Fault-tolerant cellular automata belong to the larger category of reliable
computing devices built from unreliable components, in which the error prob-
ability of the individual components is not required to decrease as the size
of the device increases. In such a model it is essential that the faults are as-
sumed to be transient: they change the local state but not the local transition
function.

A fault-tolerant computer of this kind must use massive parallelism. In-
deed, information stored anywhere during computation is subject to decay,
and therefore must be actively maintained. It does not help to run two com-
puters simultaneously, comparing their results periodically, since if the com-
puters are sufficiently large, faults will occur in both of them between com-
parisons with high probability. The self-correction mechanism must be built
into each part of the computer. In cellular automata, it must be a property
of the transition function of the cells.

5

Due to the homogeneity of cellular automata, since large groups of errors
can destroy large parts of any kind of structure, “self-stabilization”1 techniques
are needed in conjunction with traditional error-correction.

1.1 Historical remarks

The problem of reliable computation with unreliable components was ad-
dressed in [37] in the context of Boolean circuits. Von Neumann’s solution,
as well as its improved versions in [12] and [31], rely on high connectivity
and non-uniform constructs. The best currently known result of this type
is in [33] where redundancy has been substantially decreased for the case of
computations whose computing time is larger than the storage requirement.

Of particular interest to us are those probabilistic cellular automata in
which all local transition probabilities are positive (let us call such automata
noisy), since such an automaton is obtained by way of “perturbation” from
a deterministic cellular automaton. The automaton may have, for example,
two distinguished initial configurations:

ξ0, ξ1

in which all cells have state 0 and in which all have state 1 (there may be other
states besides 0 and 1). Let pi(x, t) be the probability that, starting from
initial configuration ξi, the state of cell x at time t is i. If pi(x, t) is bigger
than, say, 2/3 for all x, t then we can say that the automaton remembers the
initial configuration forever.

Informally speaking, a probabilistic cellular automaton is called ergodic
if it eventually forgets all information about its initial configuration. Finite
noisy cellular automata are always ergodic. In the example above, one can
define the “relaxation time” as the time by which the probability decreases
below 2/3. If an infinite automaton is ergodic then the relaxation time of the
corresponding finite automaton is bounded independently of size. A minimal
requirement of fault-tolerance is therefore that the infinite automaton be non-
ergodic.

The difficulty in constructing non-ergodic noisy one-dimensional cellular
automata is that eventually large blocks of errors which we might call “islands”
will randomly occur. We can try to design a transition function that (except
for a small error probability) attempts to decrease these islands. It is a natural

1In distributed computing, “self-stabilization” refers to techniques of restoring some
structure from an arbitrarily corrupted state; however, no new faults are assumed to occur
during restoration.

6

idea that the function should replace the state of each cell, at each transition
time, with the majority of the cell states in some neighborhood. However,
majority voting among the five nearest neighbors (including the cell itself)
seems to lead to an ergodic transition function, even in two dimensions, if the
“failure” probabilities are not symmetric with respect to the interchange of 0’s
and 1’s; it has not been proved to be non-ergodic even in the symmetric case.
Perturbations of the one-dimensional majority voting function were actually
shown to be ergodic in [21] and [22].

Noisy cellular automata remembering a bit forever (in the sense defined
above) in dimensions 2 and higher were constructed in [35]. The paper [19]
recognizes that adding one more dimension, Toom’s idea can be used not just
for remembering a bit but for simulating reliably an arbitrary computation.
It designs a simple three-dimensional fault-tolerant cellular automaton that
simulates arbitrary one-dimensional arrays. The theorem will be spelled out
precisely in Section 6.2. Toom’s original proof was simplified and adapted to
strengthen these results in [5] (see also [16]).

Remark 1.1 A three-dimensional fault-tolerant cellular automaton cannot be
built to arbitrary size in the physical space. Indeed, there will be an (inher-
ently irreversible) error-correcting operation on the average in every constant
number of steps in each cell. This will produce a steady flow of heat from each
cell that needs therefore a separate escape route for each cell. ⌟

A simple one-dimensional deterministic cellular automaton eliminating fi-
nite islands in the absence of failures was defined in [18] (see also [11]). It is
now known (see [30]) that perturbation (at least, in a strongly biased way)
makes this automaton ergodic.

1.2 Hierarchical constructions

The limited geometrical possibilities in one dimension suggest that only some
non-local organization can cope with the task of eliminating finite islands.
Indeed, imagine a large island of 1’s in the 1-dimensional ocean of 0’s. Without
additional information, cells at the left end of this island will not be able to
decide locally whether to move the boundary to the right or to the left. This
information must come from some global organization that, given the fixed size
of the cells, is expected to be hierarchical. The “cellular automaton” in [36]
gives such a hierarchical organization. It indeed can hold a bit of information
indefinitely. However, the transition function is not uniform either in space
or time: the hierarchy is “hardwired” into the way the transition function
changes.

7

The paper [13] constructs a non-ergodic one-dimensional cellular auto-
maton working in discrete time, using some ideas from the very informal
paper [24] of Georgii Kurdyumov. Surprisingly, it seems even today that in
one dimension, the keeping of a bit of information requires all the organiza-
tion needed for general fault-tolerant computation. The paper [14] constructs
a two-dimensional fault-tolerant cellular automaton. In the two-dimensional
work, the space requirement of the reliable implementation of a computation
is only a constant times greater than that of the original version. (The time
requirement increases by a logarithmic factor.)

In both papers, the cells are organized in blocks that perform a fault-
tolerant simulation of a second, generalized cellular automaton. The cells
of the latter automaton are also organized in blocks, simulating even more
reliably a third generalized automaton, etc. In all these papers (including the
present one), since all this organization is in “software”, that is it is encoded
into the states of the cells, it must be under repair all the time from breakdown
caused by errors. In the two-dimensional case, Toom’s transition function
simplifies the repairs.

1.3 New features

Asynchrony In the three-dimensional fault-tolerant cellular automaton of [19],
the components must work in discrete time and switch simultaneously to their
next state. This requirement is unrealistic for arbitrarily large arrays. A more
natural model for asynchronous probabilistic cellular automata is that of a
continuous-time Markov process. This is a much stronger assumption than
allowing an adversary scheduler, but it still leaves a lot of technical problems
to be solved. Informally, it allows cells to choose in each moment, whether to
update at the present time, independently of the choice their neighbors make.

The paper [5] gives a simple method to implement arbitrary computa-
tions on asynchronous machines with otherwise perfectly reliable components.
A two-dimensional asynchronous fault-tolerant cellular automaton was con-
structed in [38]. Experiments combining this technique with the error-correction
mechanism of [19] were made, among others, in [2].

The present paper constructs a one-dimensional asynchronous fault-tolerant
cellular automaton, thus completing the refutation of the so-called Positive
Rates Conjecture in [26].

Self-organization Most hierarchical constructions, including our earlier ones,
start from a complex, hierarchical initial configuration (in case of an infinite
system, and infinite hierarchy). The present paper avoids this: its transi-

8

tion function increases the height of the hierarchy as the computation length
requires it.

Proof method simplification Several methods have emerged that help
managing the complexity of a large construction but the following two are the
most important.

• A number of “interface” concepts is introduced (generalized simulation, gen-
eralized cellular automaton) helping to separate the levels of the infinite
hierarchy, and making it possible to speak meaningfully of a single pair of
adjacent levels.

• Though the construction is large, its problems are presented one at a time.
For example, the messiest part of the self-stabilization is the so-called At-
tribution Lemma, showing how after a while all cells can be attributed to
some large organized group (colony), and thus no “debris” is in the way of
the creation of new colonies. This lemma relies mainly on the Freeze and
Decay rules, and will be proved before introducing many other major rules.
Other parts of the construction that are not possible to ignore are used only
through “interface conditions” (specifications).

We believe that the new result and the new method of presentation will
serve as a firm basis for other new results. An example of a problem likely
to yield to the new framework is the growth rate of the relaxation time as a
function of the size of a finite cellular automaton. At present, the relaxation
time of all known cellular automata either seems to be bounded (ergodic case)
or grows exponentially. We believe that our constructions will yield examples
for other, intermediate growth rates.

1.4 Overview of the paper

• Section 2 defines probabilistic cellular automata.

• Section 3 and spells out the main theorems for discrete time and infinite
space.

• Section 4 introduces block codes and block simulations using colonies, and
also generalized cellular automata (called abstract media), allowing more
general kinds of simulation.

• Section 5 defines hierarchical codes and a hierarchy of simulations (called
amplifier). It also explains the main technical problems of the construction
and the ways to solve them:

9

– correction of structural damage by destruction followed by rebuilding
from the neighbors;

– a “hard-wired” program;

– “legalization” of all locally consistent structures;

• Section 6 extends the main discrete-time theorems to the case of finite
space.

• Section 7 defines media, a specialization of abstract media with the needed
stochastic structure. Along with media, we will define canonical simula-
tions, whose form guarantees that they are simulations between media. We
will give the basic examples of media with the basic simulations between
them.

The section also defines variable-period media and formulates the main
theorems for continuous time.

• Section 8 shows the method we will use to simulate a discrete-time cellular
automaton by a variable-period one.

• Section 9 develops some simple simulations, to be used either directly or
as a paradigm. The example transition function defined here will correct
any set of faults in which no two faults occur close to each other.

We also develop the language used for defining our transition function in
the rest of the paper.

• A class of media called robust media for which nontrivial fault-tolerant
simulations exist will be defined in Section 10. In these, cells are not
necessarily adjacent to each other. The transition function can erase as
well as create cells.

The set of space-time points with “bad” values is called the “damage”.
The Restoration Property in Condition 10.4 requires that at any point of
a trajectory, damage occurs (or persists) only with small probability (ε) .
The Computation Property requires that the trajectory obey the transition
function in the absence of damage.

As a history η of medium M1 simulates a history η∗ of a medium M2,
we define the damage of η∗ in terms of that of η essentially as follows.
Damage occurs at a certain point (x, t) of η∗ if within a certain space-time
rectangle in the past of (x, t), the damage of η cannot be covered by a
small rectangle of a certain size. This is saying, essentially, that damage
occurs at least “twice” in η. The Restoration Property for η with ε will
then guarantee that the damage in η∗ also satisfies a restoration property
with ≈ ε2.

10

• Section 11 defines the kind of amplifiers to be built. The main lemma,
called the Amplifier Lemma, says that these amplifiers exist. The rest
of the section applies the main lemma to the proof of one of the main
theorems.

• Section 12 gives an overview of an amplifier. As indicated above, the
restoration property will be satisfied automatically. In order to satisfy the
computation property, the general framework of the program will be similar
to the outline in Section 9. However, besides the single-error fault-tolerance
property achieved there, it will also have a self-stabilization property. This
means that a short time after the occurrence of arbitrary damage, the
configuration enables us to interpret it in terms of colonies. (In practice,
pieces of incomplete colonies will eliminate themselves.) In the absence
of damage, therefore, the colony structure will recover from the effects
of earlier damage, that is predictability in the simulated configuration is
restored.

• Section 13 defines the kind of local consistency needed for a colony to
function.

• Section 14 gives the rules for killing, creation, growth, including the growth
of germs which are precursors of colonies. It proves the basic lemmas
about space-time paths connecting live cells. It also defines the healing
rule; due to the need to restore some local clock values consistently with
the neighbors, this rule is somewhat elaborate.

• Section 15 defines the decay rule and shows that a large gap will eat up a
whole colony.

• Section 16 proves the Attribution Lemma that traces back each non-germ
cell to a full colony. This lemma expresses the “self-stabilization” property
mentioned above. The proof relies on Section 15.3 showing that if a gap
will not be healed promptly then it grows.

• Section 17 proves the Healing Lemma, showing how the effect of a small
amount of damage will be corrected.

• Section 18 introduces and applies the communication rules needed to prove
the Computation Property in simulation. These are rather elaborate, due
to the need to communicate with not completely reliable neighbor colonies
asynchronously.

• Section 19 introduces and uses the error-correcting computation rules.

• Section 20 proves the main properties of the reliable simulation defined in
the preceding sections.

11

• Section 21 shows how the germ-growth rules lead to self-organization, and
proves the main theorems that use self-organization.

• The concluding remarks in Section 22 hint at some applications and ques-
tions.

The above constructions will be carried out for the case when the cells
work asynchronously (with variable time between switchings). This does not
introduce any insurmountable difficulty but makes life harder at several steps:
more care is needed in the updating and correction of the counter field of a
cell, and in the communication between neighbor colonies. The analysis in
the proof also becomes more involved.

2 Cellular automata

In the introductory sections, we confine ourselves to one-dimensional infinite
cellular automata. Let us introduce some notation to be used throughout.

Notation 2.1 Let R be the set of real numbers, and Zm the set of remainders
modulo m. For m =∞, this is the set Z of integers.

We will use the notation

f(n)
∗
< g(n) (2.1)

for what usually is written as f(n) = O(g(n)): that is for the fact that f(n) ≤
cg(n) for some constant c. We write f(n) ∗= g(n) if f(n)

∗
< g(n) and g(n) ≤

f(n).
The standard mathematical notation for open intervals and for pairs is the

same; we hope that the context will make the meaning always clear. We will
use the same notation for intervals of integers as for those of real numbers:
the context will make it clear, whether [a, b] or [a, b]∩Z is understood. Given
a set A of space or space-time and a real number c, we write

cA = {cv : v ∈ A},

and A for its closure: for example, (a, b] = [a, b]. Given two space-time sets
A,B, we denote

A+B = {a+ b : a ∈ A, b ∈ B}. (2.2)

Some lists of assertions are denoted by (a), (b), . . . and some by (1), (2),
. . .. The attempted convention is that for a list properties that all hold or are
required (conjunction) the items are labeled with (a),(b), . . . while if the list

12

is a list of several possible cases (disjunction) then the items are labeled with
(1), (2),

Maxima and minima will sometimes be denoted by ∨ and ∧. We will write
log for log2. For two strings u, v, we will denote by

u ⊔ v (2.3)

their concatenation. ⌟

2.1 Deterministic cellular automata

Let us give here the most frequently used definition of cellular automata.
Later, we will use a certain generalization. First, the notions associated with-
out considering time.

Definition 2.2 (Space and states) The set Λ of sites has the form Zm for
finite or infinite m. This will mean that in the finite case, we take periodic
boundary conditions. In a space-time vector (x, t), we will always write the
space coordinate first. For a space-time set E, we will denote its space- and
time projections by

πsE,πtE (2.4)

respectively. We will have a finite set S of states, the potential states of each
site. A configuration is a function

ξ(x)

for x ∈ Λ. Here, ξ(x) is the state of site x. ⌟

Now, the notations needed for reasoning about the evolution of configura-
tions. For uniform treatment, it is useful to view even discrete-time cellular
automata as working in continuous time, but of course they will change their
states only at certain predetermined instants.

Definition 2.3 (Space-time) The time of work of our cellular automata will
be the interval [0,∞). Our space-time is given by

Λ× [0,∞) .

A history is a space-time function η(x, t) which for each t defines a configura-
tion. If in a history η we have η(x, v) = s2 and η(x, t) = s1 ̸= s2 for all t < v
sufficiently close to v then we can say that there was a switch from state s1 to
state s2 at time v. For ordinary discrete-time cellular automata, we allow only
histories in which all switching times are natural numbers 0, 1, 2, The time

13

0 is considered a switching time. If there is an ε such that η(c, t) is constant
for a− ε < t < a then this constant value will be denoted by

η(c, a−). (2.5)

The subconfiguration ξ(D′) of a configuration ξ defined on D ⊇ D′ is the
restriction of ξ to D′. Sometimes, we write

η(V)

for the sub-configuration over the space-time set V . ⌟

Cellular automata describe a kind of dynamic for evolutions.

Definition 2.4 (Deterministic cellular automata) A deterministic cellular
automaton

CA(Tr ,Λ).

is determined by a transition function Tr : S3 → S and the set Λ of sites. We
will omit Λ from the notation when it is obvious from the context. A history
η is a trajectory of this automaton if

η(x, t) = Tr(η(x− 1, t− 1), η(x, t− 1), η(x+ 1, t− 1))

holds for all x, t with t > 0. For a history η let us write

Tr(η, x, t) = Tr(η(x− 1, t− 1), η(x, t− 1), η(x+ 1, t− 1)) (2.6)

for the “intended” value of η(x, t). ⌟

Given a configuration ξ over the space Λ and a transition function, there
is a unique trajectory η with the given transition function and the initial
configuration η(·, 0) = ξ.

2.2 Fields of a local state

The history of a deterministic cellular automaton can be viewed as a “com-
putation”. Moreover, every imaginable computation can be performed by an
appropriately chosen cellular automaton function. This is not the place to
explain the meaning of this statement if it is not clear to the reader. But it
becomes maybe clearer if we point out that a better known model of compu-
tation, the Turing machine, can be considered a special cellular automaton.

14

Definition 2.5 (Capacity) We will deal, from now on, only with cellular
automata in which the set S of local states consists of binary strings of some
fixed length Cap = ∥S∥ called the capacity of the sites. Thus, if the automaton
has 16 possible states then its states can be considered binary strings of length
4. ⌟

If ∥S∥ > 1 then the information represented by the state can be broken up
naturally into parts. It will greatly help reasoning about a transition rule if
it assigns different functions to some of these parts; a typical “computation”
would indeed do so.

Definition 2.6 (Fields) Nonempty subsets of the set {0, . . . , ∥S∥− 1} will be
called fields. Some of these subsets will have special names. Let

All = {0, . . . , ∥S∥ − 1}.

If s = (s(i) : i ∈ All) is a bit string and F = {i1, . . . , ik} is a field with ij < ij+1

then we will write
s.F = (s(i1), . . . , s(ik))

for the bit string that is called field F of the state. The field consisting of the
bits s(i), s(i+ 1), . . . , s(j − 1) of the state will be denoted

F [i:j]. (2.7)

The array obtained from joining the same fields (say the Mail field) of all the
different cells is called a track , (say the Mail track). (The terminology recalls
tracks of a magnetic tape.) We will generally define fields that are either
disjoint or contained in each other (but there may be some exceptions.) We
will call the number of bits |F | in a field its width, and and the proportion
|F |/Cap its relative width. The width and relative width of a track is defined
to be the same as that of the corresponding field. ⌟

Example 2.7 If the capacity is 12 we could subdivide the interval [0, 11]
into subintervals of lengths 2,2,1,1,2,4 respectively and call these fields the
input, output, mail coming from left, mail coming from right, memory and
workspace. We can denote these as Input, Output, Mail j (j = −1, 1), Work
and Memory . If s is a state then s.Input denotes the first two bits of s, s.Mail1
means the sixth bit of s, etc. Treating these fields differently means we may
impose some useful restrictions on the transition function. We might require
the following, calling Mail−1 the “right-directed mail field”:

The information in Mail−1 moves always to the right. More pre-
cisely, in a trajectory η, the only part of the state η(x, t) that

15

depends on the state η(x−1, t−1) of the left neighbor is the right-
directed mail field η(x, t).Mail−1. This field, on the other hand,
depends only on the right-directed mail field of the left neighbor
and the workspace field η(x, t − 1).Work . The memory depends
only on the workspace.

Confining ourselves to computations that are structured in a similar way make
reasoning about them in the presence of faults much easier. Indeed, in such a
scheme, the effects of a fault can propagate only through the mail fields and
can affect the memory field only if the workspace field’s state allows it. ⌟

The following concepts related to the transition function will play a role.

Definition 2.8 (Legality) Given a transition function Tr , we say that state
s′ is a legal successor of state s if there are states r, t with s′ = Tr(r, s, t). We
define

legal(s, s′) = 1

if this holds and 0 if it does not. ⌟

2.3 Probabilistic cellular automata

In probabilistic cellular automata, the transitions allow randomness.

Definition 2.9 A random history is a pair (µ, η) where µ is a probability
measure over some measurable space (Ω,A) together with a measurable func-
tion η(x, t, ω) which is a history for every value of ω ∈ Ω. We will generally
omit ω from the arguments of η. When we omit the mention of µ we will use
P to denote it. If it does not lead to confusion, for some property of the form
{η ∈ R}, the quantity µ{ω : η(·, ·, ω) ∈ R} will be written as usual, as

µ{η ∈ R}.

⌟

Notation 2.10 We will denote the expected value of f with respect to µ by

Eµ f

where we will omit µ when it is clear from the context. ⌟

Definition 2.11 (Events) A function f(η) with values 0, 1 (that is an in-
dicator function) and measurable in the σ-algebra A will be called an event
function over A. Let W be any subset of space-time that is the union of some
rectangles. Then

A(W)

16

denotes the σ-algebra generated by events of the form

{η(x, t) = s for t1 ≤ t < t2}

for s ∈ S, (x, ti) ∈W . ⌟

Sometimes, we may want to refer to events not necessarily expressible by
the history η; still, we need a sense in which they become knowable over time.
The notion of filtration captures this.

Definition 2.12 (Filtration) For all times t, we assume the existence of a
σ-algebra

At ⊇ A(Λ× [0, t]), A<t =
⋃
u<t

Au.

The system {At} is required to be increasing:

t < u⇒ At ⊆ Au.

The function t 7→ At is our filtration. ⌟

Example 2.13 The system t 7→ A(Λ× [0, t]) is a filtration. ⌟

Transition matrices will play the role of transition functions.

Definition 2.14 (Probabilistic cellular automaton) A transition matrix P(s, (r−1, r0, r1))
is a function P : S4 → [0, 1] with the property

∑
s P(s, r) = 1. For an arbitrary

history η, and space-time point (x, t), denote

P(η, s, x, t) = P(s, (η(x− 1, t), η(x, t), η(x+ 1, t))). (2.8)

We will omit the parameter η when it is clear from the context.
A probabilistic cellular automaton

PCA(P,Λ)

is characterized by saying which random histories are considered trajectories.
Now a trajectory is not a single history (sample path) but a distribution over
histories that satisfies the following condition, saying that the random history
η is a trajectory if and only if the following holds. Let s1, . . . , sn ∈ S.

P
(n⋂
i=1

{η(xi, t) = si}
∣∣∣ At−1

)
=

n∏
i=1

P(η, si, xi, t− 1).

This expression uses the notion of conditional probability over sigma-algebras.
For a more elementary statement of the same property, let x0, . . . , xn+1 be

17

given with xi+1 = xi + 1. Let us fix an arbitrary history ζ and an arbitrary
event H ∋ ζ in At−1. Then we require

P
(n⋂
i=1

{η(xi, t) = ζ(xi, t)} ∩H ∩
n+1⋂
i=0

{η(xi, t− 1) = ζ(xi, t− 1)}
)

= P
(
H ∩

n+1⋂
i=0

{η(xi, t− 1) = ζ(xi, t− 1)}
) n∏
i=1

P(η, ζ(xi, t), xi, t− 1).

A probabilistic cellular automaton is noisy if P(s, r) > 0 for all s, r. Bandwidth
can be defined for transition probabilities just as for transition functions. ⌟

Example 2.15 As a simple example, consider a deterministic cellular auto-
maton with a “random number generator”. Let the local state be a record
with two fields, Det and Rand where Rand consists of a single bit. In a trajec-
tory (µ, η), the field η.Det(x, t+ 1) is computed by a deterministic transition
function from η(x− 1, t), η(x, t), η(x+1, t), while η.Rand(x, t+1) is obtained
by coin-tossing. ⌟

A trajectory of a probabilistic cellular automaton is a discrete-time Markov
process. If the set of sites consists of a single site then P(s, r) is the transition
probability matrix of this finite Markov chain. We get a finite Markov chain
as long as the number of sites is finite.

2.4 Continuous-time probabilistic cellular automata

For later reference, let us define here (1-dimensional) probabilistic cellular
automata in which the sites make a random decision “in each moment” on
whether to make a transition to another state or not. A systematic theory of
such systems and an overview of many results available in 1985 can be found
in [26]. Here, we indicate an elementary construction similar to the one in [21].

Definition 2.16 (Transition rate matrix) Let us call a transition rate matrix
a function R : S4 → [0,∞),written as

R(s, r) ≥ 0,

with the normalization property R(r0, (r−1, r0, r1)) = 0 for all r. Its elements
are called the transition rates. ⌟

We will obtain the continous-time process as the limit of certain discrete
processes:

18

Definition 2.17 Consider a generalization

PCA(P, B, δ,Λ)

of probabilistic cellular automata in which the sites are at positions iB for
some fixed B called the body size and integers i, and the switching times are
at 0, δ, 2δ, 3δ, . . . for some small positive δ. ⌟

The body size parameter B will make more sense later, in the context of
simulations. The parameter δ is of more interest now, as the limit δ → 0 will
be considered. Fixing Λ,P, let

Mδ = PCA(P, 1, δ,Λ)

with P(s, r) = δR(s, r) when s ̸= r0 and 1 − δ
∑

s′ ̸=r0 R(s′, r) otherwise.
(The definition is sound when δ is small enough to make the last expression
nonnegative.) It can be shown that with any fixed initial configuration η(·, 0),
the distributions of trajectories ηδ of Mδ will converge to a certain random
process η which is the continuous-time probabilistic cellular automaton with
these rates. For the sense of convergence and other constructions of the same
process, see [26], [21] and the works quoted there.

Definition 2.18 (Interacting particle system) The random process defined
by the above procedure will be denoted by

CCA(R,Λ),

and called the (continuous-time) interacting particle system with the given
rate matrix. We call this system noisy if R(s, r) > 0 for all s ̸= r0. ⌟

It can be shown that the process defined this way is a Markov process,
that is if we fix the past before some time t0 then the conditional distribution
of the process after t0 will only depend on the configuration at time t0. (For
a more general definition allowing simultaneous change in a finite number of
sites, see [26].)

2.5 Perturbation

Intuitively, a deterministic cellular automaton is fault-tolerant if even after
it is “perturbed” into a probabilistic cellular automaton, its trajectories can
keep the most important properties of a trajectory of the original deterministic
cellular automaton. Formally, we introduce perturbed versions of our cellular
automata.

19

Discrete time The definition is somewhat more straightforward in the
discrete-time case, since then only the transition function (or probability ma-
trix) will be perturbed.

Definition 2.19 (Random perturbation of a deterministic system) We will
say that a random history (µ, η) is a trajectory of the ε-perturbation

CAε(Tr ,Λ)

of the transition function Tr if the following holds. For all x0, . . . xn+1, t with
xi+1 = xi + 1 for all 0 < i1 < · · · < ik < n,

µ
(k⋂
j=1

{η(xij , t) ̸= Tr(η, xij , t− 1)}
∣∣∣ At−1

)
≤ εk.

Here is the same property without using conditional probability over sigma-
algebras: for events H in A<(t−1) with µ(H) > 0,

µ
(k⋂
j=1

{η(xij , t) ̸= Tr(η, xij , t− 1)}
∣∣∣ H ∩ n+1⋂

i=0

{η(xi, t− 1) = si}
)
≤ εk.

⌟

Note that the model CAε(Tr ,Λ) defined this way is not a probabilistic
cellular automaton, since even if the initial configuration is fixed there are
many random processes that are accepted as its trajectories. Given any prob-
abilistic cellular automaton PCA(P,Λ) such that P(s, r,Λ) ≥ 1− ε whenever
s = Tr(r), the trajectories of this are accepted as trajectories of CAε(Tr ,Λ);
however, these do not exhaust all the possibilities. We may think of the tra-
jectory of a perturbation as a process created by an “adversary” who is trying
to defeat whatever conclusions we want to make about the trajectory, and is
only restricted by the inequalities that the distribution of the trajectory must
satisfy.

This new freedom becomes important in our later construction.

Continuous time There are several choices of how to generalize perturba-
tion to continous time.

Definition 2.20 (Random perturbation of a continous-time system) By the
ε-perturbation of a continuous-time interacting particle system with transition
rates given by R(s, r), we understand the following: in the above construction
of a process, perturb the matrix elements R(s, r) by some arbitrary amounts
smaller than ε. ⌟

20

Note that this is a more modest kind of perturbation since the perturbed
process is again a continuous-time interacting particle system, just with changed
parameters. Other perturbations are imaginable, but not worth the trouble
defining formally now.

3 Some results

We state some of the main results in this section; but a more detailed and
formalized description of them will be given in Sections 6 and 7. For simplicity
the theorems here are only for infinite space. A noisy cellular automaton on a
finite space is ergodic, so eventually it forgets all about its initial state. How-
ever, as will be shown in the later sections, even in finite spaces the “relaxation
time”, that is the time before which information as well as computation results
of the reliable cellular automaton can be trusted, grows (almost) exponentially
as a function of the space size.

3.1 Information storage

Remembering a few bits The simplest task we may want to assign a
cellular automaton is to store some information.

Definition 3.1 (Remembering some bits) Suppose that the bit string that is
a local state has some field F (it can for example be the first two bits of the
state). We will say that Tr remembers field F over an infinite set of sites Λ if
there is an ε > 0 such that for each string s ∈ {0, 1}|F | there is a configuration
ξs such that for all trajectories (µ, η) of the ε-perturbation CAε(Tr ,Λ) with
η(·, 0) = ξs, for all x, t we have

µ{η(x, t).F ̸= s} < f(t) +O(ε) where lim
t→∞

f(t) = 0. (3.1)

We define similarly the notions of remembering a field for a probabilistic tran-
sition matrix P and a probabilistic transition rate matrix R.

Let us call a configuration ξ homogeneous if there is a state q ∈ S such
that ξ(x) = q for all x. We say that Tr remembers F in a self-organizing way
if the initial configurations ξs can be made homogeneous. ⌟

For some c > 1 let

h0(N, c) = c(logN)1/2 . (3.2)

Theorem 3.1 (Remembering a field in discrete time) For any constant c1 >
1 there is a one-dimensional probabilistic transition matrix that remembers a
field, in a self-organizing way; the function f(t) in (3.1) can be chosen as t−c1.

21

If the space is finite with size N then in any cell, at time t, the probability of
forgetting it at time t is bounded by εh0(N,c2) for an appropriate constant c2.

Thus for a finite space, the memory lasts, even if not for exponential time,
but for a time exponential in h0(N, c2).

Remark 3.2 The error term in (3.1) improves with time, but why does it
not decrease with ε? Technically, in our proofs it is the price of the need
for symmetry-breaking random choices in self-organization, but it still seems
improvable. ⌟

In the proof of this theorem in [13] the initial configuration ξs has an
infinite hierarchical structure, so the remembering was not self-organizing. In
Theorem 3.1 this is not necessary anymore. We achieve the simplification
of the result by a technique we call self-organization: the hierarchy will be
built up by the probabilistic transition during computation. The following
continuous-time version of the same result is also new:

Theorem 3.2 (Remembering a field in continuous time) There is a one-
dimensional transition-rate matrix that remembers a field in a self-organizing
way.

Remembering a long (possibly infinite) string In order to store infor-
mation reliably in a computing device that deals with its bits individually, it
is necessary to add redundancy; otherwise some bits can be lost in the very
first step. So in order to store a string the initial configuration of the cellu-
lar automaton will contain it encoded by some error-correcting code (φ∗, φ

∗)
(the notation will be motivated in Section 4). A finite or infinite string ρ in
some alphabet Σ will be encoded into a string φ∗(ρ) in another alphabet S of
symbols, cell states of some cellular automaton. These states have fields, and
one of them can be called Info. The code we will use is such that if ξ = φ∗(ρ)
then for position n in ρ we have ξ(x).Info = ρ(x): the original word is in the
code explicitly in the Info field, while the other fields serve for error checks
and other structure. Though it will take some time to describe our codes (in
the rest of the paper) as they have a hierarchical structure, in fact they are
easy to compute: their computational complexity is low. Here is a theorem
about remembering forever an infinite string:

Theorem 3.3 (Remembering a long string) Given some alphabet Σ there is
a one-dimensional deterministic cellular automaton CA(Tr) with a field F , a
code ψ∗ : ΣZN → SZN for finite or infinite N and a constant c > 1 such that
for sufficiently small ε, if η is the trajectory of an ε-perturbation CAε(Tr)

22

with η(·, 0) = ψ∗(ρ) then for all x, t we have

P{η(x, t).F ̸= ρ(x)} = O(ε) + εh0(N,c)t.

As we see this code turns our cellular automaton an information-transmission
device from the present to the future, with constant capacity : storing one sym-
bol per cell. (Some non-Info fields of the cells will be used for error-checks.)

3.2 Computation

In order to accommodate computations that last forever, and to formalize the
idea of “more and more output”, let us introduce a special alphabet:

Definition 3.3 (Standard alphabet) Let us call the set

Σ0 = {0, 1,#, ∗} (3.3)

the standard alphabet . ⌟

Symbol # will be used to delimit binary strings, and ∗ will serve as a
“don’t-care” symbol. The following definition formalizes this idea.

Definition 3.4 (Specification relation between strings) Each field F of a cell
state such that the field size is even, can be considered not only a binary string
but a string of (half as many) symbols in the standard alphabet. If r, s are
strings in (Σ0)

n then
r ⪯ s

will mean that s(i) = r(i) for all 0 ≤ i < n such that r(i) ̸= ∗. For functions
f, g, with values in Σ∗

0 we will write f ⪯ g if for all s we have f(s) ⪯ g(s). ⌟

Thus, a don’t-care symbol r(i) imposes no restriction on s in the relation
r ⪯ s.
Definition 3.5 Let Tr be any deterministic transition function with states
in some alphabet A with distinguished fields Input, Output in the standard
alphabet. We say that Tr has monotonic output if for all trajectories η of
CA(Tr) we have

η(x, t).Output ⪯ η(x, t+ 1).Output.

We call the transition function Tr , all of whose fields have even size (that
is they are in the standard alphabet) together with some distinguished fields
Input, Output, a standard computing transition function if it

a) never changes Input;

23

b) has monotonic output;

c) does not change anything if the middle argument has all #’s in its input
field, or if all three arguments have ∗ in all their fields.

We will call a cellular automaton with such a transition function a standard
computing medium. Our construction uses for this a special field called

Color .

It can take a constant number of values; in one case, only −1, 0, 1. ⌟

The computation will occur in the segment of the infinite space marked
with color 0; the space to the left and right of it will be marked with color −1
and 1 respectively. The reason for this will be explained in Section 12.

Definition 3.6 (Init) Let Σ0 be the standard input/output alphabet, and S
a set of states with S.Input = Σ0, having another field Color ∈ {−1, 0, 1}, and
a distinguished “latent” state s0. Let ψ∗ : Σ∗

0 → S∗ be an encoding. For any
finite string ρ ∈ Σn0 , let n

′ = |ψ∗(ρ)|. For any finite or infinite N > |ρ′|, we
construct the initial configuration

ξ′ = Initψ∗(ρ) ∈ SN

as follows. Define ξ by setting ξ(x) = ψ∗(ρ)(x) for each x ∈ [0, n′), and s0 for
all other x. In case N =∞, obtain ξ′ from ξ by setting

ξ′(x).Color =


0 for 0 ≤ x < n,

−1 for x < 0,

1 for x ≥ n.

When the space is the finite one ZN then, with r = (N−n)/2, set ξ′(x).Color =
−1 for −r ≤ x < 0, and 1 for n ≤ x < n+ r. ⌟

For some c > 1 let

h1(t, c) = c(log t)
1/2 log log t. (3.4)

Theorem 3.4 (Reliable computation in dim 1) Let Tr be a standard com-
puting transition function over an alphabet Σ, and δ > 0 a constant. There
is

• a transition function Tr ′ with a state space S having fields Input, Output,
Color , with S.Input = S.Output = Σ0.

• a code ψ∗ : Σ
∗
0 → S∗, with |ψ∗(ρ)| ≤ 2|ρ|;

24

• a constant c1 > 1

such that the following holds for all ρ ∈ Σ∗
0. Let ζ(x, t) be any trajectory of Tr

with ζ(x, 0).Input = ρ(x) for x ∈ [0, |ρ|) and filled with ∗’s otherwise. Let η
be any trajectory of an ε-perturbation of Tr ′, with η(·, 0) = Initψ∗(ρ). For
all t, all t′ > t · h1(t, c1), all x ∈ Z we have for all sufficiently small ε:

P{ζ(x, t).Output ̸⪯ η(x, t′).Output} < δ.

So the slowdown paid for reliability is somewhat worse than logarithmic:
by a factor h1(t, c1). We will see that the code ψ∗ is simple, hiding no complex
computation. The proof of this theorem relies on a move we can call lifting :
though the input configuration is a hierarchically encoded one, but only to
the level needed by the size of the input. Higher levels will be built up as
additional reliability is needed for longer computation time.

Remarks 3.7

1. This note is similar to Remark 3.2, but is even more important, as the
error term does not even decrease with increasing t.

2. The initialization via Init avoids building up an infinite hierarchy in the
initial configuration, leaving this to self-organization. But it introduces a
huge asymmetry by coloring the left of the input with −1 and the right
with 1. This has an effect similar to making the space infinite in only one
direction, and placing the input into the beginning.

⌟

4 Codes

For the moment, let us focus on the task of remembering a single constant-size
field of a cellular automaton, called

Main-bit.

The intention is that in the initial configuration, each cell’s Main-bit is the
same, and the transition function should try to keep this field constant. We
mentioned in Section 1.2 that in one dimension, even this simple task will
require the construction and maintenance of some non-local organization, as
this seems the only way to eliminate large islands. The first idea is to store
pieces of information redundantly in segments, which we will call colonies.
But then colonies will be organized into supercolonies, and so on. To simplify
this idea, we will say that colonies encode cells of another cellular automaton
(which can have its own colonies. . .).

25

4.1 Colonies

A colony is a fixed-size segment of cells that are supposed to cooperate.

Definition 4.1 (Colony) Let x be a site and Q a positive integer. The set of
Q sites x + i for i ∈ [0, Q) will be called the Q-colony with base x, and site
x+ i will be said to have address i in this colony. ⌟

Let us be given a configuration ξ of a cellular automaton M with state
set S. The fact that ξ is “organized into colonies” will mean that one can
break up the set of all sites into non-overlapping colonies of size Q, using the
information in the configuration ξ in a translation-invariant way. This will be
achieved with the help of an address field.

Definition 4.2 (Address) An address field is a field of our cells that we will
denote Addr : we will always have it when we speak about colonies. The value
ξ(x).Addr is a binary string which will be interpreted as an integer in [0, Q). ⌟

Generally, we will assume that the Addr field is large enough (its size is
at least logQ). Then we could call a certain Q-colony C a “real” colony of
ξ if for each element y of C with address i we have ξ(y).Addr = i. (But we
do not introduce such a definition, since the address field of some cells could
be faulty.) Cellular automata working with colonies will not change the value
of the address field unless it seems to require correction. In the absence of
faults, if such a cellular automaton is started with a configuration grouped
into colonies then the sites can always use the Addr field to identify their
colleagues within their colony. Grouping into colonies seems to help preserve
the Main-bit field since each colony has this information in Q-fold redundancy.
The transition function may somehow involve the colony members in a coor-
dinated activity of restoring this information from the degradation caused by
faults (for example with the help of some majority operation). This activity
could be repeated periodically.

Definition 4.3 (Work period) For a parameter U that we will fix in each
case, let us call U steps of work of a colony a work period . ⌟

The best we can expect from a transition function of the kind described
above is that unless too many faults happen during some colony work period
the Main-bit field of most sites in the colony will always be the original one.
One can indeed write such transition functions; however, they do not accom-
plish qualitatively much more than a local majority vote for the Main-bit field
among three neighbors. Suppose that a group of failures changes the original
content of the Main-bit field in some colony, in so many sites that internal
correction is no more possible. The information is not entirely lost since most

26

probably, neighbor colonies still have it. But correcting the information in
a whole colony with the help of other colonies requires organization reaching
wider than a single colony. To arrange this broader activity also in the form
of a cellular automaton we use the notion of simulation with error-correction.

We will codify another convention:

Definition 4.4 Let us denote by M1 the fault-tolerant cellular automaton to
be built. ⌟

In the automatonM1, a colony C with base x will be involved in two kinds
of activity during each of its work periods.

Simulation Manipulating the collective information of the colony in a way
that can be interpreted as the simulation of a single state transition of site
x of some cellular automaton M2.

Error-correction Using the collective information (the state of x in M2) to
correct each site within the colony as necessary.

Of course, even the sites of the simulated automaton M2 will not be immune
to errors. They must also be grouped into colonies simulating an automaton
M3, and so on; the organization must be a hierarchy of simulations (more
precise definitions follow).

4.2 Block codes

The notion of simulation relies on the notion of a code, since the way the
simulation works is that the simulated history can be decoded from the simu-
lating history. We will develop a system of codes, starting from the simplest,
well-known example of a block code over strings.

Definition 4.5 (Code on strings) A code φ between two sets R,S is a pair
(φ∗, φ∗) where φ∗ : R → S is the encoding function and φ∗ : S → R is the
decoding function, and the relation

φ∗(φ∗(r)) = r

holds. We will be particularly interested in the example when for a positive
integer Q called the block size and some finite sets S1,S2 we have R = S2,
S = SQ1 . Such a code is called a block code. In a block code, strings of the
form φ∗(r) are called codewords. The elements of a codeword s = φ∗(r) are
numbered as s(0), . . . , s(Q− 1).

The codes φ between sets R,S used in our simulations will have a feature
similar to the acceptance and rejection of Example 4.7. The set R will always

27

have a subset of symbols called vacant , and among them a distinguished spe-
cial symbol Vac. An element s ∈ S will be called accepted by the decoding if
φ∗(s) ̸= Vac, otherwise it is called rejected. ⌟

Having more than one vacant symbol is just a matter of convenience.
A simple example code γ would be R = {0, 1}, S = R3, γ∗(r) = (r, r, r)

while γ∗((r, s, t)) is the majority of r, s, t.

Remark 4.6 The notation (φ∗, φ∗) to use for decoding and encoding is not
in common use: I find it suggestive, though, since φ∗ is something like an
inverse function without actually being one. ⌟

The following block code can be considered a significantly more complex,
paradigmatic example of the codes we will use later.

Example 4.7 Suppose that S1 = S2 = {0, 1}12 is the state set of both cellular
automata M1 and M2. Let us introduce the fields s.Addr and s.Info of a state
r = (s0, . . . , s11) in S1. The Addr field consists of the first 5 bits s0, . . . , s4,
while the Info field is the last bit s11. The other bits do not belong to any
named field. Let Q = 31. Thus, we will use codewords of size 31, formed of
the symbols (local states) of M1, to encode local states of M2. The encoding
funcion φ∗ assigns a codeword φ∗(r) = (s(0), . . . , s(30)) of elements of S1 to
each element r of S2. Let r = (r0, . . . , r11). We will set s(i).Info = ri for
i = 0, . . . , 11. The 5 bits in s(i).Addr will denote the number i in binary
notation. This did not determine all bits of the symbols s(0), . . . , s(30) in the
codeword. In particular, the bits belonging to neither the Addr nor the Info
field are not determined, and the values of the Info field for the symbols s(i)
with i ̸∈ [0, 12) are not determined. To determine φ∗(r) completely, we could
set these bits to 0.

The decoding function is simpler. Given a word s = (s(0), . . . , s(30)) we
first check whether it is a “normal” codeword, and as such, has s(0).Addr = 0
and s(i).Addr ̸= 0 for i ̸= 0. If yes then r = φ∗(s) is defined by ri = s(i).Info
for i ∈ [0, 12), and the word is accepted’. Otherwise φ∗(s) = 0 · · · 0, and the
word is rejected.

Informally, the symbols of the codeword use their first 5 bits to mark their
address within the codeword. The last bit is used to remember their part of
the information about the encoded symbol. ⌟

Example 4.8 The trivial example here will not be really used as a code but
rather as a notational convenience. For every symbol set S1, blocksize Q and
S2 = SQ1 , there is a special block code ιQ called aggregation defined by

ι∗Q((s(0), . . . , s(Q− 1))) = s(0) ⊔ · · · ⊔ s(Q− 1),

28

Program

Info

Worksp
Addr
Age

Figure 1: Three neighbor colonies with their tracks

and ιQ∗ defined accordingly. Thus, ι∗Q is essentially the identity: it just ag-
gregates Q symbols of S1 into one symbol of S2. We use concatenation here
since we identify all symbols with binary strings. ⌟

Definition 4.9 (Aggregating a field) Let φ be a block code from S2 to SQ1 ,
and F 1,F 2 be fields of Si. We will say that φ aggregates field F 1 into F 2 if

φ∗((s(0), . . . , s(Q− 1))).F 2 = s(0).F 1 ⊔ . . . ⊔ s(Q− 1).F 1.

Hence for u, v ∈ S2 the assumption u.F 2 = v.F 2 implies that for all a ∈ [0, Q)
we have

φ∗(u)(a).F 1 = φ∗(v)(a).F 1. (4.1)

⌟

We will use a strengthening of the aggregating property for a particular
address a.

Definition 4.10 (Controlling by a field) Assume that code φ aggregates field
F 1 into F 2. We say that field F 1 controls address a for code φ via a function
γ : S1.F 1 → S1 if in all codewords w of the form w = φ∗(u), we have w(a) =
γ(w(a).F 1). ⌟

In general, a symbol w(a) of a codeword w = φ∗(u) may contain infor-
mation in its fields other than F 1 about u, and it is typically important for
some symbols of w to do it. But there is no harm in freeing any one particular
address a, say a = 1, from this responsibility.

4.3 Generalized cellular automata (media)

A block code φ could be used to define a code on configurations between
cellular automata M1 and M2. Suppose that a configuration ξ of M2 is given.

29

Then we could define the configuration ξ∗ = φ∗(ξ) of M1 by setting for each
cell x of ξ and 0 ≤ i < Q,

ξ∗(Qx+ i) = φ∗(ξ(x))(i).

The decoding function would be defined correspondingly. This definition of
decoding is, however, unsatisfactory for our purposes. Suppose that ξ∗ is
obtained by encoding a configuration ξ via φ∗ as before, and ζ is obtained by
shifting ξ∗: ζ(x) = ξ∗(x − 1). Then the decoding of ζ will return all vacant
values since now the strings (ζ(Qx), · · · , ζ(Qx+Q−1)) are not “real” colonies.
However, it will be essential for reasoning about error correction that decoding
should notice all parts of a configuration that form a colony, even if a shifted
one. With our current definition of cellular automata, the decoding function
could not be changed to do this. Indeed, if ζ∗ is the configuration decoded
from ζ then ζ∗(0) corresponds to the value decoded from (ζ(0), . . . , ζ(Q− 1)),
and ζ∗(1) to the value decoded from (ζ(Q), . . . , ζ(2Q − 1)). There is no site
to correspond to the value decoded from (ζ(1), . . . , ζ(Q)).

Our solution is to generalize the notion of cellular automata. Let us give at
once the most general definition which then we will specialize later in varying
degrees.

An medium, or generalized cellular automaton is given by the following
ingredients:

S,Λ, B,Configs,Histories,Trajs, (At)t≥0.

S is the set of possible local states, and it has a subset of distinguished states
called Vacant , and among them one distinguished state called the vacant state
Vac ∈ Vacant . (Definition 4.5 already hinted at the meaning of the vacant
states.) Λ is the set of sites as introduced in Definition 2.2, in our case the
product of a few sets of the form Zm for finite or infinite m. The positive
integer B is called the body size. In ordinary cellular automata, B = 1.
Configs is the set of functions ξ : Λ → S that are configurations. If in a
configuration ξ we have ξ(x) ̸∈ Vacant then we will say that there is a cell at
site x in ξ. For a site x, interval [x, x+B) will be called the body of a possible
cell with base x. In a configuration, cells must have non-intersecting bodies.
Histories is the set of functions η : Λ × [0,∞) → S that are histories. In a
history η is is required that

a) η(·, t) is a space configuration for each t;

b) η(x, t) is a right-continuous function of t;

c) Each finite time interval contains only finitely many switching times (see
Definition 2.3) for each site x;

30

Trajs is the set of random histories (µ, η) that are trajectories. The increasing
system (At)t≥0 of σ-algebras was introduced in Section 2.3. The sets S, Λ,
Configs and Histories are defined by the set Trajs implicitly—therefore we
may omit them from the notation, and write

Med(B,Trajs, {At}) = Med(S,Λ, B,Configs,Histories,Trajs, (At)t≥0)

for a medium defined by them. We have a body size parameter B because some
of our cellular automata will “live in simulation”, and it is very convenient
for the simulated cell’s body to coincide with the interval of the “base” cells
simulating it.

Definition 4.11 (Dwell period) A dwell period of η is a tuple (x, s, t1, t2)
such that x is a site, s is a nonvacant state, and 0 ≤ t1 < t2 are switching
times with η(x, t1) = s. The rectangle [x, x+B) × [t1, t2) is the space-time
body of the dwell period. ⌟

Ordinary cellular automata obey some further restrictions:

Definition 4.12 (Lattice configuration) A configuration is a lattice configu-
ration if all cells are at sites of the form iB for integers i. We can also talk
about lattice histories: these have space-time bodies of the form

[iB, (i+ 1)B)× [jT, kT)

for integers i, j < k. ⌟

A lattice history is a history of an ordinary cellular automaton, except
that cells are given a common size B possibly different from 1, and the time
step is given a size T possibly different from 1.

Definition 4.13 (Deterministic cellular automaton with size parameters) A
deterministic cellular automaton

CA(Tr , B, T,Λ)

is determined by parameters B, T > 0 and a transition function Tr : S3 → S.
We may omit some obvious arguments from this notation. A lattice history η
with parameters B, T is a trajectory of this automaton if

η(x, t) = Tr(η(x−B, t− T), η(x, t− T), η(x+B, t− T))

holds for all x, t with t ≥ T . For a history η let us write

Tr(η, x, t, B) = Tr(η(x−B, t), η(x, t), η(x+B, t)). (4.2)

⌟

31

Probabilistic cellular automata and perturbations are generalized corre-
spondingly as

PCA(P, B, T,Λ), CAε(Tr , B, T,Λ). (4.3)

From now on, whenever we talk about a deterministic, probabilistic or per-
turbed cellular automaton we understand one also having parameters B, T .

We will also consider cellular automata in which the dwell periods do not
have a fixed length:

Definition 4.14 (Variable-period cellular medium) A medium is said to have
a variable period if in its histories, not all dwell periods have necessarily the
same size. ⌟

Block codes between cellular automata In a cellular abstract medium
with body size B, a colony of size Q is going to be some set of cells x+ iB for
i ∈ [0, Q). Thus, the union of its cell bodies occupies the interval [x, x+QB).
In what follows we use decoding to recognize colonies (when reasoning about
a configuration).

Definition 4.15 (Overlap-free) A block code will be called overlap-free if for
every string (s(0), . . . s(n−1)), and all i ≤ n−Q, if both strings (s(0), . . . , s(Q−
1)) and (s(i+ 1), . . . , s(i+Q− 1)) are accepted then i ≥ Q. ⌟

In other words, a code is overlap-free if two accepted words cannot overlap
in a nontrivial way.

The simple tripling code φ∗(x) = (x, x, x) with majority decoding is not
overlap-free, since for example if s(1)s(2)s(3)s(4) = 0000 then both s(1)s(2)s(3)
and s(2)s(3)s(4) are accepted. On the other hand, the code φ∗(x) = (0, x, 1, x, 2, x)
with φ∗(0, x, 1, y, 2, z) = Maj(x, y, z) (and vacant in other cases) is overlap-
free. The code in Example 4.7 is similarly overlap-free. Overlap-free codes are
used, among others, in [23].

A block code φ of block size Q can be used to define a code on configura-
tions between cellular abstract media M1 and M2.

Definition 4.16 (Block code on configuration) Suppose that a configuration
ξ of M2, which is a cellular medium AMed(QB), is given. Then we define the
encoded configuration ξ∗ = φ∗(ξ) of M1, which is an AMed(B), by setting for
each cell x of ξ and 0 ≤ i < Q,

ξ∗(x+ iB) = φ∗(ξ(x))(i).

32

Suppose that a configuration ξ of M1 is given. We define the decoded config-
uration ξ∗ = φ∗(ξ) of M2 as follows: for site x, set ξ′(x) = φ∗(s) where

s = (ξ(x), ξ(x+B), . . . , ξ(x+ (Q− 1)B)). (4.4)

We define ξ∗(x) = ξ′(x) if the latter is vacant or there is no y closer than QB
to x with ξ′(y) non-vacant; otherwise ξ∗ = Vac. ⌟

Proposition 4.17 Given a block code φ = (φ∗, φ
∗), its extension to configu-

rations is also a code in the sense that the equation

φ∗(φ∗(ξ)) = ξ

still holds.

The proof of this statement is immediate.
As we know most configurations cannot be obtained by encoding. Those

that can merit a special name.

Definition 4.18 (Code configuration) A configuration ξ is called a code con-
figuration if φ∗(φ

∗(ξ)) = ξ and the decoded configuration φ∗(ξ) covers the
space with adjacent cells. ⌟

For example, if the code is the simple tripling γ∗(x) = (x, x, x) mentioned
above, then any code configuration would consist of triply repeated symbols.

Let φ be an overlap-free code. If ξ = φ∗(ζ) is a code configuration with
ξ∗ = φ∗(ξ) then ξ∗(x) is nonvacant only at positions x where ζ(x) is nonvacant.
If ξ is not a code configuration then it may happen that in ξ∗, the cells will
not be exactly at a distance QB apart. Our construction still garantees that
the distance of cells in φ∗(ξ) is at least QB. This situation can be taken as
one of the justifications for the notion of cellular abstract media.

4.4 Block simulations

A simulation is defined as a code allowing to decode the trajectory of one
cellular automaton from another.

Definition 4.19 (Block simulation between deterministic cellular automata)
Suppose that M1 and M2 are deterministic cellular automata where Mi =
CA(Tr i, Bi, Ti), and φ is a block code with

B1 = B, B2 = QB.

The decoding function may be as simple as in Example 4.7: there is an Info
track and once the colony is accepted the decoding function depends only on
this part of the information in it.

33

For each history η ofM1, we define the history η
∗ = φ∗(η) ofM2 by setting

η∗(·, t) = φ∗(η(·, t)). (4.5)

We will say that the code φ is a simulation if for each configuration ξ of M2,
for the (unique) trajectory η of M1, such that η(·, 0) = φ∗(ξ), the history η∗

is a trajectory of M2. ⌟

We can view φ∗ as an encoding of the initial configuration of M2 into that
of M1. Our requirements say that from every trajectory of M1 with a “good”
initial configuration (that is a code configuration), the simulation-decoding
results in a trajectory of M2.

Example 4.20 Let us show one particular way in which the transition func-
tion Tr1 can make the code φ a simulation. Assume that

T1 = T, T2 = UT

for some positive integer U called the work period size. Each cell of M1 will
go through a period consisting of U steps in such a way that the Info field
will be changed only in the last step of this period. The initial configuration
η(·, 0) = φ∗(ξ) is chosen in such a way that each cell is at the beginning of its
work period. By the nature of the code, in the initial configuration, cells of
M1 are grouped into colonies.

Once started from such an initial configuration, during each work period,
each colony, in cooperation with its two neighbor colonies, computes the new
configuration. With the block code in Example 4.7, this may happen as fol-
lows. Let us denote by r−1, r0, r1 the value in the first 12 bits of the Info track
in the left neighbor colony, in the colony itself and in the right neighbor colony
respectively. First, r−1 and r1 are shipped into the middle colony. Then, the
middle colony computes s = Tr2(r−1, r0, r1) where Tr2 is the transition func-
tion or M2 and stores it on a memory track. (It may help understanding
how this happens if we think of the possibilities of using some mail, memory
and workspace tracks.) Then, in the last step, s will be copied onto the Info
track. ⌟

Example 4.21 (Aggregated transition) Here is a trivial example of a block
simulation which will be applied, however, later in the paper. Given a one-
dimensional transition function Tr(x, y, z) with state space S, we can define
for all positive integers Q an aggregated transition function TrQ(u, v, w) as
follows. The state space of TrQ is SQ. Let rj = (rj(0), . . . , rj(Q − 1)) for
j = −1, 0, 1 be three elements of SQ. Concatenate these three strings to get a
string of length 3Q and apply the transition function Tr to each group of three

34

consecutive symbols to obtain a string of length 3Q−2 (the end symbols do not
have both neighbors). Repeat this Q times to get a string of Q symbols of S:
this is the value of TrQ(r−1, r0, r1), defining an aggregated cellular automaton
CA(TrQ, Q,Q) where we used the notation in Definition 4.13.

For M1 = CA(S,Tr , B, T) and M2 = CA(SQ,TrQ, QB,QT), the aggrega-
tion code ιQ defined in Example 4.8 will be a block simulation of M2 by M1

with a work period consisting of U = Q steps. If along with the transition
function Tr , there were some fields F ,G , · · · ⊆ All also defined then we define,
say, the field F in the aggregated cellular automaton as

⋃Q−1
i=0 (F+i∥S∥). Thus,

if r = r(0)⊔· · ·⊔ r(Q−1) is a state of the aggregated cellular automaton then
r.F = r(0).F ⊔ r(1).F ⊔ · · · ⊔ r(Q− 1).F .

We may allow only less communication with the neighbors, and then mod-
ify the above as follows to a function TrQ,w as follows, where we call δ the
slowdown rate, where we assume that both δQ and 1/δ are integers. The state
space is still SQ. Let rj = (rj(0), . . . , rj(Q− 1)) for j = −1, 0, 1 be three ele-
ments of SQ. Concatenate these three strings to get a string of length 3Q and
apply the transition function Tr to each group of three consecutive symbols to
obtain a string of length 3Q−2 (the end symbols do not have both neighbors).
Repeat this only wQ times to get a string of Q symbols of S: this is the value
of TrQ,δ(r−1, r0, r1). This defines the cellular automaton CA(TrQ,δ, Q, δQ).
The function TrQ becomes the special case TrQ,1. Denoting by s.sliceδ,−1,
s.sliceδ,1 the leftmost and rightmost δ|Q| symbols of a string s in SQ, then in
fact TrQ,δ(r) depends only on r−1.slice

δ,1, r0, r1.slice
δ,−1. ⌟

To simulate n steps of a transition function Tr over an interval [a, b) start
with a larger interval [a− n, b+ n). After step t, we only need to work on the
interval [a− n+ t, b+ n− t).

Cellular automata are “computationally universal” in the informal sense
that Turing machines are: arbitrary computations can be implemented on ap-
propriate cellular automata. We will return to this point later, in Section 9.1.
Also, there are cellular automata that are universal in a sense similar to univer-
sal Turing machines. The notion of block simulations give rise to a particularly
simple such universality property.

Definition 4.22 (Intrinsically universal cellular automata) A transition func-
tion Tr is intrinsically universal if for every other transition function Tr ′ there
are Q,U and a block code φ such that φ is a block simulation of CA(Tr ′, Q, U)
by CA(Tr , 1, 1). ⌟

In the literature, intrinsic universality is defined in a slightly more general
way: see [29]. There are some extremely simple cellular automata that are

35

computationally universal but are probably not intrinsically so. The most
famous example is Cook’s theorem for the computational universality of Rule
110 in [9].

Theorem 4.1 (Intrinsically universal cellular automata) There is an intrin-
sically universal transition function.

Here, we only give a proof sketch of existence. A particularly simple intrin-
sically universal cellular automaton is defined in [29]: it is one-dimensional,
nearest-neighbor, with 4 states.

Sketch of proof: This theorem is proved somewhat analogously to the theorem
on the existence of universal Turing machines. If the intrinsically universal
transition function is Tr then for simulating another transition function Tr ′,
the encoding demarcates colonies of appropriate size with Addr = 0, and
writes a string Table that is the code of the transition table of Tr ′ onto a
special track called Prog in each of these colonies. The computation is just
a table-look-up: the triple (r−1, r0, r1) mentioned in the above example must
be looked up in the transition table. The transition function governing this
activity does not depend on the particular content of the Prog track, and is
therefore independent of Tr ′. For references to the first proofs of universality
(in a technically different but similar sense), see [4, 34]

Note that an intrinsically universal cellular automaton cannot use codes
similar to Example 4.7. Indeed, in that example, the capacity of the cells of
M1 is at least the binary logarithm of the colony size, since each colony cell
contained its own address within the colony. But ifM1 is intrinsically universal
then the various simulations in which it participates will have arbitrarily large
colony sizes.

The size Q of the simulating colony in the above proof sketch will generally
be very large also since the latter contains the whole table of the simulated
transition function. There are many special cellular automata M2, however,
whose transition function can be described by a small computer program and
computed in relatively little space and time (linear in the size ∥S2∥). We will
only deal with such automata, and will develop a simple language to describe
their programs. (Any intrinsically universal transition function will simulate
these with correspondingly small Q and U .)

4.5 A single-fault-tolerant block simulation

Here we outline a cellular automaton M1 that block-simulates a cellular auto-
maton M2 correctly as long as at most a single error occurs in a colony work

36

period of size U . The outline is very informal: it is only intended to give some
framework to refer to later: in particular, we add a few more fields to the local
states in addition to the ones introduced earlier.

The automaton M1 is not intrinsically universal, so the automaton M2

cannot be chosen arbitrarily. Among others, this is due to the fact that the
address field of a cell of M1 will hold its address within its colony 2. But we
will see later that intrinsic universality is not needed in this context.

The cells of M1 will have, besides the Addr field, also a field Age. If no
errors occur then in the i-th step of the colony work period, each cell will have
the number i in the field Age. There are also fields called Mail , Info, Work ,
Hold , Prog .

The Info field holds the state of the represented cell of M2 in three copies.
The Hold field will hold parts of the final result before it will be, in the last
step of the work period, copied into Info. The role of the other fields is clear.

The program will be described from the point of view of a certain colony
C. Here is an informal description of the activities taking place in the first
third of the work period.

1. From the three thirds of the Info field, by majority vote, a single string is
computed. Let us call it the input string. This computation, as all others,
takes place in the workspace field Work ; the Info field is not affected. The
result is also stored in the workspace.

2. The input strings computed in the two neighbor colonies are shipped into
C and stored in the workspace separately from each other and the original
input string.

3. The workspace field behaves as a computationally universal cellular auto-
maton, and from the three input strings and the Prog field, computes the
string that would be obtained by the transition function ofM2 from them.
This string will be copied to the first third of the Hold track.

In the second part of the work period, the same activities will be performed,
except that the result will be stored in the second part of the Hold track.
Similarly with the third part of the work period. In a final step, the Hold field
is copied into the Info field.

The computation is coordinated with the help of the Addr and Age fields.
It is therefore important that these are correct. Fortunately, if a single fault
changes such a field of a cell then the cell can easily restore it using the Addr
and Age fields of its neighbors.

2We could avoid non-constant size fields, but since it is not necessary, for simplicity we
keep them

37

It is not hard to see that with such a program (transition function), if the
colony started with “perfect” information then a single fault will not corrupt
more than a third of the colony at the end of the work period. On the other
hand, if two thirds of the colony was correct at the beginning of the colony
work period and there is no fault during the colony work period then the result
will be “perfect”.

4.6 General simulations

The general notion of abstract media allows a very general definition of sim-
ulations:

Definition 4.23 (General simulation) A simulation of mediumM2 by medium
M1 having the same system {At}t≥0 of σ-algebras is given by a pair

Φ = (φ,Φ∗) (4.6)

where Φ∗ is a mapping of the set of histories of M1 into those of M2 (the
decoding), φ∗ is a mapping of the set of configurations of M2 to the set of
configurations of M1 (the encoding for initialization). We will assume to φ∗
always belongs also a decoding function φ∗, so they form a code φ = (φ∗, φ

∗).
Denote

η∗ = Φ∗(η).

We require that for each configuration ξ ofM2, each trajectory of η ofM1 with
η(·, 0) = φ∗(ξ) the decoded historyη∗ is a trajectory ofM2 with η

∗(·, 0) = ξ. ⌟

The actual simulations we will use will all have a certain locality property:

Definition 4.24 (Local simulation) A simulation will be called non-
anticipating if for each t the random function η∗(·, t) is measurable in the σ-
algebra At (this says that it does not depend on the future). Let σ be the shift
on one-dimensional configurations and histories: that is (σξ)(x) = ξ(x + 1),
(ση)(x, t) = η(x+1, t). A simulation (φ,Φ∗) is called shift-invariant if both φ
and Φ∗ commute with the shift. It is called local if there is a finite space-time
rectangle V ∗ = I × (u, 0] with u ≥ 0 such that Φ∗(η)(w, t) depends only on
η((w, t)+V ∗). A local simulation is both non-anticipating and shift-invariant.

All our simulations will be local, unless stated otherwise. It follows from
the non-anticipating property that η∗(·, 0) depends only on η(·, 0), and there-
fore the simulation always defines a decoding function

φ∗

38

on configurations (as already stipulated in Definition 4.23). If u = 0 and so
the configuration η∗(·, t) depends only on the configuration η(·, t), then the
simulation will be called memoryless. ⌟

Corollary 8.11 gives an example of non-local simulation. Locality implies
that a simulation is determined by a function defined on the set of configura-
tions over V ∗. Our eventual simulations will not be memoryless: the decoding
looks back on the history during (t − u, t] but, being non-anticipating, still
does not look ahead. For a memoryless simulation, the simulation property is
identical to the one we gave at the beginning of Section 4.4.

Simulation between perturbations Our goal is to find nontrivial simu-
lations between cellular automata M1 and M2, especially when these are not
deterministic. If M1,M2 are probabilistic cellular automata then the simula-
tion property would mean that whenever we have a trajectory (µ, η) of M1

the random history η∗ decoded from η would be a trajectory ofM2. There are
hardly any nontrivial examples of this sort since in order to be a trajectory of
M2, the conditional probabilities of φ∗(η) must satisfy certain equations de-
fined by P2, while the conditional probabilities of η satisfy equations defined
by P1.

There is more chance of success in the case when M1 and M2 are pertur-
bations of some deterministic cellular automata since in this case, only some
inequalities must be satisfied. The goal of improving reliability could be this.
For some universal transition function Tr2, and at least two different initial
configurations ξi (i = 0, 1), find Tr1, Q, U, c with B1 = B, B2 = BQ, T1 = T ,
T2 = TU and a block simulation Φ1 such that for all ε > 0, if ε1 = ε, ε2 = cε2

and Mk is the perturbation

CAεk(Trk, Bk, Tk,Z)

then Φ1 is a simulation of M2 by M1. The meaning of this is that even if
we have to cope with the fault probability ε, the simulation will compute Tr2
with a much smaller fault probability cε2. The hope is not unreasonable since
in Section 4.5, we outlined a single-fault-tolerant block simulation while the
probability of several faults happening during one work period is only of the
order of (QUε)2. However, it turns out that the only simply stated property
of a perturbation that survives noisy simulation is a certain initial stability
property (see below).

Trickle-down Even if the above goal can be achieved, the reason for the
existence of the simulated more reliable abstract medium is to have feedback

39

from it to the simulating one. Let us define the nature of this feedback via
the notion of trickle-down. We want the cell state simulated by a colony
to determine some properties (fields) of the simulating cells in the colony;
however, we want to allow some other fields to vary. For example there could
be an Age field that varies during any work period, while the information of
the big cell represented by the colony should be reflected in its cells—via the
code—all the time.

Definition 4.25 (Trickle-down) Let Φ = (φ,Φ∗) be a simulation as in (4.6)
whose encoding φ∗ is a block code with block size Q, between abstract cellular
media Mk (k = 1, 2). Let Dk > 0 (k = 1, 2) be some parameters, and F 1 a
field of the medium M1. We say that Φ has the ε-trickle-down property of
field F k+1 into field F 1 with respect to D1, D2 if the following holds for every
configuration ξ of M2 and every trajectory (µ, η) of M1 with η(·, 0) = φ∗(ξ).

Recall the notation ⪯ in Definition 3.4. Let η1 = η, η2 = Φ∗(η). Let
x1, x2 be sites where x1 has address a in the Q-colony with base x2, let t0 be
some time. For k = 1, 2 let Ek(x) be the event that ηk(x, t) is non-vacant and
ηk(x, t).F k does not change during (t0−Dk, t0+Dk]. Let E

′
1 be the event that

E1(x1) holds and also

η(x1, t).F 1 ⪰ φ∗(η
∗(x2, t))(a).F 1

during this time. Then P(E2(x2) \ E′) < ε. ⌟

The term “trickle-down” is used since information from a higher level cell is
used to determine something in a lower-level cell. Informally, this means that
for all x1, x2, a in the given relation, the state η(x1, t) is with large probability
what we expect by encoding some η∗(x2, t

′) and taking the a-th symbol of the
code-word.

There is yet another, simple error-resistance property of a medium worth
spelling out: namely, the time until the initial state does not change, except
with small probability.

Definition 4.26 (Initial stability) A cellular medium M is called initially
stable for an initial configuration ξ with parameters (ε, T) if for each trajectory
η of M with η(·, 0) = ξ, for each site x, we have

P{∃ t < T η(x, t) ̸= η(x, 0)} < ε.

⌟

Initial stability is a trivial property for lattice cellular automata:

Example 4.27 Consider the perturbationM = CAε(Tr , B, T) of a 1-dimensional
deterministic cellular automaton. Then for any configuration ξ and arbitrary

40

δ > 0 the medium M is initially stable for initial configuration ξ and pa-
rameters (δ, T). Indeed, by definition no cell is changing it state before time
T . ⌟

For variable-period cellular automata, and other media in which the length
of dwell periods is not fixed in advance, the property is less trivial.

5 Hierarchy

The reliable cellular automaton we are building is working in a hierarchical
way. Before understanding a dynamically working hierarchy, it is helpful to
understand thoroughly a static hierarchy, for example a hierarchically con-
structed initial configuration.

5.1 Hierarchical codes

In the present work, formally, a hiearchy will be defined via a “composite
code”. Let us introduce the basic operation of the hierarchical structure arising
in an amplifier.

Definition 5.1 (Composition of codes) If φ,ψ are two codes then φ ◦ ψ is
defined by (φ◦ψ)∗(ξ) = φ∗(ψ∗(ξ)) and (φ◦ψ)∗(ζ) = ψ∗(φ∗(ζ)). It is assumed
that ξ and ζ are here configurations of the appropriate cellular automata, that
is the cell body sizes are in the corresponding relation. The code φ◦ψ is called
the composition of φ and ψ. ⌟

Here is a detailed example.

Example 5.2 LetM1,M2,M3 have cell body sizes 1, 31, 312 respectively. Let
us use the code φ from Example 4.7. The code φ2 = φ ◦φ maps each cell c of
M3 with body size 312 into a “supercolony” of 31 · 31 cells of body size 1 in
M1.

Suppose that ζ = φ2
∗(ξ) is a configuration obtained by encoding from a

lattice configuration of body size 312 in M3, where the bases of the cells are
at positions −480+ 312i. (We chose -480 only since 480 = (312− 1)/2 but we
could have chosen any other number.) Then ζ can be grouped into colonies of
size 31 starting at any of those bases. Cell 55 ofM1 belongs to the colony with
base 47 = −480 + 17 · 31 and has address 8 in it. Therefore the address field
of ζ(55) contains a binary representation of 8. The last bit of this cell encodes
the 8-th bit the of cell (with base) 47 of M2 represented by this colony. If we
read together all 12 bits represented by the Info fields of the first 12 cells in this
colony we get a state ζ∗(47) (we count from 0). The cells with base −15+31j

41

Prog

InfoProg∗ Info∗ Worksp∗ Addr∗ Age∗

Worksp
Addr
Age

Figure 2: Fields of a cell simulated by a colony

for j ∈ Z with states ζ∗(−15+ 31j) obtained this way are also broken up into
colonies. In them, the first 5 bits of each state form the address and the last
bits of the first 12 cells, when put together, give back the state of the cell
represented by this colony. Notice that these 12 bits were really drawn from
312 cells of M1. Even the address bits in ζ∗(47) come from different cells of
the colony with base 47. Therefore the cell with state ζ(55) does not contain
information allowing us to conclude that it is cell 55. It only “knows” that it
is the 8-th cell within its own colony (with base 47) but does not know that
its colony has address 17 within its supercolony (with base −15 · 31) since it
has at most one bit of that address. ⌟

Infinite composition A code can form composition an arbitrary number
of times with itself or other codes. In this way, a hierarchical, that is highly
nonhomogenous, structure can be defined using cells that have only a small
number of states.

Definition 5.3 (Hierarchical code) A hierarchical code is given by a sequence
Sk, φk∗, (k ≥ 1) where Sk is an alphabet and φk∗ is a code on configurations.
In the present work we will also assume that φk∗ always comes from a block
code

φk∗ : Sk+1 → SQk
k .

Since Sk and Qk are implicitly defined by φk∗ we can refer to the code as
just (φk∗)k≥1. Consider a hierarchical code (φk∗)k≥1 with state sequence (Sk)
and block sizes (Qk). If for each Sk a field F k is also given, and the code
φk∗ is aggregating from F k to F k+1 as in Definition 4.9, then the hierarchical
code (φk∗)k≥1 will be called aggregating for the field sequence (F k). If also F k
controls address 1 via a function γk (as by Definition 4.10) then sequence of

42

triples

H = (φ,F k, γk)k≥1 (5.1)

will be called a centrally aggregating hierarchical code, or shortly, a code com-
plex. ⌟

Definition 5.4 Given a hierarchical code as above, for a configuration ξ we
define the higher-order configurations ξk by the recursion

ξ1 = ξ,

ξk+1 = φ∗
k(ξ

k).
(5.2)

The configuration ξ is called a code configuration for the given hierarchical
code if ξk is a code configuration for the code φk for each k in the sense of
Definition 4.18. ⌟

Constructing code configurations The construction of a code configura-
tion for a hierarchical code seems to require a composition φ1∗◦φ2∗◦· · ·. What
is the meaning of this? We will want to compose the codes “backwards”, that
is in such a way that from a configuration ξ1 of some medium M1 with cell
body size 1, we can decode the configuration ξ2 = φ∗

1(ξ
1) ofM2 with cell body

size B2 = Q1, configuration ξ
3 = φ∗

2(ξ
2), of M3 with body size B3 = Q1Q2,

and so on. Such constructions are not unknown, they were used for example
to define “Morse sequences” with applications in group theory as well in the
theory of quasicrystals ([23, 32]). All known nonperiodic tiling sets are also
based on a similar hierarchical construction.

Definition 5.5 Suppose that a code configuration ξ of a hierarchical code
(φk)k≥1 with block sizes Qk is given. The sizes of the higher-order cells are
defined by B1 = 1, Bk+1 = QkBk. For a finite or infinite n, let

K0(n) = sup
Bk≤n

k. (5.3)

If n <∞ then this is the largest k for which a k-cell can fit into Zn. As long as
k < K0(n) the origin of our space Λ will be contained in some cell xk of level
k. Since it is in our power to define the code configuration ξ, for simplicity we
will always arrange that xk is the second cell (the cell with address 1) of the
colony coding cell xk+1. In general, we could use any addresses 0 < ak < Q−1
instead of setting them always to 1, but this is not important now. Setting
ak = 1 gives

x1 = 0, xk = −B1 − · · · −Bk−1 for k > 1.

⌟

43

In a hierarchical code as in Definition 5.5, the sequence of states

sk = ξk(xk)

obeys some restrictions:

Definition 5.6 (Fitted sequence) A finite or infinite sequence (s1, s2, . . .) will
be called fitted to a code complex H as in (5.1) if

φk∗(sk+1)(1) = sk (5.4)

for all k. ⌟

Every fitted sequence allows the construction of a code configuration for
the hierarchical code. (If we used addresses ak then the condition above would
be φk∗(sk+1)(ak) = sk, and the proposition below would still hold.)

Proposition 5.7 For a fitted sequence (sk)k≥1 there are configurations ξk

of Mk over Z such that for all k ≥ 1 we have

φk∗(ξ
k+1) = ξk,

ξk(xk) = sk.

Proof. Let N (finite or infinite) be the size of our space, and let

ξkk (5.5)

be the configuration ofMk which has state sk at site xk and arbitrary states at
all other sites xk + xBk, with the following restriction in case of a finite space
size N . Let ξkk be non-vacant only for k ≤ K0 = K0(N) and ξK0

K0
(xK0 + z)

non-vacant only if
0 ≤ zBK0 < N. (5.6)

For 1 ≤ i < k let

ξik = φi∗(φ(i+1)∗(· · ·φ(k−1)∗(ξ
k
k) · · ·)). (5.7)

We have
ξkk+1(xk) = φk∗(ξ

k+1
k+1(xk+1))(1) = ξkk(xk) (5.8)

where the first equation comes by definition, the second one by fittedness.
The encoding conserves this relation, so the partial configuration ξik+1(xk+1+
[0, Bk+1)) is an extension of ξik(xk + [0, Bk)). Therefore the limit ξi = limk ξ

i
k

exists for each i. The limit extends over the whole set of integer sites.

44

Though the code configuration ξ1 above is obtained by an infinite process
of encoding, no infinite process of decoding is needed to yield a single config-
uration from it: at the k-th stage of the decoding, we get a configuration ξk

with body size Bk.
Here is how finite and infinite sequences will be encoded. For the following

two definitions, let H be a code complex as in (5.1).

Definition 5.8 (Encoding of infinite sequences) Let ρ ∈ (S1.F 1)
Z be an infi-

nite sequence, we define its encoding ψ∗(ρ) as follows. Define for each k the
following segment of ρ using the notation of Definition 5.5:

ρk = (ρ(xk), ρ(xk + 1), . . . , . . . , ρ(xk +Bk − 1)).

The sequence sk = γk(ρk), k = 1, 2, . . . is fitted, allowing via Proposition 5.7
to encode ρ into an infinite code configuration

ξ = ξ1 = ψ∗(ρ).

⌟

This construction leaves plenty of freedom for the codes φk. Indeed, the
tracks of a codeword w = φk∗(sk+1) other than F k can store all kinds of struc-
tural and error-correcting information about sk+1, and it is only its symbol
w(1) that is restricted to γk(w(1).F 1) = γk(ρk) = sk.

A sequence ρ of length n <∞ will be encoded into a cell of an appropriate
level. Recall the notation xk from Definition 5.5.

Definition 5.9 (Encoding of finite sequences) Given a code complex H as
above and a string ρ ∈ Σn0 we define its encoding ξ = ψ∗(ρ) ∈ S∞ which has
the property that except for an interval of size ≤ 2n, ξ(x) = qS with qS as in
Definition 3.6. Let k = K0(n) as in (5.3). Create the string

ρ′ = ∗−xkρ∗l

where −xk stars come at the front and the l stars at the back are the fewest
to make |ρ′| = mBk an integer multiple of Bk. Now create a string rk ∈ Smk
as follows. First let r′k = qmS , and then obtain rk by replacing the track r′k.F k

in it with ρ′. Define the string rk−1 = φi∗(rk) ∈ SmQk−1

k−1 . Similarly, for each
1 ≤ i < k let ri = φ(i+1)∗(ri+1). By definition of the codes φi∗, string ri
consists of mQk−1Qk−2 · · ·Qi symbols of Si. Then r1 consists of mBk symbols
of S = S1. Finally obtain ξ as follows: ξ(x) = r(x−xk) for 0 ≤ x−xk < mBk
and qS otherwise. ⌟

Now the symbols of ρ occupy the places ξ(x).F 1 for x ∈ [0, n), within the
string r1 representing a number m ≤ Qk + 1 of k-cells. Outside these k-cells
the configuration consists of 1-cells with one and the same state qS.

45

5.2 Amplifiers

An amplifier is a hierarchical code whose member codes are also simulations.
Recall general simulations in Definition 4.23.

Definition 5.10 (Amplifier) Suppose that a sequenceM1,M2, . . . of abstract
media is given along with simulations Φ1,Φ2, . . . such that Φk is a simulation
of Mk+1 by Mk. Such a system will be called an amplifier . ⌟

Amplifiers are somewhat analogous to renormalization groups in statistical
physics. So far, we have not seen in the present work any nontrivial example
of simulation other than between deterministic cellular automata, so the idea
of an amplifier seems far-fetched at this moment.

We want the simulations in our amplifiers to have all the good properties
introduced earlier:

Definition 5.11 (Trickle-down and initial stability for amplifiers) Suppose
that an amplifier Ψ = (Mk,Φk)k≥1 is given along with the sequences of pa-
rameters Dk, ε

′′
k, εk, and fields F k. Assume that each φk aggregates field F k

into F k+1, as in Definition 4.9.

1. Ψ has the trickle-down property if for each k, the simulation Φk has the
trickle-down property of F k+1 to F k with parameters Dk, Dk+1 and ε′′k,
as in Definition 4.25.

2. Suppose that the sequence εk > 0, k = 1, 2, . . . is given with
∑

k εk <
1/6, and also a configuration ξ of M1 that is a code configuration of the
code sequence (φk) (as introduced in Definition 5.3). We say that Ψ has
the initial stability property with respect to the initial configuration ξ
and parameters ((εk, Tk))k≥1 if for each k the medium Mk has the initial
stability property for initial configuration ξk and parameters (εk, 2Dk).

⌟

The initial stability property for amplifiers is not as trivial as for lattice
media. Consider the case when M1 = CAε(Tr ,Z, B, T). As the trajectories
of medium M2 are obtained by decoding from trajectories of M1, their initial
stability is not apriori guaranteed.

5.3 Information storage: proof from an amplifier assumption

The following lemma will be proved later in the paper.

Lemma 5.12 (Initially stable trickle-down amplifier) We can construct the
following objects.

46

a) Parameters εk < ε′′k, B1, Qk, Dk with Dk+1 ≥ Dk for k ≥ 1, with∑
k ε

′′
k < 1/6.

b) Media Mk with local state spaces Sk, with a distinguished field F k.

M1 = CAε1(Tr1, B1, T1,Z), (5.9)

and an amplifier Ψ = ((Mk), (Φk)) with simulations Φk = (φk,Φ
∗
k) where

the codes φk are block codes with blocksize Qk that are aggregating field
F k into field F k+1 as per Definition 4.9, and where F k controls address 1
as in Definition 4.10.

c) For each infinite sequence ρ ∈ Σ∗
0 an initial configuration ξ1 = ψ∗(ρ) of

M1 as obtained in Proposition 5.7 such that for each k the sequence ξk

covers the space with non-vacant cells of Mk.

d) Ψ is trickle-down and initially stable for ξ, with the parameter sequences
(F k), (Dk) , (ε

′′
k), (εk).

Note that (5.9) is required only for M1; the media Mk for k > 1 will be
more complex objects, not simply cellular automata. Let us use this lemma
to prove Theorem 3.3.

Proof of Theorem 3.3. We will use the amplifier defined in the above lemma.
Let ρ ∈ ΣZ

0 , and ξ as in Lemma 5.12. Let η1 be a trajectory of the medium
M1 with η1(·, 0) = ξ, and ηk be defined by the recursion ηk+1 = Φ∗

k(η
k). Let

(x1, t0) be a space-time point. There is a sequence of points x1, x2, . . . such
that xk+1 is a cell of ηk+1(·, 0) containing xk in its body. There is a first n
with t1 < Dn. Let Ek be the event that ηk(xk, t) is non-vacant and

ηk(xk, t).F k = ξk(xk).F k

during (t0−Dk, t0+Dk]. The theorem follows from the bounds on
∑

k εk and∑
k ε

′′
k and from

P
(
¬(E1 ∩ · · · ∩ En)

)
≤ εn +

n−1∑
k=1

ε′′k. (5.10)

To prove this inequality, use

¬(E1 ∩ · · · ∩ En) = ¬En ∪
n−1⋃
k=1

(Ek+1 \ Ek).

By the construction, ηn(xn, 0).Fn = ξn(xn). The initial stability property
implies P

(
¬En

)
≤ εn. Let us show P

(
Ek+1 \ Ek

)
≤ ε′′k. The assumption Ek+1

47

says

ηk+1(xk+1, t).F k+1 = ξk+1(xk+1).F k+1. (5.11)

Let a be the address of cell xk ofMk in the colony simulating cell xk+1 ofMk+1.
By the definition of of ξk we have φk∗(ξ

k+1(xk+1))(a) = ξk(xk). The assump-
tion that φk aggregates F k into F k+1 and (5.11) implies, as shown in (4.1),
φk∗(η

k+1(xk+1, t))(a).F k = ξk(xk).F k. The trickle-down property says that
except with probability ε′′k, we have φk∗(η

k+1(xk+1, t))(a).F k = ηk(xk, t).F k.
during (t0 −Dk, t0 +Dk], which completes the proof.

5.4 Error-correcting codes

Let us define the parts of our block code that deal with error-correction.

Definition 5.13 (Error-correcting code) A block code φ = (φ∗, φ
∗) with

φ∗ : RQ → S will be called is t-error-correcting if for all x ∈ Σ, y ∈ ΣQ

we have φ∗(y) = x whenever y differs from φ∗(x) in at most t symbols. It
is (β, t)-burst-error-correcting if for all x ∈ S, y ∈ RQ we have φ∗(y) = x
whenever y differs from φ∗(x) in at most t intervals of size ≤ β. For such a
code, we will say that a word y ∈ RQ is (β, r)-compliant if it differs from a
codeword of the code by at most r intervals of size ≤ β.

Assume that strings R and S are in {0, 1}∗. In the context of error-
correcting codes, elements of R will be called the symbols of the codewords,
as opposed to bits, since each symbol may consist of several bits. ⌟

Example 5.14 A popular kind of error-correcting code are codes ψ such that
ψ∗ is a linear mapping when the binary strings in S and RQ are considered
vectors over the field {0, 1}. These codes are called linear codes. It is sufficient
to consider linear codes ψ that are systematic: for all s, the first ∥S∥ bits of
the codeword ψ∗(s) are identical to s: they are called the information bits. (If
a linear code is not such, it can always be rearranged to have this property.)
In this case, the remaining bits of the codeword are called error-check bits,
and they are linear functions of s. For correcting a single error, in the tripling
method outlined in Section 4.5, the error check bits are simply the twice
repeated information bits. ⌟

Example 5.15 Here we define the linear code we will be using in later con-
struction (a generalization of the so-called Reed-Solomon code, see [7]). In its
application in our paper only its basic quantitative properties are used, so the
details can safely be skipped at first reading.

Let our codewords (information symbols and check symbols together) be
binary strings of length Nl for some l, N . The symbols of our codewords,

48

binary strings of length l, will be interpreted as elements of the finite field
GF(2l) and thus, each binary string c of length Nl will be treated as a vector
(c(0), . . . , c(N − 1)) over GF(2l). (Note that the word “field” is used in two
different senses in the present paper.) Let us fix N distinct nonzero elements
αi of GF(2l) and let t < N/2 be a positive integer. The codewords are those
vectors c that satisfy the equations

N−1∑
i=0

αji c(i).F
k = 0 (j = 1, . . . , 2t) (5.12)

where the addition, multiplication and taking to power j are performed in the
field GF(2l). These are 2t linear equations. If we fix the first N − 2t elements
of the vector in any way, (these are the information symbols) the remaining
2t elements (the error check symbols) can be chosen in a way to satisfy the
equations. This set of equations is always solvable, since its determinant is a
Vandermonde determinant.

Below, we will show a procedure for correcting any ν ≤ t nonzero errors.
This demonstrates that for the correction of error in any ≤ t symbols, only
2t error-check symbols are needed. (Robert Solovay noticed that in our ap-
plications, with a little deterioration of efficiency, even the most brute-force
decoding algorithm is sufficient. We will never have to correct more than
some constant number c of errors, so the complexity of decoding would never
go much over nc steps.)

If E = (e0, . . . , eN−1) is the sequence of errors then C + E will be the
observed the word. Only eir are nonzero for r = 1, . . . , ν. Let Yr = eir , Xr =
αir . We define the syndrome Sj for j = 1, . . . , 2t by

Sj =
∑
i

(ci + ei)α
j
i =

∑
i

eiα
j
i =

∑
r

YrX
j
r (5.13)

which can clearly be computed from the codeword: it is the amount by which
the codeword violates the j-th error check equation. We will show, using
the last expression, that Yr and Xr can be determined using Sj . Define the
auxiliary polynomial

Λ(x) =
∏
r

(1− xXr) =
ν∑
s=0

Λsx
s

whose roots are X−1
r . Let us show how to find the coefficients Λs for s > 0.

We have, for any r = 1, . . . , ν, and any j = 1, . . . , 2t− ν:

0 = YrX
j+ν
r Λ(X−1

r) =
∑
s

ΛsYrX
j+ν−s
r .

49

Hence, summing for r,

0 =
ν∑
s=0

Λs(
∑
r

YrX
j+ν−s
r) =

ν∑
s=0

ΛsSj+ν−s (j = 1, . . . , 2t− ν) (5.14)

hence using Λ0 = 1,
∑ν

s=1 ΛsSj+ν−s = −Sj+ν . This is a system of linear
equations for Λs whose coefficients are the syndroms, known to us, and whose
matrix Mν is nonsingular. Indeed, Mν = ABAT where B is the diagonal
matrix ⟨YrXr⟩ and A is the Vandermonde matrix Aj,r = Xj−1

r .
A decoding algorithm now works as follows. For ν = 1, 2, . . . , t, see if Mν

is nonsingular, then compute Λ(x) and find its roots by simple trial-and-error,
computing Λ(α−1

i) for all i. Then, find Yr by solving the set of equations (5.13)
and see if the resulting corrected vector C satisfies (5.12). If yes, stop. (There
is also a faster way for determining Λ(x), via the Euclidean algorithm, see [7]).

To make the code completely constructive we must find an effective repre-
sentation of the field operations of GF(2l). This finite field can be efficiently
represented as the set of remainders with respect to an irreducible polynomial
of degree l over GF(2), so what is needed is a way to generate large irreducible
polynomials. Now, it follows from the theory of fields that

x2·3
s
+ x3

s
+ 1

is irreducible over GF < (2) for any s. So, the scheme works for all l of the
form 2 · 3s. ⌟

A hierarchical code like in Proposition 5.7 leaves some space for error-
correction, but it needs to be economical, so we indeed need a code like Ex-
ample 5.15.

Example 5.16 Let us use the notation of Proposition 5.7 with ak = 1 for all
k. Our goal is to give more details of state spaces Sk and codes φk satisfying
the conditions of that Proposition. See Figure 3. The error check symbols for
F k are on a track Redunk. As the address ak = 1 is controlled by F k, the cell
with address 1 is not used for error checks. The other parts of the information
needed to represent the big cell are on track Lk. It contains in its different
segments the fields Lk+1, Redunk+1, Workk+1 of the big cell represented by
the colony, as well as its own error check symbols. There is also a collection
of tracks shown here as a single track Workk: it contains for example Addrk,
Mailk. ⌟

50

F k+1

F k

Error-check symbols for the track F kRedunk

Lk+1 Redunk+1 Workk+1 Error check for this trackLk

Work tracksWorkk

Figure 3: Error-correcting code in a shared field

In any implementation of the above example all fields other than the ag-
gregated field F k must be relatively quite narrow. Recall that Capk = ∥Sk∥ is
the number of bits in a state of Mk.

Proposition 5.17 In a hierarchical code (φk) let Hk denote any track of Mk

that is not needed to restore information in a cell of Mk+1 from the colony
coding it. (It may contain error-checks or other administrative information
like addresses.) Then

∑
k |Hk|/Capk < 1.

Proof. Let hk = |Hk|/Capk, rk = 1− hk. The state of a cell of Mk+1 must be
represented by the colony even when we exclude the track Hk, so

Capk+1(rk+1 + hk+1) ≤ QkCapkrk = Capk+1rk,

rk+1 + hk+1 ≤ rk,
hk+1 ≤ rk − rk+1,

allowing to estimate
∑

k hk by a telescoping sum.

5.5 Major difficulties

The idea of a simulation between two perturbed cellular automata is, unfor-
tunately, flawed in the original form: the mapping defined in the naive way
is not a simulation in the strict sense we need. The problem is that a group
of failures can destroy not only the information but also the organization into
colonies in the area where it occurs. This kind of event cannot therefore
be mapped by the simulation into a transient fault unless destroyed colonies
“magically recover”. The recovery is not trivial since “destruction” can also

51

mean replacement with something else that looks locally like its healthy neigh-
bor colonies but is incompatible with them. One is reminded of the biological
phenomena of viruses and cancer. Rather than give up hope let us examine
the different kinds of disruption that the faults can cause in a block simulation
by a perturbed cellular automaton M1.

Let us take as our model the informally described automaton of Section 4.5.
The information in the current state of a colony can be divided into the fol-
lowing parts:

Information: an example is the content of the Info track.

Structure: the Addr and Age tracks.

Program: the Prog track.

Less formally, “structure” does not represent any data for decoding but is
needed for coordinating cooperation of the colony members. The “program”
determines which transition function will be simulated. The “information”
determines the state of the simulated cell: it is the “stuff” that the colony
processes. Disruptions are of the following kinds (or a combination of these):

1) Local change in the “information”.

2) Locally recognizable change in the “structure”.

3) Program change.

4) Locally unrecognizable change in “structure”.

A locally recognizable structure change would be a change in the address
field. A locally unrecognizable change would be to erase two neighbor colonies
based, say, at BQ and 2BQ and to put a new colony in the middle of the gap
of size 2BQ obtained this way, at position 1.5BQ. Cells within both the new
colony and the remaining old colonies will be locally consistent with their
neighbors; on the boundary, the cells have no way of deciding whether they
belong to a new (and wrong) colony or an old (and correct) one.

The only kind of disruption whose correction can be attempted along the
lines of traditional error-correcting codes and repetition is the one of kind 1):
a way of its correction was indicated in Section 4.5. The three other kinds are
new; we will deal with them in different ways.

On locally recognizable changes in the structure, we will use the method
of destruction and rebuilding. Cells that find themselves in structural con-
flict with their neighbors will become vacant. Vacant cells will eventually be
restored if this can be done fast, in a way structurally consistent with their
neighbors.

To fight program changes, our solution will be that the simulation will not
use any “program” or, in other words, we “hard-wire” the program into the

52

transition function of each cell. We will not lose computational universality
this way: as the hard-wired program itself can simulate some fixed cellular
automaton on one of its tracks (which will be called the Payload track).

To fight locally unrecognizable changes, we will “legalize” all the struc-
tures brought about this way. Consider the example where a single colony sits
in a gap of size 2BQ. The decoding function is defined even for this config-
uration. In the decoded configuration, the cell based at site 0 is followed by
a cell at site 1.5BQ which is followed by cells at sites 3BQ, 4BQ, etc. These
configurations, viewed as “illegal” earlier, will be “legalized” now; this way
they can be eliminated with their own active participation, provided we have
rules (trajectory conditions) applying to them. This is the main reason for
the introduction of generalized cellular automata.

The generalized cellular automaton introduced this way will be called a
robust medium. The generalization of the notion of the medium does not
weaken the original theorem: the fault-tolerant cellular automaton that we
eventually build is a cellular automaton in the old sense. The more general
media are only needed to reason about structures that arise in simulations by
a random process.

6 Results for the finite space

This section overviews the main theorems concerning reliable computation
with cellular automata in discrete time.

6.1 Relaxation time and ergodicity

Ergodicity means forgetting eventually everything about the initial configura-
tion. We quantify “eventually” here by the notion of a relaxation time.

We start with some notation.

Notation 6.1 Let Λ(n) be an increasing sequence of finite subsets of Λ with⋃
n Λ(n) = Λ, for example

Λ(n) = ([−n, n] ∩ Z)d

if Λ = Zd. We can view an element s of SΛ(n) as a vector whose components
are indexed with the elements of Λ(n). For a measure ν over configurations,
denote

ν(s) = ν{ξ : ξ(x) = sx for all x ∈ Λ(n)}. (6.1)

For n = 0, we have the special case ν(s) = ν{ξ : ξ(0) = s}.

53

If (µ, η) is a random trajectory of a probabilistic cellular automaton then
let µt be the distribution of the configuration η(·, t). ⌟

Definition 6.2 (Weak convergence) A sequence νk of measures over SΛ weakly
converges to measure ν if limk νk(s) = ν(s) for all n and for all s ∈ SΛ(n). ⌟

In other words, the νk-probabilities of any event determined by a finite
number of sites converge to its ν-probability. Let us proceed to the definition of
ergodicity. There is a linear operator P determined by the transition function
P(s, r) giving µt+1 = Pµt:

Definition 6.3 (Markov operator, invariance) Assuming for simplicity, Λ =
Z, we define the Markov operator P on measures by

(Pµ)(s) =
∑
r

n−1∏
j=−n+1

P(sj , (rj−1, rj , rj+1))µ(r) (6.2)

where the summation goes over all possible strings r = (r−n, . . . , rn) ∈ S2n+1.
Given a Markov operator, we call a measure α over configurations invariant
if Pα = α. ⌟

It is well-known and easy to prove using standard tools (see a reference
in [35]) that each continuous linear operator over probability measures has an
invariant measure. The invariant measures describe the possible limits (in any
reasonable sense) of the distributions µt.

Definition 6.4 (Ergodicity) A probabilistic cellular automaton is called er-
godic if

a) It has only one invariant measure ν.

b) For every possible measure µ0 over configurations, µt = P tµ0 converges
weakly to ν.

⌟

In other words, all information about the initial configuration will be even-
tually lost. A noisy cellular automaton, whenever the set of sites is finite, is a
finite Markov chain with all positive transition probabilities. This is ergodic
by a well-known elementary theorem of probability theory. If the set of sites
is infinite then noisiness does not imply even ergodicity.

Remark 6.5 No examples are known of noisy cellular automata over an in-
finite space that satisfy a) but not b). In one dimension and continuous time
there is no such example, as shown in [27]. ⌟

The first example of a non-ergodic noisy cellular automaton was given by
Toom. (See for example [35].)

54

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

��	

��	

��	

��	

��	

��	

��	

��	

��	

Figure 4: The Toom rule’s effect on a large triangular island

Definition 6.6 (Toom rule) A deterministic cellular automaton R given by
Toom can be defined as follows. We start from a two-dimensional deterministic
cellular automaton R with set of states {0, 1}, by the neighborhood H =
{(0, 0), (0, 1), (1, 0)}. The transition function TrR(x1, x2, x3) is the majority
of x1, x2, x3. ⌟

Thus, in a trajectory of the Toom rule R, to obtain the next state of a
cell, take the majority among the states of its northern and eastern neighbors
and itself. Toom showed that the rule R remembers a field (namely the whole
state of the cell) in the sense defined in Section 2.5 and is hence non-ergodic.

Remark 6.7 The notion of ergodicity was defined only for trajectories of
Rε that are also trajectories of some probabilistic cellular automaton R′ (as
defined in Section 2.3) such that R′ ⊆ Rε, that is that all trajectories of R′

are trajectories of Rε. The difference between Rε and R′ is that the local
transition probabilities of a trajectory of R′ are fixed and the same everywhere
in space-time, while Rε requires them only to be within some range. Toom’s
theorem implies that no such R′ is ergodic. ⌟

Relaxation time as a measure of information loss What is the rele-
vance can results on infinite cellular automata for the possibilities of compu-
tation or information storage in finite systems? We will try to answer this
question here. To stay in the context of the Toom rule, consider a (finite or
infinite) two-dimensional space Λ. We need a notion of distance for measures.

55

Definition 6.8 (Variation distance) Let us define the variation distance for
measures µ and ν are restricted to SΛ(n):

dn(µ, ν) =
∑
{|µ(s)− ν(s)| for all s ∈ SΛ(n)}.

⌟

The maximum distance 2 means that the two measures have disjoint sup-
port. Let us qualify distance even more as a function of the size of the finite
two-dimensional spaces that we will be considering:

Definition 6.9 For the set of sites

Λm = Zm × Zm

where m can be finite or infinite, suppose that the local transition matrix (for
simplicity, with nearest-neighbor interaction) gives rise to an ergodic Markov
process with Markov operator Pm. Let

Dn
m(t) =

∨
µ,ν

dn(P tmµ, P
t
mν),

where the dependence on the transition matrix is understood but is not shown.
⌟

It is easy to see that this is equal to∨
r,s

dn(P tmδr, Pmδs)

for the measure δs concentrated on configuration s. The function Dn
m(t) is

monotonically decreasing in t since for example for invariant µ,

dnm(P
t+u
m ν, µ) = dn(P tm(P

u
mν), µ).

Pm is ergodic if and only if for each finite configuration s and each measure ν
we have P tmν(s) → µ(s). By the weak compactness of the space of measures,
this is equivalent to saying that

lim
t
Dn
m(t) = 0

holds for all n.

Definition 6.10 (Relaxation time) We will call the function

rm(n, δ) := sup{t : Dn
m(t) > δ} <∞

the relaxation time. ⌟

56

Ergodicity implies rm(n, δ) < ∞ for all δ. This function is obviously
increasing in n (defined only for n ≤ (m − 1)/2) and decreasing in δ. In the
cases we are interested in, the order of magnitude of rm(n, δ) as a function
of n does not change fast with the change of δ: rm(n, 0.1) is not much larger
than rm(n, 1.9). This means that once the unique invariant distribution µm is
not separated well from any P tmν it soon becomes fairly close to all of them.
Therefore we will generally consider δ fixed.

Relaxation time as a function of space size If m <∞ then the medium
is always ergodic. Assume now that the medium is also ergodic for m = ∞.
This has a serious implication on the relaxation times for finite m:

Lemma 6.11 For all n < (m− 1)/2, for all δ with r∞(n, δ) < (m− 1)/2−n
we have

rm(n, δ) ≤ r∞(n, δ).

This means that if the medium is ergodic for m = ∞ then increasing m
in the case of m < ∞ does not increase the relaxation time significantly for
any fixed n: in each segment of length n of any finite medium, information is
being lost at least as fast as in the infinite medium.

Proof. Take m,n, δ satisfying the above conditions and let r = r∞(n, δ). Due
to the monotonicity ofDn

m(t), it is enough to prove thatDn
m(r) ≤ Dn

∞(r). Take
a measure ν over configurations of Λm, this will give rise to some measure ν∞
over configurations of period m in Λ∞ in a natural way, where ν∞ is such
that for all n < (m − 1)/2 and all s ∈ SΛ(n) we have ν∞(s) = ν(s). Then,
r < (m− 1)/2− n implies 2n+ 1 + 2r < m and therefore via (6.2) we have

P rmν(s) = P r∞ν∞(s).

We found that ergodicity of P∞ implies a kind of uniform forgetfulness
in the sense that increasing the size m of the space does not increase the
relaxation time beyond r∞(n, δ).

Forgetfulness: a variant of ergodicity Ergodicity does not express quite
adequately the losing of all information about the initial configuration in case
of cellular automata, where namely the space-time is translation-symmetric
(this was noticed by Charles Radin and Andrei Toom).

57

Example 6.12 Let ξ0 be the configuration over the one-dimensional integer
lattice that is 0 in the even places and 1 in odd places, and ξ1 the one that
is 1 in the even places and 0 in the odd places. For b = 0, 1 let µb be the
measure concentrated on ξb, and let P be the linear operator obtained from
some transition function. Suppose that the measures Pnµ0 converge to some
measure ν0. Then the measures Pnµ1 converge to some measure ν1. Even
if ν1 is different from ν0 they differ only by a translation in space. If the
translations of ν0 are the only invariant measures of P then we would still
say that in some sense, P loses all information about the initial configuration:
we might say, it loses all “local” information. Indeed, a cell has no way of
knowing whether it has even or odd coordinates. ⌟

Definition 6.13 We can call the Markov operator P strongly not forgetful if
it has two disjoint (weakly) closed translation-invariant sets of measures. ⌟

Our non-ergodic examples will all be strongly not forgetful.

6.2 Information storage and computation

We recall the existence of three-dimensional reliable cellular automata.

Definition 6.14 Let us be given an arbitrary one-dimensional transition func-
tion Tr and the integers N,L. We define the three-dimensional transition
function Tr ′ as follows. The interaction neighborhood is H × {−1, 0, 1} with
the neighborhood H defined in Section 6.1 above. The transition function Tr ′

says: in order to obtain your state at time t + 1, first apply the transition
function R in each plane defined by fixing the third coordinate. Then, apply
transition function Tr on each line obtained by fixing the first and second
coordinates. 3

For an integer m, define the space Λ = Z2
m × ZN . For a trajectory ξ of

CA(Tr) on ZN , define the trajectory ζ of CA(Tr ′) on Λ by

ζ(i, j, n, t) = ξ(n, t). (6.3)

Thus, each cell of CA(Tr) is repeated m2 times, on a whole “plane” (a torus
for finite m) in Λ. ⌟

The following has been proved in earlier work:

Proposition 6.15 (Gács-Reif) There are constants ε0, c1, d1 > 0 such that
the following holds. For all N,L, and m = c1 log(NL), for any trajectory ξ

3The papers [19] and [14] use a neighborhood instead of H that makes some proofs
easier: the northern, south-eastern and south-western neighbors.

58

of CA(Tr) over ZN , if the trajectory ζ of CA(Tr ′) is defined by (6.3) then
for any ε < ε0, any trajectory (µ, η) of CAε(Tr

′) such that η(·, 0) = ζ(·, 0)
we have for all t in (0, L] and all w ∈ Λ

µ{η(w, t) ̸= ζ(w, t)} ≤ d1ε.

This theorem says that in case of the medium CAε(Tr
′) and the trajec-

tories (µ, ζ), the probability of deviation can be uniformly bounded by d1ε.
The trajectories η encode (by (6.3)) an arbitrary computation (for exam-
ple a universal Turing machine), hence this theorem asserts the possibility
of reliable computation in three-dimensional space. The coding is repetition
O(log2(NL)) times, that is it depends on the size N · L of the computation.
The decoding is even simpler: if a plane of Λ represents a state s of a cell of
CA(Tr) then each cell in this plane will be in state s with large probability.
The simulation occurs in “real time”. The original proof of a slightly weaker
version of this result used a sparsity technique borrowed from [13]. In its cur-
rent form, the theorem was proved in [5] using an adaptation of the techniqe
of [35].

Theorem 3.1 shows that one-dimensional noisy and strongly not forget-
ful probability operators exist. Section 5 gave some detail on the kind of
constructs going into the proof. The actual proof seems to require almost
the whole complexity of the constructions of the present paper (though the
continuous-time case adds some additional nuisance to each part). Once the
basic structure (an amplifier, as asserted in Lemma 5.12) is in place, the simu-
lations in it support arbitrary computational actions and allow the formulation
of several other theorems. Theorem 3.3 asserts the possibility of storing an in-
finite string ρ—provided the space is infinite. Now we can give more detail on
the nature of the encoding ψ∗ used there: it will be one like in Definition 5.8.
We don’t give a finite version: that one can be seen as a special case of the
finite version of Theorem 6.1 below, when the computation is a trivial one
outputting the input. Here are some definitions needed before Theorem 6.1.
If ρ is a configuration in ΣZ where Σ is the standard computing alphabet,
then we say that ρ is supported by interval I if ρ(x) = # · · ·# or vacant for
all x ̸∈ I. Recall Initψ∗(ρ) in Definition 3.6.

We defined the function h1(t, c) in (3.4).

Theorem 6.1 (Reliable computation in finite or infinite space) Let Tr be
a standard computing transition function over an alphabet Σ, and δ > 0 a
constant. There is

• a transition function Tr ′ with a state space S having fields Input, Output;

• a code ψ∗ : Σ
∗
0 → S∗ with |ψ∗(ρ)| ≤ 2|ρ|,

59

• constants c1, c2 > 1

such that the following holds for all sufficiently small ε. Let N be the size of
our space, and ρ ∈ Σ∗

0 with 2|ρ| < N , ε < ε0. Let ζ(x, t) be any trajectory
of Tr with ζ(x, 0).Input = ρ(x) for x ∈ [0, |ρ|) and filled with ∗’s otherwise.
Let η be any trajectory over the space ZN of an ε-perturbation of Tr ′, with
η(·, 0) = Initψ∗(ρ). For all sufficiently small ε, for all t for which ζ(·, t) does
not use more space than N , all t′ > t · h1(t, c1), all x ∈ Z we have

P{ζ(x, t).Output ̸⪯ η(x, t′).Output} < δ + t′εh0(N,c2).

As we see the space occupied by our reliable simulation is just a constant
times more than the original space (how much larger is ∥S∥ than ∥Σ∥). The
time delay is more significant: we can recover the computation result ζ(x, t)
only at times t′ > t · h1(t, c1).

The above theorem strengthens the result of [13] in some ways.

• The need for the decoding of the computation result is eliminated: it appears
in the same place as in ζ, due to an economical encoding.

• The encoding of the input depends only on the input, not on the size of the
computation. This is achieved by lifting, as indicated after Theorem 3.1.

7 More restrictions on media

Here we impose further requirements on our media

Med(S,Λ, B,Configs,Histories,Trajs, (At)t≥0)

from Section 4.3.

7.1 Trajectories

Here, we will show in what form the set of trajectories of a medium will be
given. The kind of conditions defining what is a trajectory in a medium will
be of the form

g(η) ≤ b,

where the function g is an event function as in Definition 2.11.

Example 7.1 Let V = (a1, a2] × (t, u], B < d = 0.2(a2 − a1). Suppose that
we are given some r ∈ S3, s ∈ S. Let g(η) = 1 if there is a space-time point
(x, t0) in V , and an ε < d such that η(x + iB, t) = ri for i = −1, 0, 1 during
the interval [t0 − ε, t0) and η(x, t0) = s. Thus, the event g(η) = 1 marks a
certain kind of transition in the window. ⌟

60

The set Trajs of a medium will be given by many such conditions. Let us
fix an arbitrary set

T (7.1)

called the set of condition types. Let

Rectangles

be the set of bounded space-time rectangles of the form [a, b) × (u, v]. For a
type α ∈ T and a rectangle V , a local condition will be defined as a pair

(α, V). (7.2)

Two local conditions are disjoint when their rectangles are. The conditions
defining a trajectory will be given by two functions:

g : T× Rectangles ×Histories → {0, 1}, h : T→ [0, 1], (7.3)

where g(alpha, V, η) is for each α, V an event function in the sense of Def-
inition 2.11, and b(α) ∈ [0, 1] is a bound: so each condition will have the
form

E g(α, V, η) ≤ b(α). (7.4)

The medium is then defined as

M = Med(S,Λ,T,Configs,Histories, {At}, g(·, ·, ·), b(·)), (7.5)

where all arguments inferrable from the context can be omitted. An event
defined by g(alpha, V, η) occurs when η violates a certain local condition. For
technical reasons we we always include two special condition types: the killer
type ω, that does not allow anything, and the dummy type δ, that allows
everything:

g(ω, V, η) = b(ω) = 0, g(δ, V, η) = b(δ) = 1. (7.6)

For an empty “rectangle” ∅ we stipulate g(α, ∅, η) = 0 for all α ̸= δ, and
g(δ, ∅, η) = 1.

Generally, local conditions will only be defined for small V , and in a
translation-invariant way (in space, but only almost so in time since the time
0 is distinguished). Therefore one and the same pair g, b can serve for all
sufficiently large finite or infinite spaces Λ as well as the infinite space, just
like with deterministic cellular automata, where the same transition function
determines trajectories in finite spaces as well as the infinite space. When we
are given media M1,M2, . . . then gi(), bi() automatically refer to Mi.

Recall the definition πt from (2.4).

61

Definition 7.2 (Trajectory) A random history η will be called a trajectory
of medium M given in (7.5) if for each time u ≥ 0, for each set of disjoint
local conditions

(αi, Vi)i≤N

with (∀i) inf πtVi ≥ u (where inf ∅ =∞), we have

E
[∏
i

g(αi, Vi, η)
∣∣∣ A<u

]
≤

∏
i

b(αi). (7.7)

⌟

This says that we can multiply the probabilities of violating local condi-
tions E g(αi, Vi, η) ≤ b(α) in disjoint windows, in other words: these violations
happen “independently”. The media we are interested in have the following
three types of condition:

1) One type recognizes in V a certain event called “damage”, and has b = ε
for some small ε;

2) One type recognizes the event that the transition does not occur there
according to a certain transition function. This has b = 0, thus prohibiting
this possibility.

3) One type corresponds to some “coin tossing” event, and has b = 0.5 + ε′

for a suitable ε′.

The following example will show how a discrete-time probabilistic cellular
automaton (PCA) fits into this framework.

Example 7.3 Let us be given a probabilistic cellular automaton
PCA(P, B, T). For each state vector r ∈ S3 and state s, let us form type
α(s, r). The condition of this type will say that the transition rules are obeyed
at times of the form nT . Namely for cell x, time t of the form nT with n > 0,
let

g
(
α(s, r), {x} × (t− T, t], η

)
= {η(x+ iB, t− T/2) = ri (i = −1, 0, 1), η(x, t) = s}, (7.8)

b(α(s, r)) = P(s, r). (7.9)

For all cells x and rational times u we define a new type β = β(x, u) by
b(β(x, u)) = 0 and

g
(
β(x, u), {x} × [T ⌊u/T ⌋, u], η

)
= {η(x, u) ̸= η(x, T ⌊u/T ⌋)}.

62

This condition says that η(x, u) = η(x, T ⌊u/T ⌋) with probability 1. For all
other combinations α, V we set g(α, V, η) = 0. It is easy to see that the
trajectories of PCA(P, B, T) are trajectories of the medium defined this way.

⌟

The new conditions introduced below are “loosened-up” versions of the
above ones since it is not always desirable to be as restrictive. Instead of a
bound on the probability of getting into a local state s, we may just want a
bound on the probability of hitting a certain set of local states K ′′ once it is
known that we were going to hit a certain bigger set of local states K ′.

Definition 7.4 (Local state subset functions) In a probabilistic cellular auto-
maton PCA(P, B, T) for each set of states E and state vector r = (r−1, r0, r1)
let P(E, r) =

∑
q∈E P(q, r). Let K be the set of functions K : S3 → 2S such

that
K(r) ⊆ {s ̸= r0 : P(s, r) > 0}. (7.10)

For a space-time trajectory η and a K ∈ K let us write

K(x, t, η) = K(η(x−B, t), η(x, t), η(x+B, t)).

For all K ′,K ′′ ∈ K with K ′ ⊇ K ′′ (that is K ′(r) ⊇ K ′′(r) for all r), let

c(K ′,K ′′) =
∨
r

P(K ′′(r), r)

P(K ′(r), r)

be the maximum conditional probability, over all r, of getting into the set
K ′′(r) provided we get into the set K ′(r).

In case of a continuous-time cellular automaton CCA(R, B), for any func-
tionsK,K ′,K ′′ ∈ K with R(K, r) =

∑
q∈K R(q, r) we define the corresponding

quantity

c(K ′,K ′′) =
∨
r

R(K ′′(r), r)

R(K ′(r), r)
.

⌟

Let us form local conditions with the help of these concepts:

Example 7.5 In case of a probabilistic cellular automaton PCA(P, B, T), for
each pair of such functions K ′,K ′′ ∈ K with K ′ ⊇ K ′′ let us form the type

α = α(K ′,K ′′).

For each cell x and times u ≤ v of the form nT , let us form the rectangle V =
{x}×(u, v]. For each such pair α, V let g(α, V, η) = 1 if there is a first t ∈ (u, v]

63

with η(x, t) ∈ K ′
(x, t−T, η) and in it, we have η(x, t) ∈ K ′′

(x, t−T, η). Also,
let b(α) = c(K ′,K ′′). The condition of type α bounds the probability that as
soon as we get into the set K ′ we also get into the set K ′′. ⌟

The proposition below is an immediate consequence of the definitions:

Proposition 7.6 If M is the medium defined by the conditions above then
all trajectories of PCA(P, B, T) are trajectories of M .

Example 7.7 In case of a continuous-time cellular automaton CCA(R, B)
we define each α(K ′,K ′′), V = {x} × (u, v] and g(α, V, η) as in Example 7.5,
but now for all rational u < v. ⌟

Theorem 7.1 Every trajectory of CCA(R, B) is a trajectory of the medium
defined in the above example.

Proof sketch. As in the time-discretization in Section 2.4, for a small δ >
0, let Mδ = PCA(P, B, δ) with P(s, r) = δR(s, r) when s ̸= r0 and 1 −
δ
∑

s′ ̸=r0 R(s′, r) otherwise. Then a transition to the limit δ → 0 in Proposi-
tion 7.6 completes the proof. The transition uses the fact that trajectories of
M(δ) converge in distribution to trajectories of CCA(R, B).

Of course in both Proposition 7.6 and in Theorem 7.1, instead of the first
time with η switching into K ′ we could have asked about the second time, or
the third time, etc.

7.2 Strong trajectories

In one part of our construction and proof, for self-organization, in Section 21.2,
we need a seemingly stronger condition on trajectories than the one in Defini-
tion 7.2: namely, we must consider sets of local conditions that are randomly
chosen. Of course, they cannot be chosen completely randomly, as then we
could just choose the places where the faults occur. But we will allow condi-
tions chosen in a non-anticipating way, that is via stopping times. Recall the
notion of a set of condition types T in (7.1), (7.2) and (7.3).

Here, we will specialize, for our needs, the notion of stopping times from
the theory of stochastic processes. Let At be a filtration over a probability
space, as in Definition 2.12.

Definition 7.8 (Stopping time) A real random variable σ with values in
[0,∞) is a stopping time if for each t the event {σ ≤ t} is in At. Let Aσ be
the algebra of events A with the property that A ∩ {σ ≤ t} ∈ At. ⌟

Definition 7.9 (Constraint process) For some time interval J ⊂ (0,∞], as-
sume that there is a stopping time σ ∈ J , and random variables α(η) ∈ T,

64

V (η) ∈ Rectangles measurable in Aσ, with

πtV
σ(η) ⊆ J ∩ [σ,∞].

The tuple (J, σ, α(η), V (η)) will be called a constraint process. ⌟

Definition 7.10 (Strong trajectory) A random history η will be called a
strong trajectory if for each system of disjoint constraint processes

(J, σi, αi(η), Vi(η))i∈N

(where Vi(η) are disjoint for each η), h an event function over A<πtJ , we have

E
(
h
∏
i

g(αi(η), Vi(η), η)
)
≤ EhE

∏
i

b(αi(η)). (7.11)

⌟

This says, just as for ordinary trajectories, that we can multiply the prob-
abilities of violating local conditions in disjoint windows—but requires that
this be even true if the condition types and windows are chosen by random
stopping rules. It may seem strange that there is dependence on a random
αi on both sides, but note that αi(η) depends only on what happened before
σi, while g(αi(η), Vi(η), η) depends on what happens in Vi(η), whose bottom
is after σi.

Proposition 7.11 The trajectories of the cellular automaton PCA(P, B, T)
of Example 7.5 are strong.

Proof sketch. The statement follows by a standard argument from the strong
Markov property of the Markov process PCA(B, B, T) (see [28]).

Proposition 7.12 Proposition 7.6 and Theorem 7.1 can be strengthened: all
trajectories of PCA(B, B, T) and CCA(R, B) are strong trajectories of the
corresponding media.

The proofs are routine.

7.3 Canonical simulations

We will restrict the kind of simulations among media from its general form
given in Definition 4.23 to a kind of mapping that sets up some relations
between the local conditions of the media and makes it easier to prove it is a
simulation.

65

6
time

V σ1
1

σ1
V σ2
2

σ2
V σ3
3

σ3

Figure 5: A system of disjoint random local conditions

Definition 7.13 Let M,M∗ be media where the functions g, b define the
constraints on M , and g∗, b∗ define those for M∗, and let φ∗ be a mapping
from the histories of M into those of M∗: we will write η∗ = φ∗(η). We say
that φ∗ is a canonical simulation map if the following holds. Let (α, V) be
any local condition for M∗ with α ∈ T∗. Then there is a system of constraint
processes (

πtV, τi,j , βi,j(η),Wi,j(η)
)

(7.12)

with i = 1, . . . , n(α, V), j = 1, . . . , k(α, V, i) with the following properties. For
each fixed i, the subsystem containing elements for that i forms a system of
disjoint constraint processes with Wi,j(η) ⊆ V , and for almost all η we have

g∗(α, V, η∗) ≤
∑
i

∏
j

g(βi,j(η),Wi,j(η), η),

b∗(α) ≥
∑
i

∏
j

b(βi,j(η)).
(7.13)

⌟

Theorem 7.2 If φ∗ is a canonical simulation map then for each strong tra-
jectory η of M , the expression φ∗(η) defines a strong trajectory of M∗.

Proof. Let η be a strong trajectory of M and

(J, σl, αl(η
∗), Vl(η

∗))l∈N (7.14)

66

a system of disjoint random local conditions inM∗. Let h be an event function
measurable in A<inf J . We must show

E
(
h
∏
l

g∗l (αl(η
∗), Vl(η

∗), η∗)
)
≤ EhE

∏
l

b∗(ασll (η∗)).

By the assumption, for each value (a, v) of the random (αl(η
∗), Vl(η

∗)) there
is a system of constraint processes(

πtv, τl,i,j(a, v), βl,i,j(a, v, η),Wl,i,j(a, v, η)
)

(7.15)

for i = 1, . . . , n(a, v), j = 1, . . . , k(a, v, i), with the properties defined for
canonical simulations, so τl.i,j ∈ πtv. This implies

τl,i,j(αl(η
∗), Vl(η

∗)) ≥ σl (7.16)

for all l, i, j. We will use the shorthand notation

W̄l,i,j(η) =Wl,i,j(αl(η
∗), Vl(η

∗), η), (7.17)

and τ̄l,i,j , β̄l,i,j(η) means similarly not showing the dependence on αl, Vl.

Claim For each l, i, j, the tuple

(J, τ̄l,i,j , β̄l,i,j(η), W̄l,i,j(η))

is a constraint process.

Proof. Let us first show that τ̄l,i,j is a stopping time. Let

Ea,v ⇔ (αl(η
∗), Vl(η

∗)) = (a, v).

We have

τ̄l,i,j ≤ t ⇔
∨
a,v

τl,i,j(a, v) ≤ t ∧ Ea,v. (7.18)

From (7.16) we get that τ̄l,i,j ≤ t implies σl ≤ t, therefore

τ̄l,i,j ≤ t ∧ Ea,v ⇔ τ̄l,i,j ≤ t ∧ σl ≤ t ∧ Ea,v.

By the definition of stopping times, {τl,i,j(a, v) ≤ t} ∈ At. Because (7.14) is a
constraint process for each l, we have also

{σl ≤ t ∧ Ea,v} ∈ At, (7.19)

67

hence the countable union (7.18) is also in At. Similarly, for all (b, w) ∈
T× Rectangles, the event

τ̄l,i,j ≤ t ∧ (β̄l,i,j(η), W̄l,i,j(η)) = (b, w) (7.20)

can be written as∨
a,v

(
σl ≤ t ∧ Ea,v ∧ τ̄l,i,j ≤ t ∧ (βl,i,j(a, v, η),Wl,i,j(a, v, η)) = (b, w)

)
.

We have seen (7.19), and because (7.15) is a system of constraint processes,
also

{τ̄l,i,j ≤ t ∧ (β(a, v, η),Wl,i,j(a, v, η)) = (b, w)} ∈ At,

therefore (7.20) is in At.

By (7.13) we have, with ᾱl = αl(η∗), V̄l = Vl(η
∗) and the notation in (7.17)

g∗(ᾱl, V̄l, η
∗) ≤

n∑
i=1

k∏
j=1

g(β̄l,i,j(η), η), W̄l,i,j(η), η). (7.21)

Here we did not make n dependent on ᾱl, V̄l, nor k dependent on these and
i, setting them to the maxima of all the possible values. Recall the special
types ω, δ defined in (7.6). Whenever i > n(ᾱl, V̄l), we set βl,i,j = ω, meaning
that the ith additive term is omitted. And whenever j > k(ᾱl, V̄l, i), we set
βl,i,j = δ, meaning that the jth multiplicative factor is omitted. Now∏

l

b∗(ᾱl) ≥
∏
l

∑
i

∏
j

b(β̄l,i,j(η)) =
∑
i(·)

∏
l,j

b(β̄l,i(l),j(η))

where the last sum is over all functions i(·) with i(l) ∈ [1, n]. Similarly,
by (7.21)

g∗(ᾱl, V̄l, η
∗) ≤

∑
i(·)

∏
l,j

g(β̄l,i,j(η), W̄l,i,j(η), η).

Therefore it is sufficient to show for a fixed function i(·),

E
(
h
∏
l,j

g(β̄l,i(l),j(η), W̄l,i(l),j(η), η)
)
≤ EhE

∏
l,j

b(β̄l,i(l),j(η)).

For any l, i, the rectangles W̄l,i,j(η) defined in (7.17) are all disjoint, and belong
to Vl(η

∗). Also the sets Vl(η
∗) are disjoint, therefore all rectangles W̄l,i(l),j(η)

are disjoint. The Claim has shown that the system(
J, τ̄l,i(l),j , β̄l,i(l),j(η), W̄l,i(l),j(η)

)
l∈N

68

is a system of disjoint constraint processes for M , and hence the proof is
finished by the strong trajectory property of η.

From for ease of reading, we omit the qualifier “strong”, but all trajectories
we will deal with are strong trajectories.

Here is a trivial but illustrative example.

Example 7.14 Let M1 be the ε-perturbation CAε(Tr , B1, T1) of the cellular
automaton with S1 = {0, 1} and the trivial transition function Tr(x, y, z) = 0
for all x, y, z. Then η is a trajectory if for t > 0, η(x, t) are random variables
such that for any u and any finite set S of space-time points (x, t) with t ≥ u,
the conditional probability that η(x, t) = 1 in all (x, t) ∈ S no matter how
the η(x′, t′) are fixed for all t′ < t, is bounded by ε|S|. The set of constraint
types consists of a single element, T1 = {α1} with b1(α1) = ε. For the event
function we have g1(α1, V, η) = 1 if and only if for some (x, t) of the form
(mB1, nT1) with integers m,n and n > 0, V = [x, x+B1) × (t − T1, t], and
η(x, t) = 1.

Let M2 be a medium with S2 = {0, 1}. For integers Q1, U1 > 0 let B2 =
Q1B1, T2 = U1T1. The histories will be of the form η(x, t) with x = mB2,
t = nT2 for n ≥ 0. The set of constraint types consists of a single element, T2 =
{α2} with b2(α2) = 3Q1U1ε

2. For the event function we have g2(α2, V, η) = 1
if and only if for some (x, t) of the form (nB1, nT1) with integers m,n and
n > 0, V = [x−B2, x+ 2B2)× (t− 2T2, t], and η(x, t) = 1.

Let us define the simulation φ∗ as follows. If η∗ = φ∗(η) then η∗(x, t) = 1
if and only if (x, t) has the form (mB2, nT2) with integers m,n and n > 0,
and in V = [x−B2, x+ 2B2) × (t − 2T2, t] there are at least two elements
(x1, t1) ̸= (x2, t2) with η(xi, ti) = 1. To show that this is a simulation we
define the system of local conditions(

βi,j(α2, V),Wi,j(α, V)
)

as follows. These are nonempty if and only if for some (x, t) of the form
(mB2, nT2) with integer m,n and n > 0, V = [x−B2, x+ 2B2)× (t− 2T2, t].
In this case, let P = {p1, . . . , pN} be a list of all distinct pairs {(x1, t1), (x2, t2)}
in V , where N =

(
6Q1U1

2

)
. For pi = {(xi,1, ti,1), (xi,2, ti,2)}, let βi,j(α2, V) = α1

for all i, j, and

Wi,j(α2, V) = [xi,j , xi,j +B1)× (ti,j − T1, Ti,j].

Then g2(α2, V, η
∗) is the event that η(x, t) = 1 for at least two pairs (x, t) ∈ V ,

and this is upper-bounded by∑
i

∏
j

g1(α1,Wi,j(α2, V))

69

as required. Also

b2(α2) = 3Q1U1ε
2 > Nε2 =

N∑
i=1

2∏
j=1

g1(α1,Wi,j(α2, V))

as required. ⌟

Frequency of switching times Adding certain conditions does not really
change some media.

Definition 7.15 (Injective canonical simulation) We will call a canonical
simulation injective if the mapping φ∗ is the identity, and the functions
b2(α), g2(α, ·, ·) differ from b1, g1 only in that they are defined for some ad-
ditional types α, too. ⌟

Proving a certain probability bound for the behavior of η1 within some
window does not create a canonical simulation yet: the bound must be for-
mulated in such a way that this type of probability bound can be multiplied
with itself and all the other bounds over a system of disjoint windows.

We will illustrate canonical simulations on the the following example. The
simulating medium M1 is the CCA of Example 7.7. The conditions to add
impose lower and upper bounds on the frequency of switching times of M1.
Recall the set of functions K in Definition 7.4.

Definition 7.16 (Subset-function switching times) For some function K ∈ K
let

a−1(K) =
∧
r

R(K(r), r),

a1(K) =
∨
r

R(K(r), r).

Let us call a time u of the history η a K-switching-time of a cell x if for all
t < u sufficiently close to u we have η(x, t) /∈ K(x, t, η) and η(x, u) ∈ K(x, t, η),
that is we have just jumped into the target set determined by K(·). For some
rational constant D > 0, integers k ≥ 0 and j = −1, 1 let

g
(
α(K,D, k, j), {x} × (u, u+D], η

)
(7.22)

be the event function of type α(K,D, k, j) for j = −1 [j = 1] for the event that
site x has at most [at least] k times during (u, u +D], that are K-switching
times. ⌟

70

The statement below estimates the probability of having a number of
switches significantly below the lower bound on their expected number, or
above the upper bound.

Proposition 7.17 Let us define, with aj = aj(K) and every possible h > 0:

b(α(K,D, ajD + jh
√
D, j)) = 1 ∧ aj

h2
, (7.23)

except that in case j = 1 and a1D + h
√
D = 1 we set it to a1D when the

latter is smaller. Let b(α(K,D, k, j)) = 1 for all other k. For each transition
rate matrix R and function K ∈ K, the trajectories of CCA(R, B) are also
trajectories of the medium obtained by adding all these conditions defined by
α(K,D, . . .), b(α(. . .)).

Proof. The number of K-switching times during (u, u+D] is dominated by a
Poisson random variable X1 with parameter a1D. We use approximation as
in Definition 2.17. Thus, for a sufficiently small δ > 0, let Mδ = PCA(P, B, δ)
with P(s, r) = R(s, r)δ when s ̸= r0 and 1 − δ

∑
s′ ̸=r0 R(s′, r) otherwise. If

A(D, δ) is the random variable counting the number of switches in Mδ during
(u, u+D] then it is clearly dominated by the random variable B(D, δ) that is
the number of switches when a switch takes place with probability a1δ every
time. As δ → 0 the distribution of this variable B(D, δ) converges to that
of X1, which then dominates the number of K-switching times. Similarly,
the number of K-switching times dominates a Poisson random variable X−1

with parameter a−1D. The mean and variance of X1 is a1D, hence by the
Chebyshev inequality

P{X1 ≥ a1D + h
√
D} ≤ a1D

h2D
=
a1
h2
.

Similarly, P{X−1 ≤ a−1D − h
√
D} ≤ a1

h2
. In the special case when a1D +

h
√
D = 1 we have the simpler bound P{X1 ≥ 1} = 1− e−a1D < a1D.

7.4 Primitive variable-period media

The media defined here will serve as the bottom level of our amplifier.

Definition 7.18 (Dwell period lower bound) We say that the number T• > 0
is a dwell period lower bound of a history η if no dwell period of η is shorter
than T•. ⌟

A continuous-time cellular automaton has no such lower bound. In the am-
plifier M0,M1, . . . we will construct eventually, all abstract media M1,M2, . . .

71

will have a dwell period lower bound, only the continuous-time probabilistic
cellular automaton M0 will not have one. M1 will be a so-called primitive
variable-period medium: these can be considered the continuous-time exten-
sion of the notion of an ε-perturbation of a deterministic cellular automaton
with coin-tossing. On the other hand, M2,M3, . . . will only fit into a more
general framework (non-adjacent cells).

Definition 7.19 (Primitive variable-period medium) The medium

Prim-var(Tr , B, T•, T
•, ε).

is defined as follows. The set S of states is implicit in the transition function
therefore from now on, it will be omitted. We have dwell period lower and
upper bounds T• ≤ T • and a failure probability bound ε > 0. The local state,
as in Example 2.15, is a record with two fields, Det and Rand where Rand
consists of a single bit. To simplify the upper-bounding of dwell periods, we
assume that the transition function has the property

Tr(r−1, r0, r1).Det ̸= r0.Det, (7.24)

that is the deterministic part of a cell will change at every transition. In a more
general setting later this will be called “time marking”, see Condition 10.9.
For a history η, site x let a ≥ 0 be a rational number. If a > 0 then let
σ1 = σ1(x, a, η), and σ2 be the first and second switching times t > a of η in
x. If a = 0 then let σ1 = 0 and let σ2 be the first switching time > 0. Let us
list the different types of local condition.

a) Conditions of type α(dw-p-lb) imposing T• as a dwell period lower bound.
We have b(α(dw-p-lb)) = ε, and

g
(
α(dw-p-lb), {x} × (a, a+ T •], η

)
is the event that η(x, t) has two switching times closer than T• to each
other during (a, a+ T•].

b) Conditions of type α(dw-p-ub) imposing T • as a dwell period upper
bound. We have b(α(dw-p-ub)) = ε, and

g
(
α(dw-p-ub), {x} × (a, a+ T •], η

)
is the event that η(x, t) has no switching times in (a, a+ T •].

c) Conditions of type α(comput) saying that the new value of the Det field at
a switching time obeys the transition function. We have b(α(comput)) =

72

ε, and

g
(
α(comput), {x} × (a, a+ 2T •], η

)
= {η(x, σ2).Det ̸∈ {Tr(η, x, t, B).Det : t ∈ (σ1, σ2 − T•/2]}}.

Here we used the notation (4.2).

d) Conditions of type α(coin, j) for j = 0, 1 saying that the new value of
the Rand field at a switching time is obtained nearly by a fresh coin-toss:

b(α(coin, j)) = 0.5 + ε,

g
(
α(coin, j), {x} × [a, a+ 2T •], η

)
= {η(x, σ2).Rand = j}.

When there is no σ2 then g(α(coin, j), ·, ·) = 0, so this condition has no
effect.

⌟

Condition c) says that unless an exceptional event occurred, whenever a
state transition takes place at the end of a dwell period [σ1, σ2) it occurs
according to a transition made on the basis of the states of the three neighbor
cells and the random bit at some time in the observation interval (σ1, σ2 −
T•/2]. Since the observation interval does not include the times too close to
σ2, information cannot propagate arbitrarily fast.

Example 7.20 All trajectories of the ordinary deterministic cellular auto-
maton CA(Tr , B, T) are also strong trajectories of Prim-var(Tr , B, T, T, 0).

⌟

Theorem 7.3 (Simulation by CCA) For medium

M = Prim-var(Tr , 1, T•, 1, ε)

with (7.24) and T• < 1 there is a noisy transition rate R(s, r) over some state
space S′ and a function π : S′ → S such that π(η(x, t)) is a strong trajectory
of M for each trajectory η of CCA(R, 1).

Proof. The proof for trajectories is a straightforward application of Proposi-
tion 7.17, and could be modified with some formalism to hold also for strong
trajectories. For an appropriate n to be chosen later, let S′ = S3×{0, . . . , 3n−
1}. If s′ = (s, i) where s = (s−1, s0, s1) then let π(s′) = s0. Let us define the
transition rates Rn(·, ·) with

∑
s′ Rn(s

′, r) = 3n. Let K = Kn be the set of
functions as defined in (7.10) belonging to this set of states, assuming that
all transition rates are positive. Choose the function K ∈ K as follows. For

73

r ∈ (S′)3 where r0 = (q, i), where q = (q−1, q0, q1), let K(r), be the set of those
(q̄, i + 1) for which q̄ is given as follows. If i ̸= n − 1, 3n − 1 then q̄ = q. If
i = n− 1 then q̄j = π(rj), j = −1, 0, 1. Suppose i = 3n− 1: then q̄j = qj for
j = −1, 1 and q̄0.Det = Tr(q). This completes the definition of K which is a
one-element set whenever i ̸= 3n− 1; in the latter case it is a two-element set,
with the two elements differing by the value of q̄0.Rand .

Now Rn is given as follows. Rn(s, r) = 0 for all s ̸= K(r) and R(K(r), r) =
3n. This determines Rn(s, r) for all cases when K(r) is a one-element set. If
K(r) is a two-element set then the transition rates into each of these elements
are equal. This completes the definition of Rn. Thus, in a trajectory η of Rn,
each dwell period of π(η) consists of 3n small dwell periods of η. There is a
change only in the nth and 3nth transition. In the n-th transition, cell x learns
the current represented state π(η(x+ j, t)) of its two neighbors. In the 3n-th
transition, it switches its own represented state according to the transition
probabilities corresponding to the triple of S states it currently knows about.
The actual transition rates R differ from Rn in an arbitrary way by some small
amount < ε′. Let us show that we can choose first n and then ε′ in such a
way that the process π(η) becomes a trajectory of M .

Let K0(r) = S \ (K(r) ∪ {r0}). A trajectory η of Rn, in any switching
point (x, t) makes a switch into the set K(x, t−, η). If a trajectory η of R
in a switching point (x, t) does not switch into K(x, t−, η) we will this a
faulty switch. Then it switches into K0(x, t−, η), but with a rate smaller
than ε′|S|. According to the part of Proposition 7.17 referring to bounds of
the kind (7.23), by making ε′ small enough we can always achieve that the
following condition type α(fault) can be added to the others:

b(α(fault)) = cε,

where c is any positive constant chosen in advance and

g
(
α(fault), {x} × (a, a+ 2], η

)
is the event that a faulty switch occurs in x during (a, a + 2]. Therefore
in all the local conditions for the simulated Prim-var(), when bounding the
probabilities in local conditions, we can confine ourselves to the case that no
faulty switch occurs in x during (a, a+ 2].

Consider the conditions in a). Since we can exclude faulty switches in
the time period (a, a + 1], a trajectory η(x, t) of R will be such that when
denoting η(x, t) = (r(x, t), i(x, t)), then i(x, t) increases by 1 modulo 3n in
every switch. Therefore there are exactly 3n switching times of η between any
two switching times of π(η). Let d = (1 − T•)/2. If π(η) has two switching

74

times σ1 < σ2 during (a, a + 1] that are closer then T• then either they are
in (a, a + 1 − d] or in (a + d, a + 1]. Consider the first case, the second case
is similar. Then η has at least 3n switching times during (a, a + 1 − d]. By
choosing n large enough and noting that the rate of R is (arbitrarily close
to) 3n, we can use Proposition 7.17 to bound the probability of this event
by ε/3. The probability for the other case can also bounded by ε/3 and the
probability of a faulty switch can also bounded by ε/3. We thus get the bound
ε in the conditions a) by canonical simulation. A similar reasoning handles
condition b).

Now consider condition c). Again, we can assume that no faulty switch
occurs during (a, a+2]. There are exactly 3n switching times of η between σ1
and σ2. According to the definition of Rn, the transition will occur according
to Tr , with the neighbor values that were read at the nth switching time. Now
an argument similar to the proof of a) shows that this nth switching time is
in (σ1, σ2 − T•/2].

Finally, the possibility of adding condition d) on π(η) is a straightforward
consequence of Theorem 7.1. Indeed, let K ′(r) = S\{r0} and let K ′′(r) be the
set of elements (q, 0) ∈ K ′(r). Thus, jumping into K ′′ means making a switch
in π(η). At that switch, the transition rates into the possibility q0.Rand = 1
and q0.Rand = 0 are within ε′ of 1/2. Therefore Theorem 7.1 is applicable.

Generalizing the results to continuous time The first publication show-
ing the possibility of reliable computation with a continuous-time medium (in
two dimensions) is [38]. Here, we formulate the new results for variable-period
one-dimensional information storage and computation. The following theo-
rems generalize Theorems 3.1, 3.3 and 3.4 allowing a variable-period medium
Prim-var(Tr ′, 1, T•, 1, ε) with T• = 0.5 in place of the perturbed discrete-time
automaton CAε(Tr

′). See Corollary 7.21 below for the version for interacting
particle systems.

Theorem 7.4 Theorem 3.1 also holds when we allow a perturbed primitive
variable-period medium Prim-var(Tr ′, 1, 0.5, 1, ε) with strong trajectories in-
stead of a perturbed discrete-time cellular automaton.

Theorem 7.5 Theorem 3.3 also holds (with the same encoding ψ∗) and strong
trajectories when we allow a primitive variable-period perturbation instead of
a discrete-time perturbation.

Theorem 7.6 Theorem 6.1 holds (with the same encoding ψ∗) also with
Prim-var(Tr ′, 1, 0.5, 1, ε) and strong trajectories in place of CAε(Tr

′).

Theorem 7.3 implies the following.

75

Corollary 7.21 In Theorems 7.4, 7.5, 7.6, we can replace Tr ′ with a rate
matrix R, and Prim-var(Tr ′, 1, T•, 1, ε) with a CCA with rates coming from
an arbitrary ε-perturbation of R. This proves, in particular, Theorem 3.2.

In what follows when we talk about trajectories we will always mean strong
trajectories.

8 Synchronization

The random nature of the switching times of a variable-period medium is a
tame kind of nondeterminism; any deterministic cellular automaton can be
simulated by a variable-period medium. To prove this we first introduce an
auxiliary concept.

Definition 8.1 (Totally asynchronous cellular automata) We define the to-
tally asynchronous cellular automaton

ACA(Tr) = ACA(Tr , 1, 1)

associated with transition function Tr as follows: η is a trajectory if for all
x, t we have either η(x, t+ 1) = η(x, t) or the usual

η(x, t+ 1) = Tr(η(x− 1, t), η(x, t), η(x+ 1, t)).

⌟

To analyze synchronization, some more concepts are needed.

Definition 8.2 A site x is free in a configuration ξ if Tr(ξ(x− 1), ξ(x), ξ(x+
1)) ̸= ξ(x). The set of free sites will be denoted by L(ξ). For a space con-
figuration ξ and a set E of sites, let us define the new configuration Tr(ξ, E)
by

Tr(ξ, E)(x) =

{
Tr(ξ(x− 1), ξ(x), ξ(x+ 1)) if x ∈ E
ξ(x) otherwise.

⌟

Now we can express the condition that η is a trajectory of ACA(Tr) by
saying that for every t there is a set U with

η(·, t+ 1) = Tr(η(·, t), U). (8.1)

Definition 8.3 (Update set) Let the update set

U(t, η) (8.2)

be the set of sites x with η(x, t+ 1) ̸= η(x, t). ⌟

76

The initial configuration and the update sets U(t, η) determine the trajec-
tory η.

Notation 8.4 (Indicator function) For any set A, let us use the indicator
function

χ(x,A) =

{
1 if x ∈ A,
0 otherwise.

⌟

Definition 8.5 (Effective age) For given history η, we define the function
τ(x, t) = τ(x, t, η) as follows:

τ(x, 0) = 0,

τ(x, t+ 1) = τ(x, t) + χ(x, U(t, η)).
(8.3)

We can call τ(x, t) the effective age of x in η at time t: this is the number of
effective updatings that x underwent until time t. ⌟

Definition 8.6 (Invariant histories) Given a transition function Tr and an
initial configuration ξ, we say that the function has invariant histories if
there is a function ζ(x, u) = ζ(x, u, ξ) such that for all trajectories η(x, t)
of ACA(Tr) with η(·, 0) = ξ we have

η(x, t) = ζ(x, τ(x, t, η), ξ). (8.4)

⌟

This means that after eliminating repetitions, the sequence ζ(x, 1), ζ(x, 2), . . .
of values that a site x will go through during some trajectory, does not de-
pend on the update sets, only on the initial configuration (except that the
sequence may be finite if there is only a finite number of successful updates).
The update sets influence only the delays in going through this sequence. The
following notation will be useful:

Notation 8.7 Denote

Tr(ξ, E, F) = Tr(Tr(ξ, E), F).

⌟

Definition 8.8 (Commutative transition) We call a transition function Tr
commutative if for all configurations ξ and all distinct pairs x, y ∈ L(ξ) we
have Tr(ξ, {x}, {y}) = Tr(ξ, {y}, {x}). ⌟

77

The paper [15] proves the theorem that if a transition function is com-
mutative then it has invariant histories. In Theorem 8.1 below, we will give
a simple example of a universal commutative transition function. For that
example, the theorem can be proved much easier.

Notation 8.9 We will denote the smallest absolute-value remainders

b amod m (8.5)

with respect to a positive integer m > 2, defined by the requirement −m/2 <
b amod m ≤ m/2. ⌟

Theorem 8.1 (Commutative Simulation) Let Tr2 be an arbitrary transition
function with state space S2. Then there is a commutative transition function
Tr1 with state space S1 = S2 × R (for an appropriate finite set R) with the
following property. Each state s ∈ S1 can be represented as (s.F , s.G) where
s.F ∈ S2, s.G ∈ R. Let ξ2 be an arbitrary configuration of S2 and let ξ1 be
a configuration of S1 such that for all x we have ξ1(x).F = ξ2(x), ξ1(x).G =
0 · · · 0 ∈ R. Then for the trajectory η1 of CA(Tr1), with initial configuration
ξ1, the function η1(x, t).F is a trajectory of CA(Tr2). Moreover, in η1, the
state of each cell changes in each step.

In other words, the function Tr1 behaves in its field F just like the arbitrary
transition function Tr2, but it also supports asynchronous updating.

Proof. Let U > 2 be a positive integer and

Cur ,Prev ,Age

be three fields of the states of S1, where F = Cur , G = (Prev ,Age). The field
Age represents numbers mod U . It will be used to keep track of the time of
the simulated cells mod U , while Prev holds the value of Cur for the previous
value of Age.

Define s′ = Tr1(s−1, s0, s1). If there is a j ∈ {−1, 1} with (sj .Age −
s0.Age) amod U < 0 (that is some neighbor lags behind) then s′ = s0 that
is there is no effect. Otherwise, let r0 = s0.Cur , and for j = −1, 1, let rj be
equal to sj .Cur if sj .Age = s0.Age, and sj .Prev otherwise.

s′.Cur = Tr2(r−1, r0, r1),

s′.Prev = s0.Cur ,

s′.Age = s0.Age + 1 mod U.

Thus, we use the Cur and Prev fields of the neighbors according to their
meaning and update the three fields according to their meaning. It is easy to

78

r��r��r��r��r
@@r

@@r r r��r r
@@r

@@r��r
@@r��r r r��r��r 6

effective age

Figure 6: The Marching Soldiers scheme. The effective age of neighbor sites
differs by at most 1.

check that this transition function simulates Tr2 in the Cur field if we start it
by putting 0 into all other fields.

Let us check that Tr1 is commutative. If two neighbors x, x+ 1 are both
allowed to update then neither of them is behind the other modulo U , hence
they both have the same Age field. Suppose that x updates before x + 1.
In this case, x will use the Cur field of x + 1 for updating and put its own
Cur field into Prev . Next, since now x is “ahead” according to Age, cell
x + 1 will use the Prev field of x for updating: this was the Cur field of x
before. Therefore the effect of consecutive updating is the same as that of
simultaneous updating.

Definition 8.10 (Marching soldiers) The commutative medium of the above
proof will be called the marching soldiers scheme. ⌟

The name comes from the similarity of its handling of the Age field to a
chain of soldiers marching ahead in which two neighbors do not want to be
separated by more than one step.

In typical cases of asynchronous computation, there are more efficient ways
to build a commutative transition function than to store the whole previous
state in the Prev field. Indeed, the transition function typically has a band-
width (amount of communication with a neighbor in one step) smaller than
∥S∥.
Corollary 8.11 (Variable-period simulation) For every deterministic tran-
sition function Tr2 over some state-space S2, there is a set of states S1, a
transition function Tr1 over S1, and a code that for any values T•1 ≤ T •

1 , is
a simulation of CA(Tr2) by Prim-var(Tr1, 1, T•1, T

•
1 , 0).

79

Proof. Let Tr1 be the commutative transition function given by Theorem 8.1,
with the fields F ,G . Let ξ2 be an arbitrary configuration of S2 and let ξ1 be a
configuration of S1 defined in the statement of the same theorem. Let η1 be a
trajectory of Prim-var(Tr1, 1, T•1, T

•
1 , 0), with the starting configuration ξ1.

An update set U(t, η1) similar to (8.2) can be defined now for the trajectory
η1 as follows: x is in U(t, η1) iff t is a switching time of η1. Similarly, τ(x, t, η1)
can be defined as in (8.3):

τ(x, 0) = 0,

τ(x, t) = τ(x, t−) + χ(x, U(t, η1)).

With these, let us define

σ(x, s, ξ) =
∧
{t : τ(x, t, η′) = s},

η2(x, s, ξ) = η1(x, σ(x, s)).F

By the cited theorem, η2 is a trajectory of CA(Tr2).

The simulation in this theorem is not a local one in the sense defined in
Section 4.6 since it changes the time scale. For an analysis of such simulations,
see [5].

9 Some simulations

In section, we build up the technique we will use in defining cellular automata
and simulations.

9.1 Functions defined by programs

Recall the definition of a standard computing transition function and medium
as introduced in Section 6.2.

Definition 9.1 (Computation result) For a standard computing medium with
transition function Tr , integers s and t and string X consider a trajectory η of
CA(Tr) over the rectangle [0, s]× [0, t] with an initial configuration in which
η(0, 0) = η(s, 0) = # · · ·#, further X is on the input track on the interval
[1, s − 1] (padded with ∗’s to fill up [1, s − 1]), ∗’s on the output track and
0’s on the other tracks. This defines a trajectory η since the #’s on the input
field in cells 0 and s imply that the cells outside the interval [0, s] will have
no effect. Assume that, at time t, the Output track has no ∗ on the interval

80

↗↑↖ Tr

X on Input

Tr(X; s, t) on Output

#

#

#

#

#

#

#

#

#

#

#

#

...
...

0 s

0

t

6

time

Figure 7: Definition of trans(X; s, t)

[1, s − 1]. The string w on the Output track on [1, s − 1] will be called the
result of the computation, denoted by

w = Tr(X; s, t).

⌟

Since the output is monotonic in standard computing media, the result
will not change at later times.

Universal cellular automata were introduced in Definition 4.22. We will
need, however, also some bounds on the time and space used by the universal
simulation.

Definition 9.2 (Efficient universality) The standard computing transition
function Tr0 is efficiently universal if for every standard computing transition

81

function Tr , there is a string prog and constants c, d such that for all strings
X and positive integers s, t we have

Tr(X; s, t) = Tr0(prog ⊔X; c · s, d · t)

whenever the left-hand side is defined. ⌟

In other words, Tr0 can simulate the computation of any other standard
computing transition Tr if we prepend a “program of Tr”. The space and
time needed for this simulation can only be a constant factor greater than
those of the simulated computation.

Theorem 9.1 There are efficiently universal standard computing transition
functions.

Sketch of the proof. This theorem can be proven similarly to Theorem 4.1.
The main addition to the construction is that before Tr0 starts a block simu-
lation of Tr the input will be distributed bit-by-bit to the colonies simulating
the cells of Tr . At the end, the output will be collected from these colonies.

This theorem allows some standardization.

Definition 9.3 We fix an efficiently universal standard computing transition
function

Univ (9.1)

for the definition of various string functions. In view of Theorem 8.1, we can
(and will) also assume that Univ is commutative as in Definition 8.8. For a
string function f(X) defined over some domain E we will say that prog is
a program for f with time complexity bound t and space complexity bound s
over E if the relation

Univ(prog ⊔X; s, t) = f(X)

holds. ⌟

9.2 The rule language

It is often convenient to define a finite function (like a transition function of
some medium, or a code) by its program (for Univ) rather than its transition
table, since for many interesting functions, the program can be given in a more
concise form. This subsection defines a language for describing a transition
function. Our purpose is twofold.

Convenience We want a method that is more convenient than giving a com-
plete transition table.

82

Self-simulation Our self-correcting cellular automaton will simulate another
self-correcting cellular automaton, identical to itself, or just similar to it:
for simplicity, we refer to this now as “self-simulation”. Self-simulation in
our case has some peculiar requirements.

Let us note that self-simulation by itself is not mysterious. A universal cel-
lular automaton U would use the program p of any cellular automaton with
transition function Trp to simulate it. Of course, U itself has a program, q,
so it could simulate itself as well, if we give it the program q. But it seems
redundant to give U its own program, and actually it is better not to, since
the written program is exposed to errors. How to define conveniently a
machine that simulates (a modified version of) itself without needing any
program? There are various ways of doing it, but each involves a notion of
a program that is not a simple transition table, but rather has some ability
to refer to itself: see the remark 9.4 below.

Remark 9.4 (Self-simulation) Let us denote the output of a universal ma-
chine (it does not matter, whether it is a Turing machine or cellular auto-
maton) computing the universal partial recursive function u(p, x), where p is
the program, and x is the input. Let τ be an arbitrary computable transfor-
mation of strings into strings. Kleene’s Fixpoint Theorem (Recursion Theo-
rem) says that there is a program q with the property that for all x we have
u(q, x) = u(τ(p), x). What does this theorem have to do with our problem of
self-simulation? Suppose that we have some program p, and a transformation
τ(p) of p that carries out a simulation of the action of p, with possibly some
modifications and extra properties (say, error-corrections, and the change of
some parameters). The theorem says that there is a program q which already
acts as τ(q).

One intuitive proof of the fixpoint theorem goes as follows. Assume that
we have a programming language that has at least the following ingredients: 1)
We can define functions (procedures) in it. 2) It contains a function U(p, x)
that computes u(p, x), that is it interprets the string p as a program on input
x. 3) It contains a function MyText(),4 which returns the string that is the
text of the program. One implementation of such a function in a modern
computer uses the fact that the program is stored at some standard place in
memory: it is enough to go there and read it out. Let T(p) be the expression
of the transformation τ(p) in our programming language: then the fixedpoint

4The parentheses (), used for example in the programming language C, are a useful
reminder that even when it has no explicit arguments, the function depends on the internal
state of the machine at the time of execution.

83

program is

q = U(T(MyText()), x)

(the x in the program is just a symbol in the program, not something the
program q depends on). ⌟

A transition table can be seen as a sequence of rules: each rule could have
the following form, for all possible triples (a, b, c) ∈ S3:

if r−1 = a and r0 = b and r1 = c then
s← d

where d = Tr(a, b, c). The most important generalization of this sort of
rule involves fields. All the fields of our state will be defined in advance—
as subintervals of the interval [0, ∥S∥). Also, in our rule description, it is
convenient to refer to the current cell and its neighor in a standardized way.
Our rules, being just a description of the transition function, will always apply
to a particular cell.

Notation 9.5 For a field F , if η is the current configuration and x is a site
then we will sometimes write

F (x) for η.F (x).

We will write
ϑj(x) = x+ jB

for the site j steps from site x. In a semi-formal description of a rule, x refers
to the cell to which it is applied (the “current” cell). In the condition as well
as the action of the rule, a field F (x) = η.F (x) will simply be written as F .
Denote

F j = η.F (ϑj(x)).

⌟

The notation x can always be replaced with references to fields of the
current cell and its neighbors. For example, for field Addr , instead of writing
“if η.Addr(x) = 0 and η.Addr(ϑj(x)) = 1” we will write “if Addr = 0 and
Addr j = 1”. Here is an example rule of this simplest form:

if Age > 0 and Addr < 100 then
Mail ← Mail−1

This means that if (at the site x under consideration) the Age field’s value
is 0 and the Addr field’s value is less than 100 then the Mail field of the left

84

neighbor x − B should be copied into the Mail field of cell x. We allowed
in (2.7) the possibility of referring to a field by simply a pair of numbers i, j.
In the rule language, i, j could themselves be specified by some (fixed) fields.
Here is a more general definition of rules:

Definition 9.6 (Rules) An elementary rule has the following form:

if C1 and · · · and Ck then

F ← f(F j11 , . . . ,F
jn
n)

Here F ,F i are fields (possibly specified as bit segments like in (2.7)), ji ∈
{−1, 0, 1}. Each of the conditions Ci has the form a1F

j1
1 + · · · + anF

jn
n ≤ b

with integer constants ai, b. (When the condition is not applicable, the rule
does not change the state.) The function f(x1, . . . , xn) must be computable
on Univ in linear time. This allows for many functions: for example, if x, y
are integers in binary notation then x · y, ⌊x/y⌋, x mod y are all computable
in linear time by known cellular automata algorithms, see for example [25].

A rule is a sequence of elementary rules. The transition function will be
defined by a set of rules. In case some rules contradict each other, they will be
ordered by explicit priority. Rules will sometimes be associated with certain
fields. The lowest-priority rule referring to a field is called the default . ⌟

We will introduce several shorthand notations for expressing rules: these
can always be translated into a rule according to Definition 9.6.

The most important shorthand is a branching conditional:

if C1 then
A1

else if C2 then
A2

else if C3 then
A3

else
A4

We can combine several rules.

Definition 9.7 (Combination of rules) When a sequence of rules is combined,
this is a parallel combination: all the rules apply to the same transition, and
do not refer to consecutive times. Sometimes we may use the notation

R1 ∥ R2 ∥ . . . ∥ Rn

85

for a combination of n rules. As a shorthand, we may also combine rules in
series: the rule

R1; R2

asks for carrying out the rules R1 and R2 consecutively. This can be understood
in terms of a field Age which we are always going to have and can be replaced
with a conditional.

In both parallel and serial combination, we will refer to the rules R i as sub-
rules, when they will always be invoked (“called”) by other rules. Still, for a
better flow of discussion we will frequently refer to sub-rules as just “rules”.
Sub-rules may have parameters that are specified at the time of the call. Rule
P (i) with parameter i can be viewed as a different rule for each possible value
of i. ⌟

For example, whenever we write

Retrieve ;
Eval

then this can be translated, using appropriate constants ti, into the fol-
lowing, where Retrieve and Eval are sub-rules:

if t1 ≤ Age < t2 then
Retrieve

else if t2 ≤ Age < t3 then
Eval // where Eval was defined in (6)

This example also shows a formal way to add comments to a rule definition,
on any line after a #. An example for a simple parameterized sub-rule would
be Read-Mail(j) for j ∈ {−1, 1}:

Mail ← Mail j

for the field Mail .

Definition 9.8 (Conditionals and various kinds of “for”) Sometimes the con-
ditions of a conditional statement are indexed in a regular way, then we may
use the shorthand cfor as below:

cfor j ∈ {−1, 1} do
if Agej = 0 then

Age ← 0

86

So this rule tests the conditions in order, carries out the command of the
first satisfied condition and skips the rest. Several conditions that are to be
tested one after the other will be combined using the construct cond. This
can be seen as an alternative to the “if . . .then. . .elsif . . .” construct.

cond
cfor j ∈ {−1, 1} do

if Agej = 0 then
Age ← 0

cfor j ∈ {−1, 1} do
if Addr j ̸≡ Addr + j (mod U) then

Kind ← Latent

Both the parallel and the consecutive combination of rules can be over an
indexed set, and then we get the constructs pfor and for:

pfor (k, d) ∈ Mail-ind do
Mailk,d ← Mail-to-receive(k, d)

Here, the rule is carried out simultaneously for all fields indexed by the
indicated values k. On the other hand in the for example the application is
consecutive:

for i = a to b do
⟨some rule referring to i⟩

Another use of for can be this:

for n steps of Age do
⟨· · ·⟩

which, started at some Age = t will mean that the commands ⟨· · ·⟩ will
run under the condition t1 ≤ Age < t + n. The repeat construct could be
translated into a for:

repeat k times
⟨· · ·⟩

⌟

We will also have functions: these are defined by the information available
in the arguments of the transition function, and can always be considered a
shorthand notation.

87

Definition 9.9 (The “let” construct) We may use temporary constants or
functions in the course of defining a rule, as in this example:

let f(i)← Addr + Agei

⌟

Example 9.10 Here is a description of the transition function given in the
proof of Theorem 8.1 (Asynchronous Simulation).

Algorithm 9.1: rule March0

pfor j ∈ {−1, 0, 1} do
let r(j)← Cur j if Agej = Age, and Prev j otherwise

if ∀ j ∈ {−1, 1} (Agej − Age) amod U ≥ 0 then
Prev ← Cur
Cur ← Tr2(r(−1), r(0), r(1))
Age ← Age + 1 mod U

⌟

Some primitives will always be available in the rule language. For example,
for a field F , its width |F | can be used. Moreover, a slice of the field as a string
of bits F = (f0, . . . , fn−1) is available as well as F [i:j] as indicated in (2.7).
We will always have a field Addr . As before, a colony is a segment of cells
with addresses growing from 0 to Q− 1 modulo some constant Q. Continuing
to develop shorthands, it is useful to have notation for talking about parts of
a colony:

Definition 9.11 (Location) A location is defined by a pair (F , I) where F is
a field, and I is an interval of addresses in the colony, or by a constant-size
union of such pairs (F j , Ij). We will denote the track F over interval I as

F (I).

The name of a location will generally begin with an underscore, like

Info.

The set of addresses (typically an interval) of a location L will be denoted by
space(L). ⌟

88

The example in the above definition is important enough to be fixed:

Definition 9.12 (Info location) The location on the Info track containing the
represented string is denoted by Info. ⌟

As an element of the language, of course, a location is simply a triple
consisting of the field, and the numbers determining the endpoints of the
interval. A location is meant to specify a sequence of symbols on track F .

Remark 9.13 Occasionally, we may treat the union of two or three locations
as one. It is easy to generalize the rules dealing with locations to this case. ⌟

Let us be given a string S consisting of a constant number of runs of the
same symbol. For example, 0m1n has one run of 0’s and a run of 1’s. Let us
also be given a location loc. Then Write(S, loc), writing the string S to the
location loc, can be written as a conditional sub-rule:

Algorithm 9.2: sub-rule Write(0m1n,F ([a, a+m+ n)))

if a ≤ Addr < Q ∧ (a+m) then
F ← 0

else if a+m ≤ Addr < Q ∧ (a+m+ n) then
F ← 1

Definition 9.14 (Name definitions) The rule language can contain some def-
initions of names for constant strings of symbols, of the form

Param1 = s1, Param2 = s2, . . . (9.2)

where si are some strings. The names Parami are allowed to be used in the
rules. This has the advantage that even if we use, say, Param1 twice in a rule,
this does not make the rule much longer, even if the value of the parameter is
a long string.

Parameters will have descriptive names: say, we might write Height for
Param1, when Param1 indicates the level in a hierarchy of simulations. Pa-
rameters will always be used via the function

Write-param(Param, loc),

which writes the string value of parameter Param to location loc. This can
be implemented as a subrule, via the primitive access function

Parami(j),

89

referring to the jth symbol of parameter i. There will also be a special pa-
rameter:

My-rules,

whose value is the string that is the sequence of all the rules. This will imple-
ment self-reference in the style of Remark 9.4. ⌟

Theorem 9.2 (Rule Language) There is a string Interpr and an integer
interpr-coe such that the following holds. If string P is a description of a tran-
sition rule Tr over state set S in the above language (along with the necessary
parameters), then the machine Univ defined in (9.1) computes Tr(r−1, r0, r1)
(possibly padded with ∗’s) from

Interpr ⊔ P ⊔ r−1 ⊔ r0 ⊔ r1

within computation time interpr-coe (|P |+1)2∥S∥ and space interpr-coe (|P |+
∥S∥+ 1).

A detailed proof would be tedious, but routine. Essentially, each line of
a rule program is interpreted in linear time on inputs that are some fields:
substrings of a state argument ri. We have (|P | + 1) squared in the time
upper bound since we may have to look up some parameter repeatedly. From
now on, by a rule program Trans-prog of the transition function Tr , we will
understand some string to be interpreted by Interpr .

Later, in Section 19.3, we will add some other, simple features to the
Interpr string: interpreting certain special commands.

9.3 A basic block simulation

The simulation described just demonstrates the use of the notation and in-
troduces some elements of the later construction in a simple setting. Let a
transition function Tr2 be given. We want to define a cellular automatonM1 =
CA(Tr1), whose trajectories simulate the trajectories ofM2 = CA(Tr2, Q, U),
with appropriateQ,U . Of course, there is a trivial simulation, whenM1 =M2,
but a more general scheme will be set up here. This simulation is not one of
the typical simulations by a universal medium: the cell-size of M1 depends on
M2 as in Example 4.7. The construction will be summarized in Theorem 9.3
below.

Along the way, we introduce some more shorthand notation in writing the
rules that can also be incorporated into the rule language—without invalidat-
ing Theorem 9.2 (Rule Language).

90

Overall structure The transition function Tr2 : S32 → S2 to be simulated is
given by a rule program Trans-prog2. To perform a simulated state transition
of M2, a colony of M1 must do the following:

Retrieve Retrieve the states of the represented neighbor cells from the neigh-
bor colonies;

Evaluate Compute the new state using Tr2;

Update Replace the old represented state with the new one.

The field Addr holds a number between 0 and Q − 1, as discussed in
Section 4.1. The default operation is to keep this field unchanged. The time
steps within a work period of a colony are numbered consecutively from 0 to
U − 1. The field Age holds a number between 0 and U − 1 intended to be
equal to this number. The default operation is to increase this by 1 modulo
U . These default operations will not be overridden in the simple, fault-free
simulations. Using these fields, each cell knows its role at the current stage of
computation.

On the track Info, each colony holds a binary string of length ∥S2∥. For
a string S ∈ SQ1 , the decoded value φ∗(S) is obtained by taking this binary
string. The encoding will be defined later. The default operation on the in-
formation field is to leave it unchanged. It will be overridden only in the last,
updating step. For simplicity, let us take |Info| = 2, that is the Info track con-
tains only symbols from the standard alphabet, introduced in Definition 3.3.
The field Cpt will be used much of the time like the cells of a standard com-
puting medium, so its size is the capacity ∥SUniv∥ of the fixed efficiently uni-
versal standard computing medium. It has subfields Input, Output. The field
Cpt.Input is under the control of the rule Retrieve , while the rest of Cpt is
under the control of the rule Eval . The whole program can be summarized
as follows:

Algorithm 9.3: Basic simulation program

Retrieve ;
Eval ;
Update

Mail movement Let x be the base of the current colony under considera-
tion. For m = −1, 0, 1, we will indicate how to write a rule

Copy(m, loc1, loc2)

91

that copies, from the colony with base x −mQ, the location loc1 to location
loc2 of the current colony. To describe the rule Copy we use a framework
a little more general than what would be needed here, with a variable-time
version in mind.

Definition 9.15 (Locations for the retrieval rule) The rule Retrieve uses
the locations Retrievedm to deposit the string it retrieves from the neighbor
colony number m ∈ {−1, 0, 1}. ⌟

With the help of the copy rule, we can formulate retrieval now as follows:

Algorithm 9.4: rule Retrieve

for m ∈ {−1, 0, 1} do
Copy(m, Info, Retrievedm)

There will be several mail tracks, indexed by the following values:

Mail-ind = {(k, d) : k ∈ {−1, 0, 1}, d ∈ {−1, 1}}. (9.3)

The meaning of the two values −1, 1 of d is different for k ∈ {−1, 1} and k = 0.
If k ∈ {−1, 1} then d = 1 is for a track to send to the destination colony in
direction k, and d = −1 is for a track to receive from that colony. If k = 0
then the track with d ∈ {−1, 1} is for sending left or right within the present
colony.

In an ordinary cellular automaton, we could move a string on the mail
track for a certain number of steps and then copy it to another track in a
single step. But in a variable-time medium, we cannot rely on such timing.
Therefore with each piece of information, the mail track will also carry the
address of the place it is coming from, and this will allow to know when and
where to deposit it without relying on timing. Field Mailk,d has subfields

Toaddr , Info.

For simplicity, let |Mailk,d.Info| = |Info|. For adjacent cells x, y with j = y−x,
and their colonies x∗ and y∗ (defined from their Addr field) we define the
predicate

Edgej(x) =


0 if x∗ = y∗,

1 if x and y are endcells of two adjacent colonies,

∞ otherwise.

Thus, the function Edge−1(x) depends implicitly on the current values of the
address fields in the configuration η. We have, Edge−1(x) = 0 if x − 1 is in

92

the same colony as x, it is 1 if x− 1 and x are right and left endcells of their
respective colonies, and it is∞ otherwise (abnormal case, with “inconsistent”
address field values). The mail track Mailk,d of cell x will read, from the
neighbor in direction j = j(k, d), from mail track

peer(k, d) = (k, d′) (9.4)

defined as follows.

• If |k| = 0, Edge−d(x) = 0 then j = −d, d′ = d.

• If |k| = 1, Edge−kd = 0 then j = −kd, d′ = d.

• If |k| = 1, Edgekd > 0 then j = kd, d′ = −d.
In all other cases, the values j(k, d), peer(k, d) are not defined. In words:

the mail is passed along the same mail track except that when it crosses an
edge then it goes from the sending track of the sending colony to the receiving
track of the receiving colony. Formally we define

Mail-to-receive(k, d) = Mail
j(k,d)
peer(k,d). (9.5)

as the mail to be received intoMailk,d provided peer(k, d) is defined, and Undef
otherwise. The one-step sub-rule Move-mail gets mail from the neighbor cell:

Algorithm 9.5: sub-rule Move-mail(k, d)

Mailk,d ← Mail-to-receive(k, d) if the latter is defined.

A cell will typically copy the information to be sent into the subfield
Mailk,d.Info and at the same time, the receiver cell’s address intoMailk,d.Toaddr .
In the copy rule here, j refers to the direction of the sending colony as seen
from the receiving colony. The next argument is the location of origin in the
sending colony, the one following is the location to receive the information in
the receiving colony.

Algorithm 9.6: sub-rule Copy(m,F ([a, a+ n)),G ([b, b+ n)))

let d← 1, d′ ← −1 if m ̸= 0 and d′ = d← sign(b− a) otherwise
(1) if Addr ∈ [a, a+ n) then Mailm,d.(Toaddr , Info)← (Addr + b− a,F)

repeat 2Q times
Move-mail(m, d)
if Addr ∈ [b, b+ n) and Addr = Mailm,d′ .Toaddr then

G ← Mailm,d′ .Info

Remark 9.16 Here we assumed that the source and destination locations are
on tracks of the same width, and have the same lengths. We can write a

93

Mail

F
G

a a+ n b b+ n

→ → → → → → → → → →

Figure 8: Copy(−1,F ([a, a+ n)),G ([b, b+ n)))

more general version of Copy using a loop. For example assume that the
source location, of length n, is on a track F that is 5 times wider than its
destination location G of length 5n. Then we can split the field F into 5 sub-
fields F 1, . . . ,F 5. More generally, a track that has m times the width can be
treated as into m tracks of the same width. Here m can even be a variable
computed from the widths of the fields in question, using the primitive F [i:j]
as defined in (2.7). We can do the copying in 5 iterations, copying each sub-
track separately, or (this will be our actual choice later) we can post each cell
onto the mail track in 5 steps. The rule Move-mail can proceed in parallel
with all these iterations.

Similarly, one can write a program for copying a longer and narrower
location into a shorter and wider one. Also, instead of giving the locations as
arguments, we may just give the name of a field where they are described. In
applications we will assume this more general implementation. ⌟

Definition 9.17 (Indirectly given locations) The description F 1([a1, a2)) of
a location can fit into a single field G 1 of some cell. If for example argument
loc1 of the rule Copy(m, loc1, loc2) is given by a field G 1 this way, then we
write Copy(m,G 1∗, loc2). This will only happen if m = 0, that is the copying
proceeds within one colony. It will be assumed that field G 1 of each cell of the
colony contains the same information loc1. Therefore the rule can be written
just as above, except that some of its parameters are read now from the field
G 1. ⌟

The evaluation rule The rule Eval controls the track Cpt. Before describ-
ing it we need to define some locations.

Definition 9.18 (Locations for evaluation) Here are a few locations used in
the rule Eval :

94

• Track Cpt is used for universal computation, with sub-tracks Cpt.Input
and Cpt.Output.

• The location for the interpreter on the Cpt.Input track is denoted by
Interpr .

• The location for the program to be executed by the universal medium Univ
is denoted by Prog .

• The locations for the parameters of the program are denoted by Parami,
i = 1, 2, . . ., as needed,

• The location of the arguments of the function to be executed on the Cpt
track are Argm for m ∈ {−1, 0, 1}.

• The location of the output of the computation on the Cpt.Output track
is Sim-output. We assume it to be the same interval as that of location
Info.

⌟

We will assume that the program to be simulated is written as a string
value of parameter Trans-prog2 of our program. The first steps of Eval get
the arguments, then write the interpreter (a constant string), followed by
writing the program Trans-prog2 of the transition function to be simulated:

Write(Interpr , Interpr);
Write-param(Trans-prog2, Prog);

But if Tr1 = Tr2 (self-simulation) is desired, then write My-rules in place
of Trans-prog2 above. In both cases, follow with Write-param(Parami, Parami)
and copying Retrievedm to Argm for each m. Then the rule

Initialize (9.6)

writes ∗ · · · ∗ to the Output track and the rest of the cells (including the end-
cells) of the Cpt.Input track, and 0’s to the track Cpt\(Cpt.Input∪Cpt.Output).
Then the rule

Interpret

applies, for a sufficient number of steps, the transition function Univ to the Cpt
track. According to Theorem 9.2 (Rule Language), the computation finishes
in

interpr-coe (|Trans-prog2|+ 1)2∥S2∥

95

Algorithm 9.7: sub-rule Eval

Write(Interpr , Interpr);
Write-param(My-rules, Prog);
for i = 1 to N do

Write-param(Parami, Parami)
for m = −1, 0, 1 do Copy(0, Retrievedm, Argm)
Initialize ;
Interpret

steps, so this number of iterations is sufficient. So the whole rule Eval is (for
the case of self-simulation) in Algorithm 9.7, for N parameters:

The subrule
Update

in Algorithm 9.3 copies the track Cpt.Output into track Info for all addresses
in space(Info).

Summary in a theorem Before formulating what will be accomplished by
the above program, let us define some encodings.

Definition 9.19 The encoding φ∗ of a cell state v of M2 into a colony of M1

is defined as follows. The string v is written into Info. The Cpt track and the
mail tracks are set to all 1’s. Each Age field is set to 0. For all i, the Addr
field of cell i of the colony is set to i. ⌟

The theorem below states the existence of the above simulation. As a
condition of this theorem, the parameters

Trans-prog2, ∥S1∥, ∥S2∥, Q, U (9.7)

will be restricted as follows.

Condition 9.20 The following inequalities must be obeyed.

Cell Capacity Lower Bound

∥S1∥ ≥ c1⌈logU⌉+ ∥SUniv∥+ c2

where c1, c2 can be easily computed from the following consideration. What
we really need is ∥S1∥ ≥ |Addr | + |Age| + |Info| + |Mail | + |Cpt| where the

96

following choices can be made:

|Info| = 2,

|Mail i| = |Mail i.Toaddr |+ |Mail i.Info| = ⌈logQ⌉+ 3,

|Cpt| = ∥SUniv∥,
|Addr | = |Age| = ⌈logU⌉.

Colony Size Lower Bound

Q ≥ interpr-coe (∥S2∥+ |Trans-prog2|+ logU + 1).

With the field sizes as agreed above, this provides sufficient space in the
colony for information storage and computation.

Work Period Lower Bound

U ≥ 3Q+ interpr-coe (|Trans-prog2|+ 1)2∥S2∥.

With the field sizes above, this allows sufficient time for the above program
to be carried out.

⌟

It is not difficult to find parameters satisfying the above inequalities since
logQ≪ Q.

Theorem 9.3 (Basic Block Simulation) There are strings Sim-prog1,
Sim-prog0 such that the following holds. If Trans-prog2 with parameters
∥S1∥, ∥S2∥, Q, U satisfies the above inequalities, and Trans-prog2 defines a
transition function Tr2, then Sim-prog1 is a rule program with parameters

Trans-prog2, ∥S1∥, ∥S2∥, Q, U,

defining a transition function Tr1 such that CA(Tr1) has a block simulation
of CA(Tr2, Q, U).

If ∥S1∥, ∥S2∥, Q, U satisfy the above inequalities, then Sim-prog0 is a rule
program with parameters ∥S1∥, Q, U , defining a transition function Tr1 such
that CA(Tr1) has a block simulation of CA(Tr1, Q, U).

The given construction is essentially the proof. Its complete formalization
would yield Sim-prog1 and Sim-prog0 explicitly.

97

10 Robust media

This section defines a special type of one-dimensional medium called robust.
From now on, when we talk about a medium with no qualification we will al-
ways mean a robust medium. The definition can be compared to the primitive
variable-period media in Section 7.4. The main distinguishing feature is the
notion of damage.

Remark 10.1 The paper [13] used communication only between adjacent
neighbors. It used a special mechanism for preventing accidental intrusions
into an intact colony: growth in a zigzag pattern. Here this is achieved by com-
munication between non-adjacent neighbors, enabling a colony of “stronger”
cells to defend itself from the accidental intrusion by “weaker” cells. How-
ever, to simulate such a property on higher levels, it will also be used to pass
information other than strength to non-adjacent neighbors. ⌟

10.1 Damage

In a robust medium, being in the space-time set Damage defined below excuses
the site for “not following the rules”.

Definition 10.2 (Damage) For the media to be defined, robust media, we
introduce a special set of states Bad ⊆ Vacant . For a history η we define the
damage set

Damage(η) = {(x, t) : η(x, t) ∈ Bad }.

For a space configuration, the damage is defined similarly. For a site x a time
interval I is damage-free if η(x, ·) is not in Bad during I. ⌟

Damage points can be viewed as holes in the fabric of the lawful parts of
a trajectory. When (x, t) ∈ Damage(η) then in the neighborhood of (x, t), we
will not be able to make any predictions of η, that is in some sense, η behaves
completely “lawlessly” there. In all cellular media concerned with our results
we could require Damage(η) = ∅. The damage concept is necessary only in a
trajectory η2 of a medium M2 obtained by simulation from a trajectory η1 of
some medium M1. Such a simulation typically requires some structure in η1.
When noise breaks down this structure the predictability of η2 suffers and this
will be signalled by the occurrence of damage in η2. However, for convenience,
we will define damage even in the media used on the lowest level, as a violation
of a certain transition rule.

Definition 10.3 (Damage map) We will use the following constants:

γ = 5, β = 2γ + 5. (10.1)

98

Let us define the rectangle

V = [−B/2, B/2)× (−T •/2, T •/2], (10.2)

then the corresponding rectangle V ∗ is defined using B∗, T •∗. Two space-
time points are said to be too close if they are contained in a single copy
(space-time translation) of βV . Two sets A1, A2 are too far if no copy of γV ∗

intersects both. A subset A of the damage is called an island if it is covered
by a translation of βV and is too far from the rest of damage. In a simulation
η∗ = Φ∗(η) between two robust media, the set Damage(η∗) is obtained after
we remove all islands of Damage(η). We call this definition of Damage(η∗)
the damage map of simulation Φ∗. ⌟

According to the general definition of a medium, the set of trajectories
will be defined by a pair b(·), g(·, ·, ·) where b(α) give the probability bound
belonging to type α and g(α,W, η) is the event whose probability is bounded.
We formulate these in terms of properties. The Computation Property con-
strains the kinds of events that can occur under the condition that the damage
does not intersect a certain rectangle. The Restoration Property bounds the
probability of occurrence of damage in the middle of some window. It depends
on a parameter ε, and says that the probability of the damage is small: even
if other damage occurs at the beginning of a window it will be eliminated with
high probability.

Condition 10.4 (Restoration Property) Let b(α(restor)) = ε. Further, for
any pair (x, t) let

g
(
α(restor), (x, t) + (γ + 2)V, η

)
be the event function for the event that there is damage in η((x, t) + V). ⌟

The Restoration Property says that damage, that is the occasional obstacle
to applying the Computation Property, has small conditional probability of
occurrence in the middle part (x, t)+V of any rectangle of the form (x, t)+γV .
The property will hold automatically on the lowest level by the property of
the medium that the transition rule is only violated with small probability.5

Damage helps us present a hierarchical construction as a sequence of sim-
ulations. When a large burst of faults destroys the fabric of these nested
simulations, then ηk+1 cannot be explained just in terms of the ηk from which

5In the model of [14], the restoration property is weaker. There, damage does not
necessarily disappear in a short time but if it is contained in a certain kind of triangle at the
beginning of the window then, with high probability, it is contained in a smaller triangle of
the same kind later in the window.

99

it is decoded. The damage set will cover those lower-level details of the mess
that we are not supposed to see as well as the mechanism of its removal.

Provided Damage(η∗) is not nearby, η∗(x, t), will be essentially defined by
a block code φ as

φ∗(η(x+ [0, QB − 1], t)).

However, in the interest of stabilization there will be some look-back in time:
the simulation will not be memoryless.

Lemma 10.5 (Simulation Damage Probability Bound) Let M , M∗ be media
with parameters ε, ε∗, with B∗ ≥ B, T •∗ ≥ T •, whose local condition system
includes the Restoration Property. Let a simulation Φ∗ be defined between them
which assigns damage in M∗ according to the damage map of Definition 10.3.
There is a constant cDam such that if

ε∗ ≥ cDam((B∗/B)(T •∗/T •)ε)2 (10.3)

then Φ∗ is a deterministic canonical simulation map for damage, as defined
in 7.3.

The proof observes that small bursts of damage that are not too close to
each other behave in the medium M as if they were independent, therefore
the probability of the occurrence of two such bursts can be estimated by O(ε2)
times the number of such pairs in a rectangle V ∗.

Proof. It is enough to show an expression of the form (7.13) for local conditions
of type restor in M∗. Let η be a trajectory of M . Consider the event that
Damage(η∗) intersects the middle part W ′ = (x, t) + V ∗ of rectangle

W = (x, t) + (γ + 2)V ∗,

with β, γ defined in (10.1), then of course Damage(η) intersects it, too. In
what follows, by “damage” we mean the set Damage(η). We claim that the
damage in W cannot be covered by a copy W ′′ of βV . Suppose namely that
it can: then it can also be covered by a copy of W ′ + βV . However, the
rectangle W ′ + βV is too far from the complement of W . Then so is W ′′, so
it is an island and as such it would have been deleted by the damage map,
contradicting the assumption that its elements belong to Damage∗.

We found two damage points p1, p2 in W that are not too close. Let us
fix some partition of the space into copies of V . Let V be the set of those
elements of this partition intersecting W . For each point p in space-time, let
U(p) be the U ∈ V with p ∈ U . Let U ′(p) = U(p) + (γ + 1)V . The fact
that p1, p2 are not too close implies that the two copies U ′(p1) and U

′(p2) of

100

(γ+2)V are disjoint. Indeed, if they intersected then some copy of 2(γ+2)V
would contain both, but due to (10.1) then they would be too close.

Let E be the set of pairs U1, U2 in V with U ′
1 ∩ U ′

2 = ∅. We found

g∗(restor , (γ + 2)V ∗, η∗) ≤
∑

(U1,U2)∈E

∏
j=1,2

g
(
restor , U ′

j , η
)
,

therefore E g∗(restor , V ∗, η∗) ≤ |E|ε2. Since counting bounds |E| by
cDam((B∗/B)(T •∗/T •))2 for an appropriate constant cDam , by the assump-
tion (10.3) both conditions of a weak canonical simulation in (7.13) are satis-
fied.

10.2 Computation

Before giving the Computation Property, let us introduce some details of
the structure of a robust medium. Cells sometimes have to be erased in a
trajectory since cells created by the damage may not be aligned with the
original ones. At other times, the creation of a live cell at a vacant site will
be required. Most of the trajectory requirements of a robust medium will be
expressed by a transition function Tr , desribed later. Killing and creation
may be indicated by some special values of this function.

Neighborhood structure We extend the meaning of the neighbor function
ϑj(x) introduced in Notation 9.5.

Notation 10.6 (Non-adjacent neighbors) Let us fix a history η. For a (non-
vacant) cell x, in direction j = ±1 there is at most one cell at distance smaller
than 2B: if it exists and there is no damage between it and x then we denote it
also by ϑj(x, t, η). We will omit η, and sometimes even t, from the arguments
when it is obvious from the context. By convention, whenever ϑj(x, t, η) is
undefined then let η(ϑj(x, t, η), t) = Vac. ⌟

Having an extended notion of neighbors, we can define the notion of tran-
sitions for robust media.

Definition 10.7 (Transition of a robust medium) The transition function in
a robust medium has the form

Tr(s, a). (10.4)

Here s = (s−1, s0, s1), a = (a−1, a1) have the following meaning. s0 is the
state of the cell whose transition will happen, and for j = ±1 sj is the state

101

of its (not necessarily adjacent) neighbors in direction j. Further aj = 1 if the
neighbor in direction j is adjacent and 0 otherwise. The transition does not
depend on aj if either sj or s0 is vacant. Note that aj is in fact aj(x, t, η), but
we may omit the arguments that are obvious from the context. In analogy
with (2.6), let

Tr(η, x, t) = Tr((ϑ−1(x), x, ϑ1(x)), (a−1(x), a1(x))).

The symbol η will be omitted from Tr(η, x, t) when it is obvious from the
context. ⌟

Properties of the transition function The state space of a robust medium
will be required to have some minimal structure, and every transition func-
tion will be required to have certain properties. In Definition 10.2 it has been
mentioned already that the set of states has a subset Bad . The value of the
transition function Tr will not be defined if any of its argument is Bad and
we could even say that this defines the set Bad .

Definition 10.8 A robust medium will be denoted by

Rob(Tr , B, T•, T
•, ε, ε′).

The first bit of the state of a cell will be the field Rand ; we will write

Det = All \ Rand .

⌟

The transition function, a mapping from assignments to S, describes the
goal for the deterministic part s.Det of the value s of the state after transition.
We impose a number of conditions on the transition functions in robust media.

Condition 10.9 (Time Marking) If a cell is not vacant, then the transition
function always changes it. ⌟

This condition is similar to (7.24), and is helpful for nontrivial media with
a strict dwell period upper bound.

Condition 10.10 Non-vacant cells will have a property (typically represented
by a field) of being latent or not. Newborn cells will be latent. The transition
function will not make a difference between a vacant and latent neighbor. ⌟

This condition will help attributing all information obtained from the
neighbors to the same moment of time even when a vacant neighbor turns
to a latent one.

Transitions between vacant and non-vacant state are handled in a special
way.

102

Condition 10.11 (Cling to Life) A cell will only be erased if it may disturb
a close non-aligned neighbor: namely, suppose that u0 ̸= Vac and Tr(u, a) =
Vac. Then there is a j = ±1 with uj ̸= Vac and aj = 0. ⌟

Definition 10.12 (Creators, emergence) Recall the form of the transition
function in (10.4). We will call a pair (j, v) ∈ {−1, 1} × S, a potential creator
of a non-vacant state s if s = Tr(u, a) where uj = v, u0 = u−j = Vac. The
expectation is that an adjacent cell with state s will be created by the cell
with state v determined by the state uj of the creator independently of the
state u−j .

Consider a history η, with a switching time σ of cell x when η(x, t) turns
from vacant to non-vacant. We call y = x + jB a creator of x for time σ if
(j, η(y, σ−)) is a potential creator of η(x, σ), further η(y, t) is non-vacant for
t ∈ (σ−T•/2, σ+T•). (So a creator is supposed to survive the creation.) On the
other hand, if there is no t in (σ− T•/2, σ] when the interval[x− 2B, x+ 3B)
intersects the body of any cell, we will say that the cell x emerged at time
σ. ⌟

The computation property The condition called the Computation Prop-
erty has a form similar to the definition of primitive variable-period media in
Section 7.4.

Definition 10.13 (Special switching times) For a history η, cell x and number
a ≥ 0 let

σ1, σ2, σ0

be defined as follows. The values σ1, σ2 are the first two switching times of x
in (a, a+2T •], but σ2 is defined only if η(x, σ1) is non-vacant. 0 is considered
a switching time if η(x, 0) is not vacant. On the other hand, σ0 is the first
switching time of x after a + T • but defined only if η(x, a + T •) is vacant.
Whenever we have an event function g(α,W, η) in whose definition σ2 occurs,
this function is always understood to have value 0 if σ2 is not defined (similarly
with σ0). ⌟

Referring in an event function to, say, σ2 directly is a shorthand. We will
consider the times σi only in places where no damage occurs, which allows us
to lower-bound all dwelling times by T•. Then all requirements referring to
σi can be expressed instead in terms of some arbitrary sequence of rational
numbers ti = t0 + iT•. For example the requirement σ2 − σ1 < T • can be
expressed by prohibiting for each rational t, and for n with T •/n < T•, that all
η(x, t+ id) = η(x, t) hold for i = i, . . . , n. The requirement P{η(x, σ2).Rand =

103

6

time

W1

x− 1.1B r
W0

x x+ 2.1B
a+ 2T •

σ2

σ2 − T•/2

σ1

a

a− T •

Figure 9: To the computation property. The large rectangle is W1(x, a). The
rectangle of the same height but width 1.2B around the cell body at point
x is W0(x, a). The small rectangle between times σ1 and σ2 is the cell work
period under consideration. Its lower part is the observation interval.

j} ≤ 1 + ε′ can be expressed by

P{η(x, t1) ̸= η(x, t0) ∧ η(x, t1).Rand = j} ≤ 1 + ε′.

for t0 < t1 < t0 + T•.
For a transition to work satisfyingly, the cell as well as its neighbors must

have been damage-free for some time before the transition. But it is convenient
to require that a transition not fail completely even if only the cell itself is
damage-free, not its neighbors. The following space-time rectangles will play
a special role.

Definition 10.14 [Rectangles used in the computation property] Let

I0(x) = [x− 0.1B, x+ 1.1B) , I1(x) = [x− 2.1B, x+ 3.1B) ,

Wj(x, a) = Ij(x)× (a− 2T •, a+ 3T •] (j = 0, 1),

fj(x, a, η) = the event function for {Damage(η) ∩Wj(x, a) = ∅} (j = 0, 1).

⌟

Let us write

Damage = Damage(η), Damage∗ = Damage(η∗).

104

Definition 10.15 (Affecting) We will say that damage affects cell (x, t) di-
rectly, if it intersects with I0(x) at time t, with Ij(x) as in Definition 10.14. It
affects a cell via neighbors, if it intersects I1(x). ⌟

Below we formulate Condition 10.16 (Computation Property), which be-
side the Restoration Property is the other crucial requirement on the trajec-
tory. It implies that if a cell is not affected directly during a certain time
interval, then it makes a legal transition. It may still not make the transition
required by the transition function: for that, it must not be affected even via
neighbors. With these notions, we are ready to spell out the computation
property. Condition 10.16e) refers to a notion called “atomicity” in the field
of distributed computing: the fact that despite the complexity and prolonged
nature of the interaction between a colony and its neighbors, its simulation
result can be viewed as the result of an observation of the states of the three
represented big cells in a single moment.

Condition 10.16 (Computation Property) This property consists of several
condition types. For each type α used here except α(rand , j), we have b(α) =
0, that is the corresponding events g(α(·),W, η) are simply prohibited in the
trajectory. On the other hand,

b(α(rand , j)) = 0.5 + ε′ (j = 0, 1).

a) Coin-tossing, for j = 0, 1:

g
(
α(rand , j), W0(x, a), η

)
= f0(x, a, η){∃σ2 ∧ η(x, σ2).Rand = j}.

b) The length of dwell periods must be between T• and T •:

g
(
dw-p-bd , W0(x, a), η

)
= f0(x, a, η)h(dw-p-bd , x, a, η)

where h(dw-p-bd , x, a) = 1 if η has a dwell period shorter than T• in
W0(x, a) or has a dwell period longer than T • there (and, as always, 0
otherwise).

c) Whenever W0(x, a) is damage-free, the transition at σ2 is a legal one:

g
(
legal-comp, W0(x, a), η

)
= f0(x, a, η){∃σ2∧¬legal(η(x, σ2−), η(x, σ2)}.

d) Whenever W1(x, a) is damage-free and σ0 exists, x either has a creator
or is emerging (see Definition 10.12).

g
(
newborn, W1(x, a), η

)
= f1(x, a, η){∃σ0 ∧ ¬h(newborn, x, a, η)}

105

where h(newborn, x, a, η) = 1 if x has a creator for time σ0, or η(x, σ0)
is emerging. Also, the transition in σ0 is a legal one:

g
(
legal-birth, W0(x, a), η

)
= f0(x, a, η){∃σ0∧¬legal(η(x, σ0−), η(x, σ0))}.

e) WheneverW1(x, a) is damage-free, the transition function applies, based
on observation at some (unspecified) time point during the observation
interval (“atomicity”):

g
(
trans, W1(x, a), η

)
= f1(x, a, η){∃σ2 ∧ ¬h(trans, x, a, η)}

where h(trans, x, a, η) = 1 if there is a t′ ∈ (σ1, σ2 − T•/4] with

η(x, σ2).Det = Tr(η, x, t′).Det.

f) A cell cannot stay vacant if it has would-be creators for a long time and
has no neighbor potentially blocking the creation:

g
(
no-birth, W1(x, a), η

)
= f1(x, a, η)h(no-birth, x, a, η)

where h(no-birth, x, a, η) = 1 if the following conditions hold:

i) η(x, t) is vacant for all t ∈ [a, a+ 3T •];

ii) for each t ∈ [a, a+2T •] there is a j ∈ {−1, 1} such that (j, ϑj(x, t))
is a potential creator of some (non-vacant) state;

iii) there is no non-vacant η(y, t) with 0 < |y− x| < B, t ∈ [a, a+3T •].

⌟

Our conditions do not require the state of an emerging cell to be completely
determined by the transition function (other than that it is latent, as said in
Condition 10.10). In fact as we will see, during self-organization, the state of
an emerging big cell may depend on the information in the germ cells creating
the colony representing it.

Let us take a peek ahead to self-simulation, since at this point, condi-
tion 10.16f) seems too strong. Indeed, suppose that a colony of Q cells of
size B simulates a higher-order cell of size QB in a medium η∗ in such a way
that these higher-order cells must obey the conditions of a robust medium
again. Now assume again that η∗(x, t) is vacant for a long time, and for all
this time, there is a potential creator in x−QB, while there is no (y, t) with
0 < |y − x| < QB with non-vacant η∗(y, t). Can then indeed a new colony be
created in x? There could in principle be another obstacle, namely that there
is a y with 0 < |y − x| < QB such that there is a colony during all this time

106

starting in y+QB (that is η∗(y+QB, t) is nonvacant) and is trying to create
a colony with starting point y. The attempts of colony creation from left and
right interfere. Our solution is simple: growth from the left will get priority
over growth from the right. In this way, one of the conflicting attempts will
succeed.

Though it is desirable to illustrate the computation property on a number
of special cases, currently, we will give only the barest minimum of these.

Example 10.17 (Special cases) To obtain a deterministic cellular automaton
as a special case of robust media, set T• = T •, r = 1, ε = 0, require that the
histories have empty damage and that the transition function not give a vacant
value.

The connection between primitive variable-period media and ro-
bust media will be set up via a trivial simulation. Let M1 =
Prim-var(S1,Λ,Tr1, B, T•, T •, ε). We make the additional assumptions that
the transition function Tr1 satisfies the time marking Condition 10.9. We
define a simple simulation Φ∗ by this medium of the robust medium

M2 = Rob(S2,Λ,Tr2, B, T•, T •, ε, ε, 1).

Set S2 = S1 × {0, 1}, identify S1 with S1 × {0}, and denoting S′1 = S1 × {1},
let Vacant2 = Vacant1 ∪ S′1, Bad2 = Bad1 ∪ S′1. Thus, some new bad states
are introduced by turning on a new bit which we can call the “bad bit”. The
transition function Tr2 is essentially the same as Tr1: it ignores the bad bit.
It also satisfies Condition 10.11 trivially: it never destroys or creates cells.

Let g1 be the event function used in the definition of mediumM1. We give
the definition of s = η∗(x, t) = Φ∗(η)(x, t) for each η. If x is not an integer
multiple of B then s = Vac. If g1

(
α, {x} × (t′, t], η

)
= 1 for some t′ < t and

some α ̸= coin then s = (η(x, t), 1) (as some condition is violated, the bad bit
is turned on), else s = (η(x, t), 0).

It can be verified that this is indeed a simulation. ⌟

Peeking ahead to simulations, Lemma 10.5 proves the Restoration Prop-
erty (Condition 10.4) for η∗ = φ∗(η) whenever η is a trajectory of M . When
the computation property above is applied to a cell x of η∗, we are given
a rational number a satisfying f1(x, a, η) = 1. Since we have to prove this
property for η∗, it will be assumed throughout the rest of the construction
that Damage∗ does not intersect the area we are reasoning about. Hence all
damage belongs to islands as in Definition 10.3, and for simplicity, we will
identify the damage with the islands (that is assuming it fills them out).

107

11 Amplifiers

In the present section, when we talk about media without qualification we
understand robust media. Recall amplifiers from Definition 5.10. We will also
need a trickle-down property, as in Definition 5.11. Then a lemma analogous to
Lemma 5.12 can be formulated, and a proof for Theorem 7.4 can be provided
analogously to the proof of Theorem 3.1.

Our eventual goal is to find an amplifier (Mk,Φk), where each mediumMk

will also simulate a some computation with a given transition function, and
damage probability bound εk, for a fast decreasing sequence εk. We introduce
some parameters of the sequence (Mk) of media that will satisfy conditions
sufficient for the existence of an amplifier. These conditions are similar to the
inequalities in the conditions of Theorem 9.3.

Recall from Definition 10.8 that all robust media Mk have the fields Det
and Rand whose behavior is governed by the computation and restoration
properties.

Notation 11.1 Only field Det will be subdivided into subfields: therefore
subfields η.Det.F will be denoted simply as η.F , without danger of confusion.

⌟

Definition 11.2 (Amplifier complex) Consider an amplifier (Mk,Φk) where
Φk = (φk∗,Φ

∗
k). For a sequence of fields (Payloadk) and parameters Dk, ε

′′
k,

our amplifiers will use a code complex

H = (φk,Payloadk, γk)k≥1

as in (5.1), and they will have in addition the trickle-down property as in
Definition 5.11 for the fields F k = Payloadk. We will call such an amplifier an
amplifier complex. ⌟

In any trajectory η of M1 at space-time point (x, t) the hierarchy might
only be built up to a certain highest level k which may increase as time pro-
ceeds. The cells on this level will have the kind Germ (on the field Kind
see later in Section 12), and the useful computation of Mk will be carried
out on their Payloadk track. This computation will be an aggregated ver-
sion Pl-transk of a certain fixed cellular automaton with transition function
Pl-trans1. It will have monotonic output in the sub-track Output1, and cor-
respondingly Pl-transk will have monotonic output on Outputk.

Condition 11.3 We require transition function Pl-trans1 to be commutative
in the sense of Definition 8.8. ⌟

108

As shown in Theorem 8.1, this requirement is not strong: the transition
can still be, for example, universal; but it makes its simulation simpler as we
don’t have to worry about the order of updating (for about the effect of delays
due to a temporary lack of cells at the edges). The trickle-down property will
trickle down the latest result of Pl-transk to the lowest level.

Definition 11.4 (Carrying the payload) In a robust medium M , recall the
transition function t = Tr(r, a) from (10.4). with input vector r = (r−1, r0, r1)
and the adjacency bits a = (a−1, a1). We will say that it carries the payload
transition function Pl-trans if the condition t ̸= Vac, r0.Kind = Germ, a =
(1, 1) implies t.Payload = Pl-trans(r.Payload). ⌟

Thus, the payload field is controlled by its own transition function in a
germ provided that the simulation does not command to eliminate it. In a non-
germ cell, its value will trickle down from the large cell its colony simulates.

The following concept will also be needed for the definition of amplifiers.
Here, and always from hence, when we refer to a natural number k as a binary
string we always mean its standard binary representation.

Definition 11.5 (Uniform program) The string prog will be called a uniform
program (with complexity coefficient c) for the functions fk if there is some
constant c such that it computes on the universal computing medium Univ the
value fk(r) from k, r with space- and time-complexities bounded by c(log k +
|r|) where |r| is the total number of bits in the arguments r. If a sequence (fk)
of functions has a uniform program it is called uniform. As a special case, a
sequence of constants ck is uniform if it is computable with space- and time
complexities c log k from the index k. ⌟

Here are the parameters involved. The definitions

Sk = {0, 1}Capk , Bk =
∏
i<k

Qi

are not new: Capk is the number of bits in a state in Sk, and Bk+1 is the size
of a colony consisting of Qk cells of size Bk. Recall that T•k < T •

k are the
lower and upper bound on the dwell periods. Let

Dk = 2T •
k (11.1)

for the parameters Dk in trickle-down (Definition 5.11). For simplicity, we
will require

λ := sup
k
T •
k /T•k < 2. (11.2)

109

The number

U ′
k (11.3)

approximates the (variable) number of dwell periods ofMk in a work period of
simulation of a cell of Mk+1, (only approximates, as the size of dwell periods
is not fixed). For a constant

R > 0 (11.4)

to be fixed large enough later, let

T•k+1/T•k = U ′
k(1−RQk/U ′

k), T •
k+1/T

•
k = U ′

k(1 +RQk/U
′
k). (11.5)

We will see that U ′
k/Qk grows fast, and thus both T•k and T

•
k grow almost like∏

i<k U
′
i , only T•k grows slightly slower, and T •

k slightly faster. Now (11.2)
can be achieved for example by setting U ′

k ≥ ck2Qk for some large c.
Due to the aggregation property and Proposition 5.17, only a small fraction

of the capacity of each cell can be used for computation and communication
during a work period. The new parameter

wk (11.6)

called bandwidth rate will approximately indicate this fraction. We assume
that

Pk = 1/wk (11.7)

and wkQk−1 are integers, and therefore so is wkBk. The payload transition
function on level k will be an aggregated version of Pl-trans1 with slowdown,
as in Example 4.21:

Pl-transk = Pl-transBk,wk
1 .

Thus, a cell ofMk of body Bk, simulated by Bk cells ofM1, should contain all
the payload of the simulating cells, and the payload transition function will
be slowed down by a factor wk.

The colony will be processed in chunks of wkQk cells, and we want to be
able to correct a burst of constant number off cells in each of these. This
requires that information be stored with a redundancy of at least a few cells
per chunk. So we devote a portion

δk = Rwk/Qk

110

of the information to redundancy. Let us fix some arbitrary positive initial
constants:

T•1 ≤T •
1 ≤ 1.5T•1,

ε′1 < 1/R2,

ε = ε1.

The interpretation of the parameters εk, ε
′
k, ε

′′
k has been seen before. In the

definition of robust media in Section 10, εk bounds probability of occurrence of
damage, and 1/2+ε′k bound the probability of an outcome of the random coin.
The bound ε′′k has been seen in connection with trickle-down in Definition 5.11.
Here are the recursive definitions:

εk+1 = cDam(QkU
′
kεk)

2,

ε′′k = 4QkU
′
kεk,

ε′k = ε′1 +
k−1∑
i=1

ε′′i .

(11.8)

The formula for εk+1 is natural in view of Lemma 10.5, which introduces the
constant cDam . The definition of ε′k+1 takes into account the limited ability
to simulate a coin-toss with the help of other coin-tosses. The parameter ε′′k
bounds the probability that there is any k-level damage at all during the work
period of a colony of k-cells.

Let us choose
wk = 1/Rk2,

Qk = Rk+1,

U ′
k = RQk/wk,

Capk = Bk(1 + δk),

(11.9)

where we omitted integer parts. Let us by induction, prove for sufficiently
small ε:

εk ≤ ε2
k−2+2(k−3)/2

. (11.10)

For k = 1, the statement gives ε ≤ ε. For k > 1, using the inductive assump-
tion,

QkU
′
k = R2k+4k2

εk+1 ≤ ε2
k−1+2(k−1)/2 · cDamR

4k+8k4

= ε2
k−1+2(k−2)/2 · cDamR

4k+8k4ε2
(k−2)/2(21/2−1).

For small enough ε, the last factor is less than 1. From here, it is easy to see
that ε′′k also converges to 0 with similar speed.

111

The parameters introduced satisfy the requirements below, which can be
compared to the corresponding conditions for Theorem 9.3.

Complexity Upper Bounds All parameters in Frame are uniform sequences
with complexity coefficient R.

Capacity Lower Bound Cells should be able to hold numbers comparable to
the size of the colony and the work period within a cell, and the colony
must represent the state of the big cell with some redundancy:

Capk ≥ R logU ′
k, (11.11)

QkCapk ≥ Capk+1(1 + δk+1). (11.12)

Bandwidth Bounds

wkCapk ≥ R logU ′
k, (11.13)

wkQkCapk > wk+1Capk+1, (11.14)

wk+1Qk ≥ R(1/wk + 1/wk+1). (11.15)

(11.13) says that numbers comparable to the size of the colony and the work
period should fit within the space bound wkCapk. (11.14) says that a track
of a colony of relative width wk should be able to hold the portion wk+1 of
the state of the represented big cell, for processing. The easily satisfiable
inequality (11.15) (as Qk will grow much faster than 1/wk) will be used in
Section 19.1.

Work Period Lower Bound There must be enough dwell periods in a work
period to perform the necessary computations of a simulation:

U ′
k ≥ R ·Qk/wk. (11.16)

Error Upper Bound The following bound relates colony and work-period size
to the error probability, and will help in the recursive error estimates:

ε0.2k ≤ 1/RQkU
′
k. (11.17)

It will be easy to satisfy in our examples, since Qk, U
′
k will grow only expo-

nentially and εk will decrease super-exponentially.

Lemma 11.6 The parameters satisfy the conditions above.

Proof. Conditions (11.11), (11.13), (11.15) and (11.16) are satisfied for large
R. For inequality (11.12), assuming R > 2, note first that

δk+1

δk
=

Qkwk
Qk+1wk+1

=
(k + 1)2

k2R
.

112

Capk+1(1 + δk+1) = Bk+1(1 + δk+1)
2

= Bk+1(1 + δk+1(2 + δk+1))

= Bk+1(1 + δk
(k + 1)2

k2R
.(2 + δk+1))

The multiplier of δk on the right-hand side is smaller than 1 for large R.
Condition (11.14) reduces to

1 + δk > (1 + δk+1)k
2/(k + 1)2,

which is true.

For later reference, here are explicit expressions for Bk and for a quantity
falling between T•k and T •

k :

Bk =
∏
i<k

Qi = Rk(k+1)/2−1,

T •
k

∗=
∏
i<k

U ′
i = BkR

k−1((k − 1)!)2 = R(k+1)(k+2)/2−2((k − 1)!)2.
(11.18)

Lemma 11.7 (Amplifier) For large enough R there is a uniform amplifier
complex with the parameters introduced above, which also obeys the following
conditions:

a) Medium
Mk = Rob(Trk, Bk, T•k, T

•
k , εk, ε

′
k). (11.19)

is robust.

b) The damage map of the simulation Φk is given as in Definition 10.3.

c) The function Trk carries the payload transition function Pl-transk in the
sense of Definition 11.4.

Lemma 11.7 implies a variable-period generalization of Lemma 5.12 with
Dk = T •

k , which, via essentially the same proof as the one after Lemma 5.12,
implies Theorem 7.5 for the infinite space. All properties but the initial sta-
bility property of an abstract amplifier (defined in Lemma 5.12) are satisfied
by definition. For the initial stability property it is sufficient to note that each
medium Mk is a robust medium, with work period bounds T•k, T

•
k . There-

fore, if ηk is a trajectory of Mk and t < T •
k then for each x the probability

that ηk(x, t) ̸= ηk(x, 0) is less than the probability that damage occurs in
{x} × (0, T •

k]a. This can be bounded by the Restoration Property.

113

12 Outline of the program

Our eventual goal is to prove Lemma 11.7 (Amplifier). From now on, we
fix the level k of the simulation hierarchy, refer to medium Mk as M and
to Mk+1 as M∗. The subscript will be deleted from all parameters of M ,
and a superscript ∗ will be added to all parameters of M∗. We will refer to
cells of M as small cells, or simply cells, and to cells of M∗ as big cells. The
program will be described in a semi-formal way; the present section overviews
it. Later sections restrict the program more and more by giving some rules
and conditions, and prove lemmas along the way. The typical condition would
say that certain fields can only be changed by certain rules. The language for
describing the rules is an extension of the one given in Section 9.3. We will
introduce a fair number of fields but they are all relatively small.

Let us fix some conventions on the handling of fields and the different
parts of the transition function. According to Section 11, the medium M
has a special field called Payload . Together with some other fields, it can
be grouped into a field we could callInfo: in a colony, the Info track contains
the string that encodes the state of the represented cell via an error-correcting
code. Some other fields like Addr , will service the functioning of the simulation
program.

Definition 12.1 (Info track) Field Info consists of the subfields Info.Payload ,
Info.Pl-redun, Info.Util (referred to mostly as just Payload , Pl-redun, Util). The
track Payload contains the intended original information, The track Pl-redun
contains “error check bits” for the track Payload as in Example 5.14, while the
Util track contains other parts of the represented information of the simulated
colony (along with its own error checks). ⌟

In what follows we define the function Tr : the function Pl-trans is given in
advance. The field Payload is updated via Definition 11.4: thus, Tr determines
the next value of Payload only in case of non-germ cells via trickle-down.

For the error-correcting code, the track Payload ∪ Pl-redun will be subdi-
vided into “packets” such that the parity check bits for each packet will be
computed separately. This is done because the Payload track will be much
wider than the work tracks, so it cannot be processed in its entirety at once
on them.

Cells have an address field Addr which determines the only colony (Q-
colony) to which the cell belongs. A colony C(y) has base y. The Age field of
a cell, called its age, can have values in [0, U), where U = U ′/p1 (which we can
assume to be integer without loss of generality). Here U ′ is the parameter U ′

k

114

introduced in (11.3), and p1 is a constant to be introduced in Definition 12.10
below.

12.1 Cell kinds

Definition 12.2 (Adjacency) Recall the transition function Tr(r, a) where
a = (a−1, a1) says whether the left and right neighbor is adjacent. In our rule
language we will refer to aj as

adj-nb(j).

⌟

We will continue to understand by the word cell a non-vacant, non-damaged
site.

Definition 12.3 (Colonies) The values of the address field Addr will vary
in [−Q, 2Q). The colony of a cell x is the set C = {z + iB : i ∈ [0, Q)}
whose starting cell is z = x − (Addr(x) mod Q)B. We will also say that x
belongs to colony C. The originating colony of a cell x is the colony D whose
starting cell is x−Addr(x)B. We will also say that x originates at colony D.
The cells whose colony is their originating colony, will be called inner cells,
the other ones will be called outer cells. Two neighbor cells will be called
space-consistent if they originate at the same colony. ⌟

A certain property of cells, called their “kind”, plays an important role in
determining their behavior.

Definition 12.4 (Cell kinds) Cells will be of a few different kinds, distin-
guished by the field

Kind .

The possible kinds are listed in (12.1) below. Member The kind of non-latent,
non-germ, cells is determined by Age and Addr . Since it will be possible to
determine from the age of a cell whether it has kind Channel or Growth, We
will sometimes use therefore just one value

Ext j

in place of Growthj and Channel j . The kinds of cells are ordered by a property
called strength as follows:

Vac < Latent < Germ < Channel−1 < Channel1

< Growth−1 < Growth1 < Member .
(12.1)

115

If a cell needs to be created, overlapping in body a another one then if the
new cell is stronger, the weaker one will be erased. This is the only way a cell
can turn vacant see the later Condition 10.11 (Cling-to-Life). Let us discuss
each kind.
• The relation Kind(x, t) = Vac means that there is no cell at site x at time
t.

• A cell will be called dead if it is vacant or latent, and live otherwise. Killing
a cell x means turning it latent. Erasing it means turning it vacant.

• The member cells are “inner” cells as defined above; they are the strongest
kind in order to maintain the integrity of colonies.

• Cells of kind Ext j are outer cells. A right outer cell has addresses ≥ Q, and
a left outer cell has addresses < 0.

• Left channel cells are weaker than right channel cells which are weaker than
growth cells. This way, a right-growing channel will erase the left-growing
one if it is in its way, and information need not be transmitted between two
channels. Also, left channel cells can grow only until address −Q + 1, and
right ones only until 2Q− 2: thus a channel cannot be extended to cover a
full colony.

• Germ cells exist at the highest level of the hierarchy, in the sense that they
are not part of any colony simulating some higher-level cell. They also
have the function to carry out a computation, the payload of the whole
construction. The member cells on lower levels will receive the results of
this computation by a feature of the simulation called trickle-down. Germ
cells have addresses in [−2Q, 3Q).

⌟

In the construction leading to Theorem 3.4, germ cells will play the follow-
ing role. Adjacent and “consistent” germ cells of the same color will attempt
to expand and form a new colony simulating a big germ cell: we call this
“lifting”, or “self-organization”. The part of the space marked with color 0 is
where the actual payload computation takes part. The parts of space to its
left and right are marked by color −1 and 1 respectively. These pars are also
populated by germ cells which also self-organize (this needs randomization to
break the translational symmetry). The germs of the outside areas, with their
appropriate colors, will suppress possible structures that would compete with
the computation area.

The transitions between different kinds are limited in advance.

Condition 12.5 (Latent Cells) A vacant cell can only turn into a latent
one. ⌟

116

The following condition helps enforce that newly created cells in the sim-
ulation are latent.

Condition 12.6 Suppose that φ∗(η)(x, t) /∈ Bad , the colony with base x at
time t is full and is covered with member cells belonging to the same work
period, and is not affected by damage (as in Definition 10.15). Then φ∗(η)(x, t)
depends only on the Info track of this colony via some decoding function α∗.
If the colony is covered with germ or outer cells then the state decoded from
this track is latent. ⌟

12.2 A colony work period

Algorithm 12.1 describes the main stages of a colony work period. In the
notation here, it sometimes does not matter much whether we call one of
the rules here a “sub-rule” or not, and whether we print the semicolon,
as the rule (like Extend) includes the conditions under which it is applied.

Algorithm 12.1: A colony work period

Extend ∥ Retrieve ;
Compute ;
Proc-payload ;
Grow ;
Shrink;
Finish

There are some idle stages between these parts to make sure that faults
in one part have limited effect on other parts. Rule Extend is defined in
Algorithm 14.9, Retrieve in Algorithm 19.4, Compute in Algorithm 19.7,
Proc-payload in Algorithm 19.11, Grow in Algorithm 14.10, Finish in Al-
gorithm 19.12. Shrinking (if needed) happens via the rule Decay defined in
Algorithm 15.1.

The stages are started and ended at certain specific values of the field Age,
which runs between 0 and U , the maximum age. Recall for some k we are
defining medium Mk of and amplifier. Because of a delay parameter p1 to be
defined below in (12.7), parameter U = Uk is related to the estimated number
U ′
k of dwell periods in a work period introduced in (11.3) as follows:

U ′
k = p1Uk. (12.2)

117

Here are the ages starting or ending important stages of this program:

compute-start = KRP ∗Q,

proc-payload-start = compute-start+KRP ∗Q,

grow-start = proc-payload-start+RP ∗Q,

grow-end = grow-start+ 6Qλ,

U = grow-end+ 4Q,

(12.3)

where λ was defined in (11.2), U is the number of Age steps in the work
period, K is a constant to be specified later, the constant R was introduced
in Section 11, and P was defined in (11.7).

Definition 12.7 (Expansion and retrieval periods) The interval before age
compute-start is called the retrieval period : then the colony retrieves informa-
tion from neighbor colonies. The constant K will make it substantially longer
than the transition period (grow-start , U] at the end of the work period when
the information to be sent to neighbor colonies would change. The age inter-
vals (0, compute-start] and (grow-start , grow-end] for non-germ outer cells and
(0, grow-end] for germ cells will be called expansion periods. Cells in their
expansion period are called expansion cells. ⌟

The following short description of the major stages of a colony work period
should serve for orientation. The part of the work period before Compute sees
the following activities happening simultaneously: Extend , and Retrieve .

Expansion The rule Extend tries to extend some arms of the colony left and
right, to use in communicating with a possible non-adjacent neighbor colony.
In direction j, if it is not adjacent to another colony it will extend an arm of
cells of kind Channel j . In channel cells in the positive direction, the Addr
field continues its values through

Q,Q+ 1, . . . , 2Q− 1.

Similarly in channel cells in the negative direction. Extension cells are
weaker than member cells, so channel or growth cells do not normally dam-
age another colony. The channels will be killed at the end of the computa-
tion.

Communication The rule

Send

defined in Algorithm 19.3, will be running most of the time, sending all
needed information to the neighbors. The rule Retrieve records the infor-
mation from the neighbors. Atomicity (Condition 10.16e)) for the simulated

118

medium will be guaranteed by waiting for a time when neither of the neigh-
bor colonies is near the end of their work period—when this information
might change.

Computation The subrule Compute computes the output of the simulated
transition function and stores it on the track Hold . It will doom each cell
of the colony if the represented cell is to be erased at the end of the work
period.

Payload processing This part carries out the part of the computation not
needed for simulation but for the information-processing task of the cellular
automaton.

Growth If Growing j = 1 then, between values grow-start and grow-end, the
colony tries to extend an arm of length at most Q in direction j, making it
possible to create a new colony if the encountered area is empty.

Birth A latent cell x turns immediately into a germ cell with address 0 and
age 0. The germ then begins to grow, trying to fill 3 colonies until age
grow-end. A germ that fails to grow with a certain speed will be killed off.
If it succeeds then at Age = U − 1, the germ cells turn into member cells,
thus implementing a lifting of the organization level.

Shrinking When they reach the end of their growth period, growth and germ
cells stop producing offshoot. In what follows, all edges whose existence
is not justified by these processes (called “exposed”) will be subject to the
process Decay . Therefore normally, a growth either disappears before the
end of the work period or it covers a whole new colony by that time. The
rule Send will not run during this transition time.

Finish Rule Finish , will called at Age = U − 1, reduces the addresses of
growth cells (if any remain) modulo Q. Outer non-germ cells and inner
germ cells turn into members. Doomed cells will be killed. Otherwise,
the information from the Hold track will be copied into the corresponding
locations on the Info track.

Definition 12.8 The application of the rule Finish will also be called a
cut. ⌟

Doomedness can be changed only in specific ways:

Condition 12.9 (Dooming) Only the following rules can change the field
Doomed without killing the cell:

1) The sub-rules Adapt and Heal (defined later) can create doomed or non-
doomed cells.

119

2) At Age = proc-payload-start, we possibly doom each cell.

⌟

12.3 Timing

Different actions of the program will be carried out with different speeds; this
will be achieved as follows. Some rules r have a delay parameter p and a
timing variable Waitr ≥ 0, used as follows:

if Waitr = 0 then Waitr ← p
else if Waitr ≥ p then r
else Waitr ←Waitr − 1.

A single assignment

F ←p c

can also be seen as a rule, with its own delay parameter p and wait variable.

Definition 12.10 Recall the definition of λ in (11.2). We introduce some
delay constants p0 < p1 < p2 < p3 whose value will be defined below, further

τi = (pi + 1)T •. (12.4)

⌟

Here is a summary of the roles of the delays:

p0 Default and healing;

p1 Computation;

p2 Decay;

p3 Growth.

For defining the delay constants let

heal-span = 2∆+ 1, (12.5)

denote the reach of the healing operation. Let

p0 = 5λ, (12.6)

p1 = 4λp0, (12.7)

p2 = 2 heal-spanλp0, (12.8)

p3 = (3λ+ 1)p2. (12.9)

120

12.4 Plan of the rest of the proof

In order to preserve intelligibility and modularity, rules and conditions be-
longing to the program will only be introduced as they are needed to prove
some property.

Let us outline how local repairs will be made to deal with obstacles of
functioning; details follow in later sections. The rule Purge eliminates iso-
lated cells, or “exposed” cells that are not important to heal. The rule Heal

repairs a small hole of colony cells (typically after Purge eliminated “garbage”
from it.). Germs, and arms of communication or growth will not be healed.
An unrepaired hole will be slowly enlarged by the rule Decay , to eventually
eliminate partial colonies.

An island can destroy or alter information represented on its space projec-
tion, therefore the information represented on the Info track will be a redun-
dant, error-correcting code. It will be decoded before computation and en-
coded after it. The damage can also disrupt the computation itself, therefore
the decoding-computation-encoding sequence will be repeated several times.
The result will be temporarily stored on the track Hold before the final step
of the work period commits to it.

The crucial Lemma 16.3 (Attribution) says that soon after the disap-
pearence of the big damage Damage∗, all live non-germ cells not immediately
arising from Damage can be attributed (via a path of ancestors) to some
nearby colonies (all disjoint from each other). This lemma enables us to rea-
son about the process over this area in terms of big cells. It helps us for
example to see that a big cell can grow a neighbor if no other cell is nearby. In
terms of colonies, this means that if no other colony is nearby, then a colony
can grow and create a neighbor colony. This is not obvious since there could
be “debris”: earlier damage could have left bits and pieces of larger colonies
which are hard to override locally. The Attribution Lemma will guarantee
that those bits and pieces are not there anymore at the time when they could
be an obstacle: whatever is there is attributable to a big cell.

The Attribution Lemma also plays a role in healing. Most local healing
is performed by the rule Heal . However, if the damage occurs at the end of
some colony C then it is possible in principle that foreign material introduced
by damage is connected to something large outside. The Attribution Lemma
will imply that the foreign matter is weaker (extension or germ cells), and can
therefore be swept away by the regrowth of the member cells of C.

The idea of the proof of the Attribution Lemma is the following. Suppose
that (x0, t0) is a cell whose origin we want to trace. We will be able to follow a
“steep” path (xi, ti) of “ancestors” backwards in time until time tn = t0−mQ

121

with some large coefficient m. Lemma 15.5 (Skirting) shows that it is possible
to lead a path around an island of damage. The attribution consists of showing
that (xn, tn) belongs to a domain covering a whole colony. To prove this,
we will show that the decay rule, which eliminates partial colonies, would
eventually cut through the steep path unless the latter ends in such a domain.
In actual order, the proof proceeds as follows:

– Some of the simpler killing and creating rules and conditions will be intro-
duced, and some lemmas will be proved that support the reasoning about
paths and domains.

– We prove the Skirting Lemma. Lemma 15.12 (Running Gap) says that if
a gap is large enough then the decay process propagates it fast, even in
the presence of some damage.

– Lemma 15.17 (Bad Gap Inference) shows that (under certain conditions
and in the absence of damage), if there is a gap at all then it is large
enough in the above sense.

– The above lemmas are used to prove the Attribution Lemma.

Here is a summary of the rest of the proof.

• We define those computation rules not dependent on communication with
neighbor colonies.

• Lemma 20.2 (Legality) shows that the computation terminates gracefully
independently of the success of communication.

• The development of colony C will be followed forwards to the present in
Lemma 20.6 (Present Attribution) .

• Finally, the retrieval rules will be defined and the remaining part of the
Computation Property will be proved.

13 Local consistency

Functional obstacles created by an island need to be recognized; we develop
the tools for this in the present section.

13.1 Local maintenance

Information in a colony about the represented big cell will be corrected using
decodings. But on certain tracks, inconsistency be corrected almost instanta-
neously.

122

Definition 13.1 (Locally maintained fields) Certain fields, called locally main-
tained , will be kept constant over the colony, for most of the work period.
Each such field F has a default value. The updating will of such a field always
happen at a specific age called the update age. Let

n l-m (13.1)

be the (constant) number of update ages for locally maintained fields. A cell’s
locally maintained field F is said to be stable if its age is at distance ≥ ∆
from the update age, where this constant is defined below in (15.3). An age
n is called stable for F if F is stable at age n. It is called simply stable if it is
stable for all locally maintained fields, and is also at distance ≥ ∆ from ages
0, compute-start and grow-end. ⌟

From the definitions above it follows that within a work period, all unstable
ages are covered by n l-m intervals of size 2∆ each.

Example 13.2 Here are some examples of locally maintained fields.

• The Boolean track Doomed will be set to 1 (true) if the represented big cell
must be removed (the site to become vacant), and 0 otherwise. Its default
value is 0 (false). Its update age is proc-payload-start (defined in (12.3)).
Cells with Doomed = 1 are called doomed .

• The track
Growing j ∈ {0, 1}, j ∈ {−1, 1}

signifies the collective decision of the colony to grow a new neighbor colony
in direction j. Its update age is proc-payload-start. The field

Creating j ∈ {0, 1}, j ∈ {−1, 1}

will be used to control the creation of a new neighbor. Its default value, in a
vacant or new latent cell, is 0. Creating j = 1 makes a cell a potential creator
in direction j in the sense of Definition 10.12. The value of Creating j of a
big cell will be broadcast into the locally maintained track Growing j of the
cells of its representing colony.

• The track Pl-commands will contain commands for the processing of pay-
load: see Section 19.

⌟

Condition 13.3 (Locally maintained fields) Age 0 is an update age for all
locally maintained fields other than Doomed . If Doomed = 1 then Growing j =
0 for j ∈ {−1, 1}. ⌟

123

13.2 Fitting neighbors

Color We introduced the Color field in Definition 3.5. It distinguishes be-
tween germ cells, but can also serve as the only information conserved by the
non-ergodic medium. Even latent cells have color; when a cell becomes latent
its color does not change.

Definition 13.4 Two neighbor cells x < y with colors c, d will be expected
to have fitting colors. This is expressed by the relation Fit1(c, d) which is 1 if
the colors fit and 0 otherwise. Let

Fit−1(c, d) = Fit1(d, c).

We will use two examples of the fitting relation:

1) A color can be an arbitrary symbol from a finite alphabet, and Fit j(c, d) =
1 if and only if c = d.

2) A color is an element of {−1, 0, 1}, and Fit1(c, d) = 1 if c ≤ d ≤ c + 1.
In what follows we concentrate on the second case, as the other case is
treated analogously, only simpler. The function of color is in this case is
the following: the area of space where payload computation is happening
is marked by color 0, while the space to its left and right by colors −1
and 1 respectively.

⌟

Variant 1) will be used in the proof of Theorems 3.1, 3.2 and 7.4. Variant 2)
will be used in the proof of Theorems 3.4, 7.6.

Siblings The basic structural soundness of a colony is expressed by some
local consistency conditions. Space-consistency was introduced in Defini-
tion 12.3. Time consistency will also be required, but in a continuous-time
cellular automaton we cannot require all cells to have the same age. Re-
quirement (13.2) says that the age within an extended colony is highest at
the position of address ⌊Q/2⌋ and is non-increasing (with age difference ≤ 1
between neighbors) as we move away from it.

Definition 13.5 (Time consistency) Two cells x and y = x±B with |Addr(x)−
⌊Q/2⌋| < |Addr(y)− ⌊Q/2⌋| belong to the same work period if

0 ≤ Age(x)− Age(y) ≤ 1. (13.2)

They straddle a work period boundary if Age(x) = 0, Age(y) = U − 1. If one
of these cases holds then we will say they are time-consistent. ⌟

124

The most important consistency requirement, in the concept of siblings, is
a combination three kinds of consistency: of space- and time-consistency, and
agreement in stable locally maintained fields.

Definition 13.6 (Siblings) Two cells x, x+ jB for j ∈ {−1, 1} are siblings if
one of the following properties holds.

1) They belong to the same work period, originate at the same colony (see
the definition of originating colony at the beginning of Section 12.1), either
both are germ cells or neither of them is. If x is a colony cell and x+ jB
is a growth cell then Growing j(x) = 1 is also required.

2) They belong to the same colony (see the definition of the colony of a cell
at the beginning of Section 12.1), and straddle a work period boundary.

3) They have fitting colors.

4) If they are germ cells with G-growing(Age) then they agree in their G-size
and Dominant fields (see Section 14.4).

⌟

The sibling relation, unlike in biology, is not transitive. It would be more
appropriate, but more awkward, to use the term “half-sibling”.

Definition 13.7 (Domains)

max-depth = heal-span (13.3)

with value defined in (12.5). An interval of cells in which the adjacent cells
are siblings will be called a domain. A domain of size n will also be called
a n-support of its members. For integer k > 0, let us call two cells x, x+ kB
relatives if we can change the states of cells x+ jB for j = 1, . . . , k−1 in such
a way that the cells x, x + B, . . . , x + kB become a domain. A colony with
starting cell x will be called full if it is covered by a domain in such a way
that Addr(x+ iB) ≡ i (mod Q). ⌟

So if a color is an element of {−1, 0, 1}, and Fit1(c, d) = 1 if c ≤ d then a
domain is either has just one color, or starts with a −1’s, continues with 0’s
and ends with 1′s. All of these can be empty, except that if both −1 and 1 is
present then some 0’s must also be there.

For a cell x, the distance of the boundaries of a domain containing x is
estimated by the concept of depth. For the purpose of depth, we only consider
domains within a single colony.

Definition 13.8 (Depth) Let us call the left depth of a cell x the size of the
largest domain of the form {x− iB, x− (i−1)B, . . . , x} within a single colony

125

containing x. The right depth is defined similarly. For example, depth−1(x) >
1 just means that x has a left sibling.

For a locally maintained field F we define the left depth depthj,F (x) for F
of a cell x the size of the largest interval of the form {x−iB, x−(i−1)B, . . . , x}
within a single colony containing x and having constant value of F .

A cell will always try to keep track of its depths, up to the maximum
possible value. It will use the fields

Depthj ,Depthj,F ∈ {1, . . . ,max-depth}, j ∈ {−1, 1}.

So if for example left depth is larger than max-depth then the cell may only
see Depth−1 = max-depth. ⌟

The condition depthj = 1 means that in direction j either there is a colony
boundary or a domain boundary. On the other hand the condition Depthj = 1
is a statement about the field Depthj , maintained by observing depthj using
the rule Watch-depth in Algorithm 13.1. Let

∆ = 5 (13.4)

denote the number of cells directly affected by damage.

Algorithm 13.1: rule Watch-depth

pfor j ∈ {−1, 1} do
if depthj = 1 or Addr = ej then Depthj ←1 1

else Depthj ←1 max-depth ∧ (Depthjj + 1)

forall locally maintained fields F do
if depthj,F = 1 or Addr = ej then Depthj,F ←1 1

else Depthj.F ←1 max-depth ∧ (Depthjj,F + 1)

Rule Loc-maintain locally maintains all locally maintained variables.

Algorithm 13.2: rule Loc-maintain

pfor j ∈ {−1, 1} do
forall locally maintained fields F do

if Age is stable for F and Depthj,F = max-depth

and Depth−j,F < max-depth then

F ← F j

126

Age updating The rule for updating age is similar to the “marching sol-
diers” rule for updating Age in Section 8. In Definition 13.5, we imposed some
extra order on the age of all cells in the same extended colony: it must be
non-increasing as they become more distant from the center cell of the origi-
nating colony. While healing some inconsistency, age updating is paused with
the help of a field called Frozen. This variable will also point to the place of
nearby inconsistency that caused the freezing, In pointing to the position of
inconsistency, playing a role somewhat similar to the fields Depthj .

Definition 13.9 There is a field

Frozen ∈ [−∆,∆] ∩ Z

with the property that when Frozen ̸= 0 then Age will not be changed. A cell
with Frozen ̸= 0 is called frozen. ⌟

Here is the basic updating rule for age:

Algorithm 13.3: sub-rule March , delay p1

if Frozen = 0 and Age < U − 1 and
(1) the increase of Age does not break the sibling relation with any

neighbor then
Age ← Age + 1

The main colony-organizing variables, address and age, can be changed
only by very few rules.

Condition 13.10 (Address and Age) a) Only Finish can change Addr of
a live cell.

b) Only March , Heal-sync and Finish can change Age of a live cell. Of
these, Heal-sync can do it when the cell is frozen and the others when
it is not.

⌟

13.3 Edges

Definition 13.11 (Edges) Suppose that cell x has no siblings in direction j,
that is it has depthj(x) = 1. It will be called a protected edge in that direction
if it is some legitimate boundary in that direction, in the sense described
below; otherwise, it will be called an exposed edge. Recall expansion periods
and cells in Definition 12.7. Essentially, growth edges are protected during

127

the expansion period or if the growth reached a colony end. Here is a list of
the types of protected edges, for non-germ cells. For germ cells, the definition
will be given in Section 14.4.

Member Colony end-cell towards j.

Expansion cell During the expansion period, while j is the direction of expan-
sion. After the expansion period, if the cell is a growth cell and a colony
end-cell towards j.

In a rule, the condition
Xposed j .

means that the cell x applying the rule is an exposed edge in direction j. ⌟

An exposed edge is the sign of defect, or a call to eliminate an extension
of a colony or a colony; it may be killed—fast by the purge rule, or slow by
the decay rule.

Lemma 13.12 If a left exposed edge dies and its right sibling was not a colony
endcell, then this neighbor becomes a left exposed edge. The same holds if we
replace left with right.

Proof. The one case when this is not obvious is when the exposed edge is a
left outer cell past its expansion period but its neighbor may not be. But the
address-dependent nature of expansion periods as introduced in Definition 12.7
forces then the right sibling also to be past its expansion period.

The following notion will be needed much later:

Definition 13.13 (Multi-domain) A multi-domain is one of the following
kinds of set:

1) A domain.

2) The union of some adjacent domains meeting in protected colony end-
cells.

⌟

From the above definitions it is clear that only a cut (as in Definition 12.8)
can turn a domain into a multi-domain. The following lemma is an immediate
consequence of the definition of protected edges. Its technical exceptions relate
to the part of the program, detailed later, governing the growth of germs. A
germ will start from a “leading” germ cell with address Q/2, and needs to
grow to at least a size 3 without seeing live neighbors in order to stay alive.

Lemma 13.14 If some maximal multi-domain has size < Q, then the follow-
ing holds:

128

a) One of its edges is exposed, with the following exception: it consists of
germ cells in their expansion period, contains a cell with address Q/2,
and the size is either > 3, or 3; in the latter case the adjacent neighbor
cells of the domain are not live.

b) If the size is ≤ Q−d with d > 0, then at least one the exposed edges can-
not become protected by the death of an outside neighbor, or by shrinking,
or by growing by fewer than d steps. The only exception is a germ of size
3 of the above kind: it may become protected if a neighbor dies.

14 Killing and creation

In order to eliminate local functional obstacles, information in some cells will
need to be erased and then replaced with one in harmony with one of its
neighbors.

14.1 Killing

As said above, a cell will be “killed” by making it latent. It will advertise its
death in advance:

Definition 14.1 We will have some one-bit fields

Dying j , j ∈ {−1, 0, 1},

with default value 0. We will say that a cell x is dying if Dying0(x) = 1. ⌟

In fact, Dying0 = 1 announces that the cell will die soon. The fields
Dying j for j ∈ {−1, 1} try to keep track of whether a neighbor is dying,
which will allow a cell to see even whether a second neighbor is dying. They
are maintained by rule Watch-dying in Algorithm 14.1 which acts with the
minimal delay.

Algorithm 14.1: rule Watch-dying

pfor j ∈ {−1, 1} do
if Kind j ̸= Vac then Dying j ←1 Dying

j
0

A program will kill a cell via the rule Die(p) of Algorithm 14.2: the ar-
gument determines the delay. It actually takes 2p consecutive applications of
the rule Die(p) to kill the cell: p applications to set Dying0 ← 1 and then p
more to kill it. The rule Create of Algorithm 14.5 will disqualify a dying cell
from creating a live neighbor.

129

Algorithm 14.2: sub-rule Die(p)

Dying0 ←p 1;
if Dying0 = 1 then Kind ←p Latent

Algorithm 14.3 (Purge) kills exposed cells that are not to be healed: either
because they belong to small maximal domains thus are isolated), or expansion
arms, or to a doomed area near the end of the work period.

Algorithm 14.3: rule Purge

cfor j ∈ {−1, 1} do
if Xposed j and (Depth−j ≤ ∆ or Kind ̸= Member

or (Doomed and Age > U − 2Q)) then
Die(p1)

14.2 Birth, creation, adaptation

Rule Birth in Algorithm 14.4 is just enforcing the condition that newborn
cells are latent. In simulation, birth will be implemented for big cells when
germ cells succeed in creating a new colony.

Rule Create in Algorithm 14.5 controls the values of the field Creating j
in order to avoid creating overlapping cells. A new latent cell is born with
Creating j = 0, turning it on with a delay p0. Part (1) turns off Creating j(x)
if the neighbor x + jB is already there. The last part of the rule is just a
constraint on the kind of cell that can be created, namely only a latent one,
thereby enforcing Condition 10.10. The cell x is not really there to “apply”
this part: in the simulation it is observed by a creator neighbor ϑ−j(x).

We do not have to worry about other strange rules for non-cells:

Condition 14.2 (Birth) Create and Birth are the only rules applicable to
a vacant cell. ⌟

The birth condition implies that in all cases different from the ones listed
in the rules Create or Birth , the site is required by the transition function
to remain vacant. Condition 10.16f) allows for the creation to be blocked by
a cell whose body intersects the cell to be created.

Consider a cell x and its left nonadjacent neighbor y that may want to
create a cell in y+B, overlapping the body of x. Whether x will be erased is

130

Algorithm 14.4: rule Birth

if Kind = Vac and the two adjacent neighbors are vacant then
Kind ← Latent

Algorithm 14.5: rule Create

cfor j ∈ {−1, 1} do
(1) if adj-nb(j) = 1 then Creating j ←1 0

else Creating j ←p0 1

if Kind = Vac and Creating−j
j = 1 then Kind ←1 Latent

decided not by whether y is stronger than x but by whether the new cell y+B
would be stronger than x. This distinction matters when a colony attempts
to create an outer cell that would intrude into another colony. As the created
cell would be weaker than the member cells of the other colony with whom it
is competing for space, this will not happen. Let us introduce some auxiliary
notation, useful for many rules.

Notation 14.3 For a relation R, let

a
R
< b

mean “a < b or (a = b and R holds)”. ⌟

Here is the inequality to be used when deciding whether a non-germ cell x
can be overwritten by a neighbor. It says that the neighbor must be non-dying
and backed up by a non-dying sibling, the kind of x must be dominated by the
kind to be created, and if a neighbor on the other side also wants to overwrite,
the intended kind from that side must also be weaker. Ties are decided by
preferring a creation towards the left. The competing growth of germs will be
regulated later in Section 14.4.

Definition 14.4 Let j ∈ {−1, 1}. The field Kind j shows the kind of the cell
intended to be created in the adjacent neighbor in direction j. Let

Non-germ-lessj ⇔ Kindj−j
j=1
> Kind ∧ Depthjj > 1 ∧ Dying jj = 0

∧ (Kind−j = Vacant ∨ Kind j−j
j=1
> Kind−j

j).

(14.1)

⌟

131

For j ∈ {−1, 1}, rule 14.6, Adapt(j), makes cell x a sibling of its neighbor
in direction j. Sub-rule (1) is not really a rule that a cell can execute, since
it is referring to the case when it is vacant. Rather, it shows a condition
under which the neighbor cell in direction j is a potential creator, as in Defi-
nition 10.12. Sub-rule (2) kills a cell if it is in the way of the above creation,
sub-rule (3) erases a latent cell fast.

Algorithm 14.6: sub-rule Adapt(j)

if Dying j0 = 0 and Creating j−j = 1 then

(1) if Kind = Vacant and adj-nb(j) then Kind ← Latent
(2) else if Kind ̸= Latent then Die(p1)
(3) else if ¬adj-nb(j) then Kind ←1 Vac

else make x a sibling of xj , with the same color

Definition 14.5 (Parent) If a latent cell x came to life by the rule Adapt(j)
then we will say that it has been animated. The neighbor in direction j will
be called its parent . (The latent cell could have been created earlier by a
neighbor, which we could call a “creating parent”.) In case the same result
could also have arisen using the neighbor on the other side then the parent
cell is defined as the one closer to the center of its colony (or to the left if the
animated cell is the center). ⌟

The following lemma is immediate from the definition of the adaptation
rule.

Lemma 14.6 Suppose that

a) A cell x has just been adapted at time t to a non-germ neighbor y = ϑj(x)
(this rule being a possible explanation for its becoming live);

b) Rectangle (x+ [−2.1B, 3.1B))× (t+ (−3T •, 0]) is damage-free;

c) There is no colony-boundary between y and its sibling required by the
rule.

Then x and y stay siblings until after t.

Proof. The adaptation y to be non-dying. Due to the minimum delay p0 in
dying which they did not even begin, these cells remain live till after t. Since
there is no colony boundary between them, a cut (as in Definition 12.8) will
not break the sibling relation of these cells either.

132

The following lemma shows that the rule Create indeed succeeds in cre-
ating a new cell. Here, cell x − B will create a cell at site x. Creation from
the right is analogous. Recall the notation τi from Definition 12.10.

Lemma 14.7 (Creation) Assume the following, with J = (t0, t0+τ0+11T •]:

a) Rectangle [x− 4.1B, x+ 3.1B)× J is damage-free;

b) We have η(x−B, t).Dying0 = η(x−B, t).Dying−1 = 0, and

η(x−B, t).Kind1 ≥ η(y, t).Kind ∨ η(y, t).Kind−1

for all live cells (y, t) in the rectangle [x, x+ 2B)× J .
Then η(x, t) is non-vacant for some t in J .

Proof. Assume, on the contrary, that x is vacant during all of J , and we will
arrive at a contradiction. The conditions imply that noise does not affect
cell x − B, so it can obey its transition rule. Hence part (1) of the rule
Create sets η(x − B, t).Creating1 = 1 at some t1 ≤ t0 + 2T •, and this stays
so while x is vacant. Condition 10.16f) requires x to become a cell by time
t1+2T • unless the body of some cell overlaps the body of x. Suppose therefore
that cell y overlaps the body of x before time t2 = t1 + 2T • ≤ t0 + 4T •.
Then y > x, since in case y < x, cell y would overlap cell x − B, which is
assumed to be there during all this time interval. This y disappears by time
t3 = t2 + τ0 + T • = t1 + τ0 + 5T •. Indeed, part (2) of Adapt makes y latent
within τ0, then part (3) erases y within T •.

If no similar obstacle cell y′ arises before time t4 = t3 + 2T • = t1 + τ0 +
7T • then again x would be created, so assume one appears. This can only
happen if y′ + B creates it (and hence is latent). After it does, rule Create

of Algorithm 14.5 turns off Creating−1, turning which on again takes time
≥ p0T•. Now Adapt will erase y′ by time t5 = t4 + 2T • = t0 + τ0 + 9T •. No
other cell with Creating−1 = 1 can arise by time t6 + 2T • = t0 + τ0 + 11T •;
partly for the same reason and partly because if y′ + B is erased and a new
latent cell occupies its place then its Creating−1 is turned on only by a delay
of p0T•, as said in rule Create of Algorithm 14.5. As a result no new obstacle
y′′ can appear soon after y′ has been erased.

Condition 10.16d), allows only one other way for a cell to appear, namely
“out of nothing”; but this requires the cell to have no neighbors with a body
within distance 2B of its body, and as x − B would be such a neighbor, this
cannot happen.

133

14.3 Growth

Growth cells as well as germ cells are born in the attempt to create a colony
that encodes a latent big cell. Let us spell this out as a condition:

Condition 14.8 If a cell has kind Growth or Germ then its Info field’s value
is the symbol at Addr mod Q in the code of a latent big cell. (If, due to a
fault, it does not have that value then this would be immediately corrected in
the next step.) ⌟

Due to this condition, we do not have to set the Info field explicitly in
the Grow .passive and Germ-grow .passive rules below. Here are the rules
of growth for non-germ cells. For germ cells, see Section 14.4. Rules 14.9
(Extend) and 14.10 (Grow) both rely on the sub-rule 14.7, Grow .active to
show the intent to adapt a neighbor. The adaptation will be performed by
sub-rule 14.8, Grow .passive calling the rule Adapt . These rules use some
fields introduced in Definition 14.4, and the following definition of end-cells:

Definition 14.9 (Endcells) Let

e−1 = 0, e1 = Q− 1. (14.2)

A cell x is a colony endcell in direction j if Addr(x) ≡ ej (mod Q). ⌟

Rule Extend in Algorithm 14.9 serves to extend the channel in direction
j. Rule Grow in Algorithm 14.10 depends on the fields Growing j mentioned
in Example 13.2. Rule Loc-maintain of Algorithm 13.2 keeps the locally
maintained field Growing j constant throughout the extended colony. We will
see later that the computation rule sets Growing j = 1 in all cells of the colony
iff the field Creating j in the big cell represented by the colony has value 1.
Otherwise, it will be 0 in all cells.

Algorithm 14.7: sub-rule Grow .active(j)

if depth−j > 1 and ((Kind = Ext j and Addr mod Q ̸= ej) or

(Addr = ej and Kind = Member)) then
Kind j ← Ext j

else if Kind ̸= Germ then Kind j ← Latent

134

Algorithm 14.8: sub-rule Grow .passive(j), delay p3

if Non-germ-less−j and Kind−j
j = Ext j then

Adapt(−j)

Algorithm 14.9: sub-rule Extend

pfor j ∈ {−1, 1} do
if Kind = Latent and Age−j ∈ (0, compute-start] then

Grow .passive(j)
else if Age ∈ (0, compute-start] and Kind ̸= Germ then
Grow .active(j)

Algorithm 14.10: sub-rule Grow

pfor j ∈ {−1, 1} do
if Age ∈ (grow-start , grow-end] and Growing j = 1 then

Grow .active(j)
else if Kind = Latent and Age−j ∈ (grow-start , grow-end]
and Growing−j

j = 1 then
Grow .passive(j)

14.4 Germ growth

A latent cell turns immediately into a germ cell with Age = 0, Addr = Q/2
(which we can assume to be an integer). A germ is a domain of germ cells; its
goal is to grow into 5 colonies, and then turn the middle one into a big cell.
It tries to grow left and right, to addresses

e′−1 = −2Q and e′1 = 3Q− 1 (14.3)

respectively, with a notation analogous to (14.2). A growing germ cannot
intrude into an extended colony, as the cells of the latter are stronger, and
a growing colony can destroy germ cells in its way. Also, the germ growth
rule arbitrates between germs that are in the way of each others’ growth. See
Algorithm 14.16.

The germ work period in Algorithm 14.11 consists of a part Germ-grow

when it tries to grow, followed by a part when it will decay if it did not reach its
growth goal. So the edge of a germ cell is protected if it is pointing away from
the cell with address Q/2, and has either age < grow-end or reached address e′j

135

in one of the directions j. The work period ends with the procedure Lift , to
be described in Section 19.4, that lifts the computing functionality to the new
level of simulation by adding a new level of error correction to the payload.
The total number U of age-increasing steps of a germ work period is the same
as that of a colony work period.

For convenience of notation, in what follows properties and fields related
to germs will be marked with “G-”.

Algorithm 14.11: A germ work period

Germ-grow ;
Shrink;
Lift

The growth of the germ happens in stages. The field Stage-start will show
the start age of the current stage, lasting until

Stage-end = Stage-start +R · G-size, (14.4)

where the field G-size shows the size of the germ at that time, and the con-
stant R was introduced in (11.4). When Age = Stage-end then cells will set
Stage-start ← Stage-end and Stage-end according to (14.4). Each stage will
be divided into two parts: a computation part and a growth part. The growth
part starts at age Stage-start + 0.1R · G-size, and lasts until the end of the
stage. Let

G-growing(n) ∈ {0, 1}

be 1 if n is in the growing part of one of the stages, and 0 otherwise. During
the computation part, the germ’s cells will be informed of the addresses of the
of the germ’s edges by the rule Pass-germ-size of Algorithm 14.12. At the
end of this part, a single step

G-size ← G-edge1 − G-edge−1

records the germ size in each cell of the germ. We don’t want a germ to grow
much on one side if its growth is blocked (for whatever reason) on the other
side. To achieve this, at the beginning of the work period, the central cell
computes

Grow-dir ← argmin{G-edge−1,G-edge1},

136

which, in case G-edge−1 = G-edge1 chooses 1. This value will also be prop-
agated by Pass-germ-size , and growth will only be attempted in direction
Grow-dir . Also, as seen in the rule Germ-grow .active of Algorithm 14.15, the
growing side of the germ will be allowed to grow only to a distance G-size from
its center.

Algorithm 14.12: rule Pass-germ-size

if Kind = Germ then
if not G-growing(Age) then

cfor j ∈ {−1, 1} do
if Edgej = 0 then G-edgej ←1 G-edge

j
j

else G-edgej ← Addr

if sign(Addr −Q/2) = j then Grow-dir ← Grow-dir−j

The growth of germs over other germs has some color restrictions, which we
will express with the help of the relation Fit ′j(c, d). In case of the variant 1) of
Definition 13.4, only germs of the same color are not prohibited from overriding
each other, so simply Fit ′j(c, d) = Fit j(c, d). In case of the variant 2), also
germs with color 0 are not prohibited to override fitting germs. Formally,

Fit ′j(c, d) = 1 ⇔ Fit j(c, d) ∧ (c = d ∨ d = 0).

A germ can grow (subject to the above constraints) over another, if it is
significantly larger. By “significantly larger”, we mean larger by a factor

ρ = 5/4. (14.5)

If they are close in size, that is they differ by a factor ≤ ρ then the random
choice described below will arbitrate between them. However, let us see that
even the smaller one, if the decision favors it, will grow to become significantly
larger than the larger one. So suppose that germ G1 has size n, germ G2 has
size ρn, and germ G1 is allowed to grow. Its growth can be stopped by another
germ G′

1 growing in the opposite direction. However, one of these will cover at
least half of G2. So the germ that grew will have size at least n(ρ/2+1) > ρ2n.

The randomized decision works as follows. Both germs look at a field

Dominant ∈ {0, 1},

which will be set randomly by the cell with address Q/2 at each stage start,
and then propagated by the rule Pass-dominant of Algorithm 14.13. Between

137

germs of nearly the same size, the dominant one will prevail. After the com-
putation part of the stage, the values of G-size and Dominant are supposed
to be constant throughout the germ: this is part of the requirement for two
neighbor cells to be siblings. Formally, the relation Fit ′j(c, d) and

G-lessj(a, b)

will be used by the rule Germ-grow .passive of Algorithm 14.16. The meaning
of G-lessj(a, b) is that the germ cell with state b is in direction j from the germ
cell with state a, and will be able to grow over it or over the space that a wants
to grow over. Here are the rules to determine G-lessj(a, b). The germ of b
can definitely grow over the one of a if both are in their growing ages, and
it is it is either significantly larger or has reached the end of its growth on
the other side. A remaining case is when both germs reached their growth
end on the other side: then the germ of b can grow over the one of a if it
is dominant while a is not. The other remaining case is when neither germ
reached its growth end on the other side, and their sizes are also comparable:
then again the germ of b can grow over the one of a if it is dominant while a
is not. Formally, here is what determines whether G-lessj(a, b) holds:

1. We always need Kind(b) = Germ, G-growing(b.Age) = 1.

2. a.Kind < Germ is enough, otherwise a.Kind = Germ and
G-growing(a.Age) = 1 is necessary.

3. If a.G-edge−j ̸= e′−j then b.G-edgej = e′j or ρa.G-size < b.G-size is enough.

4. a.Dominant = 0 and b.Dominant = 1 is enough if either a.G-edge−j = e′−j
and b.G-edgej = e′j or a.G-edge−j ̸= e′−j and a.G-size ≤ ρb.G-size.

Germ growth is governed by rule Germ-grow of Algorithm 14.14. The ages
in which the edge of a germ can expand will be restricted only to part of the
growth period, to make sure that it can finish the growth it started:

G-growing .active(Age,Addr) ⇔ G-growing(Age)

∧ Age < Stage-end − 0.1RG-size + 5λτ2|Addr −Q/2|.

Similarly, the ages in which the edge of a germ can be killed by the expansion
of another germ will be restricted only to part of the growth period, to make
sure that the whole germ can be killed before the end:

G-growing .passive(Age,Addr) ⇔ G-growing(Age)

∧ Age < Stage-end − 5λτ2|Addr −Q/2|.

138

Algorithm 14.13: rule Pass-dominant

if Kind = Germ then
if Addr = Q/2 and Age = Stage-start then Dominant = Rand
else let j = sign(Addr −Q/2)
Dominant ←1 Dominant−j

Algorithm 14.14: rule Germ-grow

if Kind = Germ then
let j ← sign(Addr −Q/2− 0.1)
Germ-grow .active(j)

if Kind ≤ Germ then
for j ∈ {−1, 1} do

if Kind j−j = Germ then Germ-grow .passive(j)

Algorithm 14.15: rule Germ-grow .active(j)

if G-growing .active(Age,Addr) and Age < grow-end
and e′−1 < Addr < e′1 and j = Grow-dir and |Addr −Q/2| < G-size
then Kind j ← Germ

else Kind j ← Latent

Algorithm 14.16: rule Germ-grow .passive(j)

if Kind = Latent or (Kind = Germ
and G-growing .passive(Age,Addr) and Fit ′j(Color ,Color

j)

and G-lessj(x, x
j) and G-lessj(x

−j , xj)) then
Adapt(j)

14.5 Healing rules

Healing involves several rules. Recall frozen cells in Definition 13.9, and that a
frozen cell’s age will not be advanced in the regular way (seen in the rule 13.3,
March). The default value of Frozen is 0; nonzero values of Frozen will point to
some “defects”. This field is intended to show that in the direction indicated by
its sign, there is a time consistency at a distance indicated by its absolute value
|Frozen| ≤ ∆ (the latter constant is defined in (13.4)). So if Frozen = 1 then
the cell has on the right a time-inconsistent neighbor that is not a protected
edge; if it is 2 then its right neighbor has this property. The value of Frozen
will be propagated by part (2) of Freeze of Algorithm 14.17. Suppose that

139

−∆ < Frozen(x−B) < 0 and x is not exposed on the right: then we will want
to propagate the signal to the right by setting Frozen(x)← Frozen(x−B)−1.x
If at the same time x + B is a sibling with 0 < Frozen(x + B) < ∆, then
Frozen(x) ← Frozen(x + B) + 1 would also be suggested. In such cases we
will break the tie and propagate to the right. The freezing process is typically
started by part (1). If our cell is exposed to the right then we set Frozen(x) = 1.

The last else of the rule gradually unfreezes the area after the inconsistency
was eliminated. As expected, the field Frozen is private to the rule Freeze :

Condition 14.10 (Freeze) Only the rule Freeze can change the field Frozen
(without killing the cell). ⌟

The typical result of repeated application of the Freeze rule is that values
of the field Frozen in consecutive cells in the place where damage occurred will
be like

0, . . . , 0, 5, 4, 3, 2, 1, ∗, ∗,−1,−2,−3,−4,−5, 0, . . . , 0, (14.6)

(using ∆ = 5). Here the ∗’s show latent cells. All (weakly) exposed edges are
confined between the 1 and −1 in this picture. One of the sides of this picture
may be cut short by a protected edge.

Algorithm 14.17: rule Freeze

cond
cfor j ∈ {−1, 1} do

(1) if Xposed j and the neighbor in direction j is not

time-consistent then
Frozen←1 j

cfor j ∈ {−1, 1} do
(2) if 1 ≤ |Frozenj | < ∆

and (j = −1 or not 1 ≤ |Frozen−j | < ∆) then

Frozen←1 Frozen
j + j

else Frozen←p1 0

Recall the notion of directly affected cells in Definition 10.15. The number
of consecutive adjacent cells directly affected by the damage rectangle is at
most ∆, defined in (13.4). For the moment, let us call the smallest interval
encompassing these sites the corruption. The healing rule will be able to
repair a corrupted interval of size at most ∆ arising in some domain. A
typical case is when the corruption occurs inside a domain which itself is part
of a colony. In thinking of the healing rule, let us assume that other rules
(namely Freeze , Purge and Create) have achieved that the corruption is
filled with cells aligned with its boundaries. If our model was in discrete-time

140

then the correct values of Addr , Age and the locally maintained fields could
just be inferred from either edge of the corruption and copied into its cells.
But since the model is in continous time, the task is more complex. First, the
Freeze rule will freeze the Age values in some of the cells surrounding the
gap. (Otherwise, if the Age in one of these cells speeds ahead, it may become
impossible to bridge the gap with continously varying Age values.) Then, it
takes some coordination to recreate a continous sequence of Age values.

Remark 14.11 It would be convenient here if our robust medium had range
r > 4, so cells on both sides of the corruption can see each other. But intro-
ducing “action at a distance” brings its own headaches. ⌟

The healing rule itself will carry out only a single step of the reconstruction,
but its repeated applications will close the gap. As a further complexity, the
corrupted cells can be alive, and therefore it might not even be clear which
cell to correct. Suppose, for example, that values of Age in adjacent cells are
0, 0, 2, 2. Both 0, 1, 2, 2 and 0, 0, 1, 2 are possible corrections: the healing rule
will choose one.

Rule Heal in algorithm 14.18 consists of several rules applied simultane-
ously.

Algorithm 14.18: rule Heal

Heal-revive ∥ Heal-sync

Rule 14.19, Heal-revive , will revive a latent cell x, making it a weak
sibling to one of its neighbors. Rule Heal-sync in Algorithm 14.23 will try
to adjust the Age variables. In rule Heal-revive , assume that x is latent,
and x − B is alive. Then the rule may try to apply the rule Adapt(−1) to
x, adapting it to its left neighbor. If there is a similar demand on the right-
hand side, then if one of the adaptations creates a stronger cell, that one is
chosen, otherwise the left side is preferred. The field Healing will count the
cells revived during healing (by numbering them), limiting this way the size
of revived segments to heal-span. It actually may need to revive a segment of
size 2∆ with (∆ defined in (13.4)): if cells with Addr ∈ {∆, . . . , 2∆ − 1} are
changed by damage then the purge rule may kill these cells as well as the now
isolated segment with Addr ∈ {0, . . . ,∆− 1}.
Definition 14.12 (Healing field) We have a field called

Healing ∈ {0, 1, . . . , heal-span}.

141

Its default value is 0. A cell with Healing > 0 will be called a healing cell. The
field

Decaying ∈ {0, 1}

will limit the healing process in time. ⌟

The rule Heal-revive is the combination of several simpler rules. The
rule Heal-passive adapts a cell to an exposed member neighbor (making it
thus also a member), unless the neighbor is decaying or is doomed and old.
Its part (1) requires the healing to proceed always away from a colony center
(this restriction is only for proof convenience). The end-healing will allow
to kill intruder cells at the end of a colony in order to heal the end; these
intruder cells would not be necessarily isolated, so might not be eliminated by
the Purge rule.

Condition 14.13 The rule Heal-revive is the only one changing the value
of the field Healing . ⌟

Algorithm 14.19: sub-rule Heal-revive

if Kind = Latent then Heal .passive
else

End-heal

Control-decay

Algorithm 14.20: sub-rule Heal .passive , delay p1

cfor j ∈ {−1, 1} do
if Healing j < heal-span and Xposed j−j

and Decaying j = 0 and Kind j = Member

and not (Doomed j and Agej > U − 2Q)
(1) and direction j is towards the colony center of xj

and Non-germ-lessj then

Adapt(j)

Healing ← Healing j + 1

Here is the “story” interpreting these rules (and helping to follow their
analysis in later proofs). Suppose healing proceeds, say, towards the
left. An exposed cell sets Decaying = 1 slowly in part (1) of the rule
Control-decay , Algorithm 14.22, so while Decaying is not set it still allows

142

Algorithm 14.21: sub-rule End-heal

cfor j ∈ {−1, 1} do
if Xposed j and 0 < |ej − (Addr mod U))| ≤ heal-span

and Kind = Member then
Kind j ← Member

the rule Heal .passive in Algorithm 14.20 to proceed with healing. If a heal-
ing arm created by it reaches maximum length and does not close a gap then
its exposed end eventually sets Decaying = 1, and the rule Decay in Algo-
rithm 15.1 will kill it. In rule Control-decay of Algorithm 14.22, as soon as
a cell gets a neighbor with a larger Healing value, it sets Decaying = 1 fast
in part (2). Thus if the neighbor with higher Healing value gets killed due to
unsuccessful healing, it will not be revived again by rule Heal .passive of Al-
gorithm 14.20. This way eventually the whole unsuccessful healing arm will be
killed. Its first neighbor with Healing = 0 will also be killed; so an unsuccess-
ful healing eventually widens the gap it tried to heal. Rule Control-decay

in Algorithm 14.22 also sets the fields Healing and Decaying to their default
value 0 when their role has ended.

Algorithm 14.22: rule Control-decay

(1) if ∃ j Xposed j then Decaying ←p2 1

(2) else if ∃ j Healing j > Healing then Decaying ←1 1
else

Healing ←1 0
Decaying ←1 0

Rule Heal-sync in Algorithm 14.23 will readjust the age of some frozen
cells, to eliminate a discontinuity. To do this, it will try to bring Age closer
to the one of the neighbor to which the Frozen field points. The condi-
tions Frozen/j > 0 and Frozen−j · Frozen > 0 say that both Frozen(x) and
Frozen(x− jB) point to the same direction j. Condition Depth−j > 1 requires
the neighbor in direction (−j) to be a sibling. The condition ∆(j) ·∆(−j) ≥ 0
does not allow an age change that would break this sibling relation. Also,
because of Frozen−j · Frozen > 0, if changes happen simultaneously in both
x and x − jB then they happen in the same direction, still not breaking the
sibling relation.

Condition 14.14 (Age decrease) The only rule in which the Age field may
decrease is Heal-sync . ⌟

143

Algorithm 14.23: sub-rule Heal-sync

pfor j ∈ {−1, 1} do let ∆(j)← Agej − Age amod U
cfor j ∈ {−1, 1} do

if Frozen/j > 0 and Frozen−j · Frozen > 0 and Depth−j > 1

and ∆(j) ̸= 0 and ∆(j) ·∆(−j) ≥ 0 then
Age ← Age + sign(∆(j)) mod U

Example 14.15 The typical application of Heal-sync is, say, when in a
domain of cells with age values 1, 1, 1, 2, 3, 4, 5, 5, the damage changes the
values of three to

1, 1, 1, 0, 7, 6, 5, 5.

Now the cells with age values 0 and 7 become exposed towards each other,
and the Frozen variable develops the values 4, 3, 2, 1,−1,−2,−3,−4. After
this, Heal-sync will gradually bring the ages closer to each other. Here is a
possible synchronization history (time going downwards):

1 1 1 0 7 6 5 5
1 1 0 0 6 6 5 5
1 1 0 1 6 6 5 5
1 1 0 1 5 6 5 5
1 1 0 1 5 5 5 5
1 1 0 1 4 5 5 5
1 1 1 1 4 4 5 5
1 1 1 2 3 4 5 5

.

As in the second line here, the synchronization may not start in the best di-
rection, but since the adaptation is towards the fault in the middle, eventually
the fault will disappear.

It is not hard to see that in general, if the domain to synchronize has width
∆ then the synchronization will be finished within 2∆ steps. ⌟

Let us summarize the possible uses of animation and killing.

Condition 14.16 (Animation, killing) a) Only the rule Die(p) can kill a
cell. It is invoked always with p ≥ p1.

b) Only the following rules can invoke Die : Adapt , Purge , Decay .

c) Only the rule Adapt can erase a cell (make it vacant).

144

d) A protected edge can be killed only if a neighbor sets Kind j ̸= Latent in
its application of a growth rule or the end healing rule.

e) Only the rule Create can change Creating j .

f) Only the rule Adapt can create a non-latent cell, invoked only by
Heal .passive , Grow .passive and Germ-grow .passive (with the cor-
responding delay). It is also the only rule by which a potential creator
can arise in the sense of Definition 10.12.

⌟

An exposed edge is almost always a sign of past damage, the exception
being when at the end of a stage, a large group of cells needs to be killed off:

Lemma 14.17 (Exposing) A rule exposes an edge only in the following cases:

1) Member cell whose neighbor is doomed, and dies at Age = 0, that is at a
cut, as in Definition 12.8.

2) Channel cell, Age = compute-start.

3) Germ cell or growth, non-end-cell. Age = grow-end, or when a germ cell
is killed by Adapt invoked in Germ-grow .passive .

Proof. Direct consequence of the definition of siblings and exposed edges and
Conditions 13.10 (Address and Age), 14.16 (Killing).

14.6 Continuity

Our terminology turns out to be “incestuous”: a child cell can only be created
if it also becomes a sibling. Recall the interval I1(x) in Definition 10.14.

Lemma 14.18 (Parent) Suppose that I1(x) is damage-free during (u−T •, u]
(that is x is not affected via neighbors during this time, as in Definition 10.15),
and the non-germ cell x becomes animated at time u. Then there is a j ∈
{−1, 1} and t′ ∈ (u− 3T •, u− T•/2] such that the following holds:

a) x gets animated by parent x + jB, whose state at that time makes it a
sibling of (x, u).

b) If I0(x) ∪ I0(x + jB) remains damage-free during (u, u + T •] then x
and x+ jB remain siblings during that time.

Proof. We have an application of Adapt of Algorithm 14.6 from some y =
x + jB. So at the observation time t′ corresponding to the switch (x, u), we
have the situation described by a). To prove b): according to Condition 14.16,
the applied rule was either Heal or Grow , creating a sibling with Age equal
to that of the parent. Dying can only happen by decay or purge, which takes

145

time at least p0T• ≥ 2T •. The age of the child is made equal to the age of
the mother. In case of growth, the mother has time for at most change of
age (with delay p1), and this will not break the sibling relation within time
2T •. The healing case is trickier since the rule Heal-sync in Algorithm 14.23
can also decrease Age. But given that x was just animated then if, say, it
is created from the left, then the Frozen variables must point to the right.
Therefore the rule will not cause age change in the left neighbor as the ages
are made equal.

Normally, siblings remain siblings:

Lemma 14.19 (Glue) Suppose that the adjacent cells x, x + B are siblings
just before the time t0, at which x breaks the sibling relation. Suppose also
that both x and x + B are unaffected by damage even via neighbors during
(t0 − T •, t0]. Then we have the following possibilities:

1) A cut as in Definition 12.8.

2) Cell x−B was not a sibling of x at the last observation time of x, and
the switch kills x by Decay , Purge or Adapt .

The statement also holds if we exchange left for right and x+B for x−B.

Proof. If a cell x breaks a sibling relation by a rule, then one of the cases
listed in the statement of the lemma holds. This follows from the definition
of siblings, Conditions 13.10 (Address and Age), 14.16, and the healing rule.
We will show that if neither of the possibilities listed in the statement of the
lemma holds then the cells remain siblings.
1. Suppose that x or x+B were animated at some time in (t0−T •, t0]; without

loss of generality, suppose that the cell was x+B.
Then x + B will be without an age change or dying for at least p0T• time
units which is longer than the whole period under consideration, as (12.6)
implies p0 ≥ 5λ. If x also underwent animation during this interval then the
same is true for it, hence the two cells remain siblings. Suppose therefore
that x has been live during (t0− T •, t0]. The rule Adapt implies that x+B
is not a germ unless x is a parent. If x is a parent of x + B, then part b)
of Lemma 14.18 (Parent) implies that the two cells remain siblings for at
least T • time units; after this, both cells have seen each other as siblings
and therefore Condition 13.10 (Address and Age) shows that they remain
siblings until a cut or a death.

Suppose that x is not a parent of x + B. If it has changed its age within
the last 4T • time units, then it will not change the age for a long time after,
and the two cells remain siblings. If it has not changed its age within this

146

time then for at least 2T • time units before the observation time before the
animation, it was exposed to the right (since x+B was latent), and therefore
the rule 14.17 (Freeze) froze it, keeping x and x+B siblings.

2. Suppose now that both cells have been live during (t0 − T •, t0].
If x changed its age within this time, then it will not change its age soon,
and therefore remains a sibling. Suppose therefore that x does not change
its age during this time. Suppose that x + B became a sibling of x during
this time. Then it was not a sibling before, and the Freeze rule must have
frozen x, so x would not change its age so soon. If x + B was a sibling
all the time during (t0 − T •, t0], then x sees that x + B is a sibling and
will not break the sibling relation. This is guaranteed even within the rule
Heal-sync , which may change age in both directions.

15 Gaps

The main lemma of this section is the Running Gap Lemma, saying that if a
sufficiently large gap is found in a colony then this gap will not be closed but
will sweep through it, essentially eliminating a partial colony. This serves as
a preparation to the Attribution Lemma of the next section.

15.1 Paths

We will track the continuity of live areas in space-time via the notion of a
path.

Definition 15.1 (Links) For times t < u, assume cell x is live at t and its
body is damage-free during [t, u], and there are no switching times in the open
interval (t, u). Then we say that point (x, t) is connected by a vertical link
to point (x, u). If one end of a vertical link is not a switching time, then
the link is called short. If cells x, x + B are siblings at time t or (t−) such
that [x−B, x+ 2B) is damage-free during (t − T •, t], then the points (x, t),
(x + B, t) are said to be connected by a horizontal link . If point (y, t′) is,
according to case a) of Lemma 14.18 (Parent) a parent of point (x, u), we
will say that (y, t′) is connected by a parental (maternal or paternal) link
to point (x, u). A link is a link of one of these kinds. A link is steep or,
equivalently, slow if it is a non-short vertical link or a parental link. (Since
time is the second coordinate, steepness of a line is synonymous to slowness
of the movement of a point along it.) ⌟

147

By Lemma 14.18 (Parent), the parental link can be replaced by a vertical
connection and a horizontal connection. The horizontal connection is to a
sibling that is a successor to the parent, and the vertical ones continue back
in time towards the parent.

Definition 15.2 (Path) A sequence (x0, t0), . . . , (xn, tn) with ti ≤ ti+1 such
that subsequent points are connected by links, is called a path. A path with
only steep links is steep, or slow. A backward path is the reversed reading
of a forward path, backwards in time. The adjective “forward” or “back-
ward” will be omitted, when it is obvious from the context. For a path
P = (x0, t0), . . . , (xn, tn) and t ∈ [t0, tn], let

P (t)

be xi for the smallest i with t ∈ [ti, ti+1]. ⌟

A point (xi, ti) on a path can actually be dead, if it has just died: indeed,
it can be connected for example to a point (xi+1, ti+1) by a horizontal link
with ti = ti+1 such that xi, xi+1 are siblings at time (ti−). The following
lemma says that if two paths cross then they have a common point.

Lemma 15.3 (Crossing) Let (x1, s1), . . . , (xm, sm) and (y1, t1), . . . , (yn, tn)
be paths with s1 = t1, sm = tn, x1 ≤ y1, xm ≥ yn. Then there are i, j such
that xi = yj and either tj ∈ [si, si+1] or si ∈ [tj , tj+1].

Proof. Let us call the point (xi, si) whose existence is asserted, the crossing
point. Let us replace parental links with horizontal and vertical connections as
described in the remark after Definition 15.1. Now the two paths cannot jump
over each other. Indeed, at the time of the crossing, the cells involved have
to be at a distance B. At this crossing, one of the links must be horizontal;
suppose it is (xi, xi+1). Then either (xi+1, si) is on a vertical link between
some tj and tj+1 or there is also some horizontal a link (yj , yj+1) = (xi+1, xi)
at time si = tj . In both cases we can choose the crossing point xi+1 = yj at
time si.

According to the Parent Lemma, a steep path can be continued backwards
in time until it hits some island (as in Definition 10.3). Moreover, occasionally
we have a choice between two parents to continue to. The lemma below says
that any path started backwards not too soon after damage (the time defined
as purge-t in (15.2)) can be diverted and continued back past any island.

Definition 15.4 (Traceability) A cell (x, t) will be called traceable if I0(x) is
damage-free during (t− 4 purge-t , t]. ⌟

148

Lemma 15.5 (Skirting) Let [a0, a1)× (u0, u1] denote the (only) island in the
area under consideration. Consider a traceable live point (x0, t0). There is a
path going backwards from (x0, t0) and ending either in time u0 or in a birth
(in the sense of Rule Birth of Algorithm 14.4). It has at most ∆+1 non-steep
links (with ∆ as in (13.4)) which, with one possible exception, form a series
of up to ∆ consecutive horizontal links, and can only cross a colony boundary
in the inward direction, and only if Age < grow-end+∆ on all cells involved.

Proof. Let us start constructing a steep path c0, . . . , cn with

ci = (xi, ti)

backwards in time from (x0, t0), consisting of either vertical links, or parental
links if the conditions of Lemma 14.18 (Parent) are applicable. If we get to
time u0 then we are done. Otherwise let us stop just before going below
u1 + T •, with ck being the last element. Then the body of xk intersects
[a0 − 1.1B, a1 + 1.1B): indeed, otherwise we could continue the path either
by a vertical or by a parental link. The vertical link would be shorter than
T •, and the parental link would lead to a damage-free cell, so either of them
would be allowed.
1. There is an i ≤ k such that (xi, ti) can be connected by horizontal links

that do not cross a colony boundary in the outward direction, to a cell y
unaffected by the damage even via neighbors at any time (in the rectangle
under consideration).
Proof. Let us go back on the path for k, k− 1, . . . until the first i (counting
from k) such that either ti > u1 + (∆+ 1)τ0, or ci is a parent of ci−1; let us
call it i1.

Suppose first ti1 > u1 + (∆ + 1)τ0. Then there is some i1 < i ≤ k such
that (xi, ti) can be connected by horizontal links to a directly unaffected
cell y. Indeed, if there is not, then xi = xk, i = k, k − 1, . . . , i1, since we
have not encountered a parent before. The part of the domain containing
xk that consists of cells directly affected by damage has size ≤ ∆. If we
cannot pass away from it via siblings within the same colony or towards the
originating colony then at least one end will be exposed and the depth will
also be bounded by ∆. This allows the Purge rule to gradually eliminate
this part, including xk, leading to a contradiction. The time this takes is
at most ∆T • to propagate the depth information, followed by ∆τ0 to apply
the steps of Purge until xk is reached, for a total time of ∆τ0 +∆T •. This
shows t0 ≤ u1 + (∆ + 1)τ0 since ∆ < p0. By the definition of purge-t this
contradicts the assumption of the traceability of (x0, t0). If the only way

149

to get by horizontal links to a directly unaffected cell is to cross a colony
boundary in the inward direction with Age ≥ grow-end+∆ then there is an
exposed cell in the opposite direction, at distance ≤ ∆B, so Purge will act
again in the same way.

Suppose now that ci1 is a parent of ci1−1. Let us then go back on the
path for i = i1, i1 − 1, . . . until the first i (counting from i1) such that
ti > ti1−1 + (∆ + 1)τ0. There is such an i, and we have xi = xi1−1 for all i,
since the newborn xi1−1 cannot be a parent sooner. Indeed, Condition 14.16
says that animation happens only via healing or growth, and even the faster
healing step has a delay of p1. By the same reasoning as above, there is
some i1 < i ≤ k such that (xi, ti) can be connected by a sequence of at most
∆ horizontal links not crossing a colony boundary in the outward direction,
to a directly unaffected cell y.

2. There is a steep path backwards in time from the point (y, ti) computed
above, going only either on vertical or parental links, and ending below
time u0.
Proof. Let us construct such a path. If it contains at most one parental
link, then the body of cells it reaches still is damage-free, hence the path
can be continued. On the other hand, it cannot contain two parental links,
since a newborn xi1−1 cannot be a parent soon.

Definition 15.6 (Trace-back path) A backward path is called a trace-back
path if every link in it is chosen to be a vertical or a parental link if this is
possible, with horizontal links only as needed in Lemma 15.5 (Skirting). ⌟

Definition 15.7 (Age progress) Let P = (c0, . . . , cn) be a forward path. The
age progress of P is defined as

age-progress(P) =
n−1∑
i=0

(Age(ci+1)− Age(ci) amod U).

⌟

The following lemma upper-bounds the number of colonies a trace-back
path can cross and also its age progress.

Lemma 15.8 Suppose that a trace-back path P with n links has time projec-
tion d < T ∗

• /4. Then the following holds.

a) P passes through at most 3 colonies, for a total space projection of <
2.1QB.

150

b) d ≥ (n − ∆ − 1)T•/2. If the path has no parental links then the factor
1/2 can be omitted.

c) The age progress of P is at most n/p1 +∆+ 2.

Proof. Let us show that P can pass through at most 3 colonies. It moves
horizontally only along parental and horizontal links. The latter only occur
in connection with the application of Lemma 15.5 (Skirting), with at most ∆
horizontal links per island. Given the time bound on the whole path, as long
as it does not cross more than three colonies, at most one island will appear,
hence we do not have to count with more than one series of ≤ ∆ horizontal
links.

Parental links can only occur in connection with healing and growth. Heal-
ing moves the forward path towards the edge of a colony as shown in rule
Heal .passive of Algorithm 14.20, only growth can move it towards the cen-
ter. In order to move towards the center of another colony, another growth
cycle must start (except in case of germ growth, which can span three colonies).
But definition (12.3) implies that within the time bound T ∗

• /4 the path cannot
reach from the end of one growth to the beginning time of another.

Let us prove the time projection lower bound. There are at most ∆ hori-
zontal links and 1 non-steep link, arising from the island. The other at least
n−∆− 1 links are steep. A steep link is either vertical, in which case it has
size ≥ T•, or parental, in which case it has size ≥ T•/2.

Let us estimate now the age progress. By the definition of the animations
in healing and growth, age does not increase along parental links. Along
horizontal links the age can increase by 1, and it can also increase immediately
after the last horizontal link. It can also increase by 1 at the first link (in time).
But during the remaining vertical links, age increase occurs no sooner than
every p1 steps, hence the total age increase is at most ∆ + 2 + n/p1.

15.2 Running gaps

The rule Decay attempts to widen any gap that was not closed in reasonable
time. It erases all the cells created by Heal-revive , as well as one more cell,
since they were marked by Decaying . The delay p2 of decay gives a chance for
the healing process to complete. The difference between killing by Purge and
killing by Decay is that Purge kills fast, but its reach, in case of non-doomed
member cells, is only local: healing is intended after it. On the other hand,
Decay slowly eliminates the remainders of a colony if healing fails to close a
gap within a certain time limit.

151

Algorithm 15.1: rule Decay

if Decaying = 1 and ∃ j ∈ {−1, 1} Xposed j then Die(p2)

Gaps and gap paths are a tool to show that the decay rule indeed destroys
incomplete colonies. Their definition is complicated by the consideration of
germs, needed for self-organization. Here are some constants; for readability,
we omit the notation ⌊·⌋ for integer part. Recall the definition τi = (pi+1)T •

in (12.4), ∆ in (13.4) and heal-span in (12.5). Let

island-size = 2.5,

gap-lb = 4 heal-span+ 2 island-size+ 21, (15.1)

purge-t = (∆+ 1)τ0, (15.2)

split-n = (heal-span+ 1)(2 gap-lb+ 1), (15.3)

split-t = split-n τ2. (15.4)

Definition 15.9 (Gaps) Consider an open interval G = (l, r) at some time
t, where 0 < r − l is divisible by B. We say that G is a right gap with size
|G| = r− l−B if every traceable cell in G can be space-consistent with r only
if it is a germ cell. The right age of the gap G is is the upper bound of the age
of these germ cells (it is 0 if the gap contains no germ cells). If G is contained
in the colony of r then it is called an interior gap. A right bad gap is a gap of
right-age

λ split-n (heal-span /2 + 1)

containing an interior gap of size ≥ gap-lbB. If the gap itself is not interior
then its right edge is required to be an exposed right outer cell. Left gaps are
defined similarly. ⌟

We are interested in how a gap changes in time.

Definition 15.10 (Gap path) Suppose that in a time interval [v0, v1], the
gap G(t) = (l(t), r(t)) is defined for all t, in such a way that all cells r(t) are
space-consistent with each other, and G(t1) ∩ G(t2) ̸= ∅ for all t1, t2 with
|t2 − t1| ≤ 3T •. Then G(t) is called a (right) gap path, and the right age of
the gap path is the maximum of the right ages of the gaps in it. ⌟

Let us make the following simple observation.

Lemma 15.11 If a path space-consistent with r(t) has the same time projec-
tion [v0, v1] as the right gap path G(t) and has no germ cells younger than the
right age of the gap path then it cannot cross G(t).

152

The lemma below says that the decay rule causes a large enough gap to
move right rather fast. The gap is assumed to be connected, via a series of
horizontal links, to a forward path. This excludes irregular and unimportant
cases when the gap would have to travel through all kind of debris.

Lemma 15.12 (Running Gap) Recall the definition of gap-lb in (15.1). Let
P1 = (x0, v0), . . . , (xn, vn) be a trace-back path (listed forwards), let L, k be
positive integers with

L < Q2,

k < U − 3Lp2λ.

Assume the following:

a) y0 < x0 are in the same domain at time v0.

b) The interval [y0 − 2.1B, x0 + 3.1B) has been noise-free during (v0−T •, v0].

c) y0 is an exposed left edge at time v0 (see Section 13.3), and has been the
right end of a bad gap of right-age k during (v0 − T •, v0]. Its age is not
within ∆ steps of any of the age values listed in Lemma 14.17 (Exposing),
with ∆ defined in (13.4).

d) If y0 is a left outer cell then P1 is in the same colony. In this case, let
Z be the starting cell of the originating colony. Otherwise, Z =∞.

e) vn − v0 ≤ Lτ2.
Then during (v0, vn], a right gap path G(t) = (l(t), r(t)) can be defined,

with r(v0) = y0,

r(vn) ≥ Z ∧
(
y0 +B

(|vn − v0 − purge-t |+

3τ2
− 2 heal-span− island-size− 11

))
,

(15.5)

|G(t)| > 0, with right-age < k + 3Lλp2.

The following corollary says (in contrapositive) that if path P1 is long,
then there is no large young gap next to its beginning (say, on the left).

destr-t = 10τ2, (15.6)

destr-s = destr-t /p1T•. (15.7)

We will also use the following lower bound on Q:

Q > 3(2 heal-span+ island-size+ 11) + purge-t /τ2. (15.8)

153

b
b���

b
b
b���

b���
b
b���

b���

b���
b
b��b��b b���

b��b b b��b��b b b��b
b��b���

b��

r r r r r r r r r r rAAA
r
r���

r
r
r
r���

r
r

6
timel(t) r(t) P1(t)

(x0, v0)(y0, v0)

(xn, yn)

Figure 10: Running Gap Lemma

Corollary 15.13 (Running Gap) Assume the conditions of the Running Gap
Lemma, further that (xn, vn) is not a germ cell younger than k+6Lλp2. Then
vn − v0 < destr-tQ.

Note that the statement is meaningless unless L > 10Q, since vn−v0 < Lτ2
is a condition of the Running Gap lemma.

Proof. It is easy to see that the length of the path is at most 3Lλp2 (the
proof is just like the proof of the lower bound on the length of path P2 in the
proof of the Running Gap Lemma below). Path P1 starts to the right of the
gap path G(t). Since age varies by at most 1 per link along a path and since
(xn, vn) is not a germ cell younger than k + 6Lλp2, no cell on P1 is a germ

154

cell younger than k+3Lλp2, while according to Lemma 15.12, all cells in G(t)
space-consistent with r(t) are germ cells with such age. Therefore P1 never
crosses the gap path. Inequality (15.5) gives a lower bound on how fast r(t)
moves right. According to Lemma 15.8, P1 passes at most 3 colonies. Edge
r(t) therefore can move right by at most 3Q, giving

3Q ≥ (r(vn)− y0)/B ≥
vn − v0 − purge-t

3τ2
− 2 heal-span− island-size− 11,

vn − v0 ≤ 9τ2Q+ 3τ2(2 heal-span+ island-size+ 11) + purge-t < 10τ2Q,

where we used (15.8) and (15.6).

Proof of Lemma 15.12. Let r(v0) = y0, and let l(v0) be the leftmost cell such
that the gap (l(v0), r(v0)) has right-age ≤ k.
1. Let t1 > v0. Assume that for all t ≤ t1, a gap path G(t) is defined with

the desired properties and in such a way that (r(t1), t1) is not a germ cell
younger than k + 6Lp2λ, and is traceable. Then r(t1) is an exposed edge,
space-consistent with r(v0).
Proof.

1.1. Let us build a path.

We start by building a backward trace-back path of length m

P2 = ((z0, w0) = (r(t1), t1), . . . , (zm, wm))

ending at time v0. Lemma 15.8 and the bound e) gives

m ≤ ∆+ 1 + 2(vn − v0)/T• ≤ ∆+ 1 + 2Lτ2/T• < 3Lλp2.

The path does not end in a birth; indeed, otherwise (r(t1), t1) would be
a germ cell younger than 3Lp1λ contrary to the assumption. It does not
enter the gap; otherwise (r(t1), t1) would be a germ cell younger than k+
3Lλp2 + 3Lλp2, which was excluded. Therefore defining x = P2(v0) gives
x ≥ y0. Without loss of generality, we can suppose x ≤ x0. Otherwise,
Lemma 15.3 (Crossing) implies that path P2 crosses P1 and we can switch
from P2 to P1 at the meeting point. Thus, x is on the interval [y0, x0],
aligned with x0.

Combine P2 and the horizontal path H from (x, v0) to (y0, v0) into a single
chain of links. It has at most 3Q horizontal links on H, and then at most
∆ + 1 + 2(vn − v0)/T• links on P2, giving fewer than

3Q+ 2(vn − v0)/T• +∆+ 1

155

links. We have r(t) ≥ B(y0 − 2 heal-span − island-size − 11). Indeed, the
only way for r(t) to move left is via an island (can happen at most once)
that is then connected to the right end of the gap by healing.

1.2. A protected left edge cannot occur on H + P2.

Proof. Suppose first that (y0, v0) is a member or right outer cell, or a
germ cell with Addr > 0. Then the large bad gap on its left contains, by
the definition of bad gaps, a gap in the same colony or in the originating
colony. The path P2 could cross it only by repeated parental links. But
the size of the gap is too large for using rule Heal-revive , since the field
Healing limits the number of applications. Instead, P2 (when traveled
forward) would first have to walk right via parental links to participate in
the creation of a colony and then walk back via parental links through the
expansion process from that colony—for which there is not enough time
due to (12.3).

Suppose now that (y0, v0) is a left outer cell. By requirement d), then
the path P1 stays in the colony of y0, and hence so does the whole gap
path. Since the cell is exposed, its age is already past the expansion stages.
Walking right, the age of cells on the path H (which remains in the same
colony as well) does not decrease except when it crosses into another work
period (this is taken care of by our Definition 15.7 of age progress that
uses amod U). Indeed, by Definition 13.5 (Time consistency), the ages of
siblings must be non-increasing as one is moving away from the center of
the originating colony. It is also non-decreasing on the trace-back part P2,
except possibly on the ≤ ∆ horizontal links allowed by that Lemma 15.5
(Skirting). Therefore the age of (r(t1), t1) cannot be smaller by more than
∆ than that of (y0, v0). If the age is not smaller at all then (r(t1), t1) is
also exposed, since the number of steps on the path is not sufficient to get
into an expansion stage of the next work period. If decreasing the age by
∆ makes it protected, then one of the cases in Lemma 14.17 (Exposing)
must have occurred within the last ∆ steps before the age of (y0, v0): but
this has been excluded by the condition c) of the lemma we are proving.

Suppose that (y0, v0) is a germ cell with Addr < 0. Since it is exposed to
the left its age is ≥ grow-end, and its address is > −Q. In this case, the
same argument works as for left outer cells above.

A large gap cannot be closed by the healing rule, but it can be narrowed
somewhat. Suppose that for a gap G = (l, r) the cells r, r + B, . . . , r + kB
are siblings with Decaying(r + iB) = 1, Healing(r + iB) = k − i. Then we set
r′ = r + kB. If these conditions are not satisfied then set r′ = r. We define

156

similarly, l′ = l − kB for an appropriate k. The values l′, r′ will be called the
adjusted edges of the gap, and we will write G′ = (l′, r′). the adjusted size is
|G′| = r′ − l′ −B.
2. Assume that the gap G(t) with the desired properties was defined up to

time f0, with adjusted size |G′(f0)| ≥ 2 heal-spanB + 2 and right age ≤ k.
Assume also that in the area where we define the path further, all cells are
unaffected even via neighbors during (f0 − purge-t , f1].

Then the gap path G(t) can be defined further in (f0, f1] in such a way
that as long as r(t) did not reach Z:

(r(f1)− r(f0))/B ≥
f1 − f0
3τ2

− heal-span− 1, (15.9)

(|G(f1)| − |G(f0)|)/B ≥
f1 − f0
3τ3

− 2 heal-span− 2. (15.10)

If r(t) reaches Z it never decreases again.
Proof. Define G(t) as follows. Suppose that it was defined up to time t1,
and let t2 be the next time that is a switching time of either l(t1) + B or
r(t1)−B or r(t). We distinguish the following cases.

1) t2 is a switch of l(t1)+B. If the switch is an animation creating a sibling
of l(t1), then l(t2) = l(t1) +B.

2) t2 is a switch of r(t1) − B. If the switch is an animation creating a
sibling of r(t1), then r(t2) = r(t1)−B.

3) t2 is a switch of r(t). If r(t1) dies, then r(t2) is the closest cell to the
right of r(t1) that is not a germ cell younger than k+2(t2− f0)/T•+1.

4) In all other cases, we leave G(t) unchanged.

If r(t) reaches Z, it will never decrease again. Indeed, this happens only if
left outer cells were exposed to the left. Without loss of generality, assume
that these outer cells were growth cells. In this case, Age(Z) > grow-end.
As Z is protected to the left, the healing rule does not create a left neighbor
of Z. The only way that r(t) = Z could move left is by the growth rule, but
it does not work for Age(Z) > grow-end.

Let us show

(r′(f1)− r′(f0))/B ≥
⌊
f1 − f0
3τ2

⌋
, (15.11)

which will prove (15.9). Here we assume that Z has not been reached. Since
the conditions of part 1 are satisfied, the cell y = r(t) is an exposed left

157

edge for all t ∈ (f0, f1]. Hence the longest it can take to move r′(t) right is
to have the rule Heal-revive move r(t) left by up to heal-span cells; then
all of them die by decaying. The Heal-revive steps and the killing of the
healing cells take time at most τ0 each, for a total of 2 heal-span τ0 = τ2,
setting the field Decaying takes time at most τ2, and the final killing again
time τ0.

Now let us show (15.10). The inequality

(l′(f1)− l′(f0))/B ≤
⌈
f1 − f0
p3T•

⌉
(15.12)

follows from the fact that l′(t) can only increase when it is equal to l(t) and
increases via the the growth rule. But the next application of Grow is away
by a waiting period of length ≥ p3T•.

Let us combine (15.12) and (15.11).

(|G′(f1)| − |G′(f0)|)/B ≥ (f1 − f0)
(

1

3p2T • −
1

p3T•

)
− 2.

Now, using the definition of p3 in (12.9),

1

3p2T • −
1

p3T•
=
p3T• − 3p2T

•

3p2p3T•T • ≥ p3 − 3p2λ

3p2p3T • ≥
1

3p3T•
,

hence the estimate (15.10).
3. Let [a0, a1) × (u0, u1] be an island with u0 ∈ (v0, vn]. Then the gap path
G(t) with the desired properties can be defined for t ∈ (u0, u1 + purge-t].
We will have

r(u1 + purge-t) ≥ r(u0)− (island-size+ 9)B,

|G(u1 + purge-t)| ≥ |G(u0)| − (2 island-size+ 19)B.

Proof. Let us define l(t) for t ∈ (u0, u1 + purge-t]. If a0 ≤ l(u0) + 5.1B,
then we set l(t) to be the first site x aligned with l(u0) to the right of
a1 and l(u0) + B that is unaffected even via neighbors. This definition is
justified, since growth or healing do not have time to add any cell further
to the right of l(u0) + B. Now l(t) ≤ l(u0) + (5.1 + island-size + 3.1)B <
l(u0)+island-size+9B. If a0 > l(u0)+5.1B, let l(t) = l(u0)+B since, as noted
above, at most one cell can be added to l(u0) by growth or healing during
[u0, u1 + purge-t). The definition of r(t) is done symmetrically similarly (but
only as a lower bound).

158

Thus, the island may decrease the gap by at most island-size + 9B on one
side; with another possible decrease of size B on the other side, this gives
the size estimate of statement 3.

In the space-time rectangle considered, at most one island occurs: indeed,
vn − v0 ≤ T ∗

• /2 follows from e) and (12.3). Use the construction of part 2 up
to the time u0 of the start of the island, then construction of part 3 from u0 to
u1+purge-t (or vn, whichever comes first), then possibly again the construction
of part 2 from u1 + purge-t to vn, we defined G(t) for all t ∈ [v0, vn].
4. For all t ∈ [v0, vn], the gap G(t) has right-age ≤ k + 2(t − v0)/T• + 1. In

particular, according to the assumed bound on vn − v0, at time vn, it still
has age at most

k + 2(vn − v0)/T• + 1 ≤ k + 2Lτ2/T• + 1 < k + 3Lp2λ,

as stated in the lemma.
Proof. Let z1 be a live cell in G(t) space-consistent with r(t), and let us
build a sequence (z1, w1), (z2, w2), . . . with f1 = w1 ≥ w2 ≥ · · · as follows.
Without loss of generality, assume that w1 is a switching time of z1. If
z1 is live at w1− then z2 = z1 and w2 is the previous switching time of z1.
Otherwise, either (z1, w1) is a newborn germ cell, in which case the sequence
ends at (z1, w1), or it has a parent (x, u).

If x ∈ G(u) then z2 = x, w2 = u. Let us show that there is no other
possibility. Indeed, otherwise, z1 would have been created by animation
which, by Condition 14.16 can only be by healing or growth. Since r(t) is
exposed, growth can only happen from the left. We end up with one of the
cases of the definition of G(t) above, and thus with z1 ̸∈ G(w1), contrary to
the assumption.

By the parent construction, w2 ≤ w1−T•, and Age(z1, w1) ≤ Age(z2, w2)+1.
The value wi decreases at least T•/2 in every step, while the age of (zi, wi)
can decrease by at most 1. Since it can only end in a birth or a germ cell in
G(t), this and e) proves the age bound.

5. Let us lower-bound the growth of G(t) for t ∈ [v0, vn].
Since we applied the estimate of part 2 twice and the estimate of part 3
once, we get

(r(vn)− r(v0))/B ≥
|vn − v0 − purge-t |+

3τ2
− 2 heal-span− island-size− 11,

159

and

(|G(vn)| − |G(v0)|)/B

≥ |vn − v0 − purge-t |+

3τ3
− 4 heal-span− 2 island-size− 21.

Hence using (15.1), |G(t)| never decreases below |G(v0)| − gap-lbB > 0.

15.3 Non-damage gaps are large

We now show that if healing does not succeed, then a large gap develops. The
Bad Gap Opening Lemma says that if a left exposed edge persists too long
(while possibly moving) then a right bad gap develops on its left. This lemma
will be used to prove the Bad Gap Inference Lemma, saying that, under certain
conditions, a left exposed edge automatically has a right bad gap next to it.
Recall the definition of heal-span in (12.5) and split-n, split-t in (15.3-15.4).

Lemma 15.14 (Healing Cause) Let c0 = (x0, t0) be a cell with Healing(c0) >
0,

D = x0 + [−(heal-span+ 0.1)B, (heal-span+ 1.1)B) ,

I = (t0 − 2 heal-spanT •, t0].

Assume that D×I is damage-free. Then there is a backward path with at most
heal-span− 1 horizontal links, at most 1 parental link, and at most 2 heal-span
links altogether, connecting c0 to an exposed cell.

A similar statement holds if Frozen(c0) ̸= 0, except that here the length of
the path is bounded by 2∆, with ∆ defined in (13.4).

Proof. Let us build a path P = (c0, c1, . . . , cn) with ci = (xi, ti) backwards
with the property that each of its cells ci with i < n has Healing > 0, and
cn is exposed. According to Condition 14.13, Heal-revive is the only rule
changing the value of field Healing . It sets the value to 0 immediately unless
xi is exposed or has a neighbor ci+1 with a higher Healing value. Therefore if
Healing(ci) > 0 and it was not set to 0 in the last step, there are the following
possibilities:

• There is an exposed parent.

• The cell itself was exposed at the observation time.

• There was a neighbor y with a higher Healing value at the last observation
time t′ < ti of xi.

160

In the first two cases, the path is finished with a last link. In the last case, we
add two links: a vertical link to ci+1 = (xi, t

′) followed by a horizontal link to
ci+2 = (y, t′). Since this leads to an increase of Healing value, the path can
contain at most heal-span pairs of such links.

The statement on the field Frozen is proved the same way, using Condi-
tion 14.10 and rule Freeze .

Definition 15.15 (Boundary path) Let us call the sibling relation between
two cells strong , if either they have been siblings for at least 2T • time units
or one cell is a parent of the other.

A cell is called for example a weak left exposed edge if it is either a left
exposed edge or would be one in case it had no left sibling, and has no strong
left sibling. A sequence R1 = (y0, v0), . . . , (ym, vm) of cell-time pairs with
v0 < v1 < · · · < vm will be called a left boundary path if yi is a weak left
exposed edge during (vi, vi+1) and one of the following is true:

1) Cell yi−1 = yi−B dies at time ti and is a strong sibling of yi at time ti−.
2) Cell yi = yi−1 −B is created at time ti by parent yi−1.

⌟

Lemma 15.16 (Bad Gap Opening) For m = split-n let R1 = (y0, v0), . . .,
(ym, vm) be a left boundary path that does not leave the colony of (ym, vm) on
the left (it may leave on the right). Assume that the the segment

[
∧
i yi − 1.1B,

∨
i yi + 1.1B)× (v0 − T •, vm]

is noise-free. Then yi has at most p2 + p0 full dwell periods during (vi, vi+1],
and there is a gap on the left of R1(vm−) that contains a right bad gap. The
same statement holds if we interchange left and right.

Proof. Let us show that (yi, t) is a left exposed edge during (vi + 2T •, vi+1 −
2T •). Indeed, yi can be a weak left exposed edge that is not a left exposed
edge only if it has a left sibling that is not strong. Now, if yi does not have
a left sibling and it gets one then it follows from Lemma 14.19 (Glue) (and
the exclusion of cut, since the it would not expose the edge) that the only
way to lose this sibling is if the sibling dies again, which it cannot do before
making at least p0 switches, becoming a strong sibling in the meantime. From
this, it is easy to see that yi can have a left sibling only during a time interval
adjacent to either vi or vi+1. Since the sibling stays weak these time intervals
must be at most 2T • long.

Now, as soon as yi is a left exposed edge, unless the healing rule creates a
left sibling, it gets Decaying ← 1 in p2 dwell periods, and then the decay rule

161

kills it in further p0 dwell periods. Hence within p2 + p0 dwell periods, the
boundary paths moves left or right. Now a reasoning similar to part (15.11)
of the proof of Lemma 15.12 (Running Gap) shows that the left movement
is associated with a healing step of rule Heal-revive , and once the right
movement starts it will not stop before killing at least one cell with Healing =
0. Thus within each 2 heal-span+1 moves, the edge moves right. In gap-lb+1
repetitions of this, the weak left exposed edge moves right by this many steps.
During this time, by (12.8), at most one growth step can occur on the left, so
a gap of width gap-lbB will be created which is internal by definition, since
we assumed that the boundary path does not leave the colony of (ym, vm) on
the left.

To show that it is a bad gap, we bound the age of its germ cells. The total
number of (full or partial) dwell periods along the boundary path is at most
m(p2 + p0 + 1). During this time, the age of any germ cell created in place of
the killed cells can grow by at most λm(p2 + p0 + 1)/p1. By the definition of
pi in (12.6-12.8), we have

(p2 + p0 + 1)/p1 ≤
2 heal-spanλp0 + p0 + 1

4λp0
≤ heal-span /2 + 1,

so the total germ age is at most λ split-n (heal-span /2+1), making the gap by
Definition 15.9 a bad gap.

Lemma 15.17 (Bad Gap Inference) Let c0 = (x0, t0) be a left exposed edge,

D = [x0 − (split-n+ 1.1)B, x0 + (heal-span+ 1.1)B) ,

I = (t0 − split-t , t0].

Assume D × I is damage-free. Then one of the following holds:

1) There is a bad gap on the left of c0;

2) There is a boundary path of length < split-n leading backwards in time
from c0 to a cell undergoing one of the changes listed in Lemma 14.17
(Exposing).

The same statement holds if we replace left with right.

Proof. We will distinguish a special case when c0 is involved in the leftward
rule End-heal (Algorithm 14.21) case of healing, calling this the (leftward)
end-heal case.

Let us construct a backward path (xi, ti), i = 0, 1, . . . , n of elements of the
colony of c0, made up of horizontal and vertical links such that cell xi is a weak
left exposed edge during every nonempty time interval (ti, ti−1). Suppose that
(xi, ti) has already been constructed.

162

i) If xi has a switching time t′ immediately before ti such that (xi, t) is a
weak left exposed edge during [t′, ti] then let (xi+1, ti+1) = (xi, t

′).

ii) Otherwise, let t′ be the lower bound of times t such that (xi, t) is a weak
left exposed edge. If t′ < ti then let (xi+1, ti+1) = (xi, t

′).

iii) If t′ = ti then at time ti, cell xi became a weak left exposed edge without
switching, which can happen in the following ways::

x1) Losing protected status via one of the cases of Lemma 14.17 (Ex-
posing), that is case 2) of the present lemma. This cannot happen
in the end-heal case.

x2) By animation via a right parent, which by Condition 14.16, can
only happen via the healing rule. Let (xi+1, ti+1) = (xi + B, ti).
Such an i will be called a right jump (backwards in time).

x3) Losing a strong left sibling by one of the ways listed in Lemma 14.19
(Glue). It is easy to check that of these, only the death of a strong
left sibling produces an exposed edge in xi. Each of the rules Heal ,
Decay , Purge and Adapt that could have killed xi−B presupposes
that this cell did not have a left sibling at the observation time t′′

of xi−B; thus, it did not have a strong left sibling at time ti−. On
the other hand, as a strong left sibling of (xi, ti−), it has been alive
for at least 2T • time units. Let (xi+1, ti+1) = (xi −B, ti). Such an
i will be called a left jump (backwards in time).

x4) The strong left sibling was killed by the right end-healing of member
cells of another colony on the left (via Adapt). This clearly cannot
happen in the end-heal case of the present proof. We will see,
moreover, that it does not happen at all.

The construction can stop in the following ways:

s1) The number of jumps on the path reaches split-n.

s2) Cell (xn, tn) would be a weak left exposed edge belonging to the left
neighbor colony. This cannot happen in the end-heal case.

By the construction, each jump is surrounded by vertical links. For each
left jump i, cells xi and xi+1 are strong siblings at time ti−. Let (xik , tik) for
i1 < · · · < im−1 be the points on the backward path with the property that
to (ik, ik + 1) belongs a horizontal link. Let us number these points forwards
in time: (y0, v0) = (xn, tn), (y1, v1) = (xim−1 , tim−1), (y2, v2) = (xim−2 , tim−2),
. . ., (ym−1, vm−1) = (xi1 , ti1), (ym, vm) = (x0, t0), creating a left boundary
path as in Definition 15.15. If m ≥ split-n while we do not have case s2) then
Lemma 15.16 (Bad Gap Opening) implies a bad gap on the left of c0.

163

In case s2), the death of (xn, tn) creates the weak left exposed cell
(xn−1, tn−1), a left colony endcell. By Definition 13.11, this is possible only
by the shrinking process, as described after Algorithm 12.1. (It is clear from
there that (xn−1, tn−1) is not a member cell.) Continue the construction of the
left boundary path. Now it can be stopped in fewer than split-n steps only by
one of the changes listed in Lemma 14.17, since split-n < Q; now Lemma 15.16
is applicable.

Let us now show that case x4) does not occur at all. Assume it does and
let y be the right-exposed cell trying to do the end-healing. Then we can apply
the present lemma to y. Since it is the (rightward) end-heal case, a bad gap
is implied on the right of y, so y is far on the left of xi and cannot possibly
kill its left sibling.

16 Attribution, progress

In this section Lemma 16.3 (Attribution) shows that a non-germ cell implies
a full colony nearby in the near past related to it in one of several identifiable
ways. The main tool of the proof is a trace-back path. The following lemma
treats various possibilities for the path. Recall the definition of destr-t in (15.6)
and the definition n l-m for the number of update ages of locally maintained
fields in (13.1) and denote

attrib-t = destr-t+ 9τ1. (16.1)

For the lemmas below, for a time t0 let

J = t0 + (− attrib-tQ, 0],

K = t0 + (− attrib-tQ,− destr-tQ].
(16.2)

Lemma 16.1 (Cover) Let c0 = (x0, t0) be a live cell belonging to colony C

with starting cell z,

I = [z − (Q+ 1.1)B, z + (2Q+ 1.1)B) .

For J as in (16.2) let

nJ = 2|J |/p1T• + 3∆

and assume that Damage∗ does not intersect I×J . Consider a trace-back path
P1 in I × J leading backwards from c0 to a cell c1 = (x1, t1). The following
holds.

164

a) If c0 is not an outer or germ cell younger than grow-end + nJ then the
path P1 does not leave its own colony.

b) Assume t1 ≤ t0 − destr-tQ, the rectangle

I × (t1 − split-t , t1 + split-t]

is damage-free, c1 is not a doomed member cell with |Age(c1) > U −
2Q − split-n. Then the maximal domain containing the cell c1 contains
the colony of c0 as well as its originating colony.

We call this the Cover Lemma since part b) implies that the originating
colony is covered by a domain.

Proof. 1. The age increase along the path is at most nJ . Indeed, for the
path length n we have n ≤ 2|J |/T•+2∆+2, from part b) of Lemma 15.8
(where ∆ was defined in (13.4)). The age increase along the path can be
upper-bounded using Lemma 15.8 as

n/p1 + 2∆+ 3 ≤ 2|J |/p1T• + 2∆(1 + 1/p1) + 3 + 2/p1.

The sum all terms but the first can be bounded by 3∆.

2. Let us prove a). According to Lemma 15.5 (Skirting), the horizontal links
on the path can only cross a colony boundary in the inward direction, and
only if Age < grow-end+∆ on all cells involved. A parental link could be
created only by the healing rule or one of the expansion rules. The healing
rule does not act across colony boundaries, so the later end of the link
along which the path is leaving would need to be an expansion or germ
cell. The expansion rules do not work for cells past age grow-end, so in
each case, the cell at the crossing would need to have an age ≤ grow-end.
By part 1 above, the age could not grow beyond grow-end+2|J |/p1T•+3∆,
so it does not reach the lower bound required by a).

3. Let us prove b). Assume that the maximal domain contains an exposed
edge e. Lemma 15.17 (Bad Gap Inference) implies that either there is a
bad gap next to e or we have case 2) of that lemma.

In case of a bad gap, we can apply Corollary 15.13 (Running Gap) to
the assumption t1 ≤ t0 − destr-tQ, where the role of the path P1 there is
played by path P1 here. It implies that the bad gap cannot be inside the
originating colony of c0, nor can it be in the same colony (as the gap path
cannot cross P1).

In case 2) of Lemma 15.17 there is a path of length< split-n leading back to
an edge that becomes exposed by one of the cases listed in Lemma 14.17

165

(Exposing). If it is one the cases different from 1) then it is outside
the originating colony and pointing away from it. Case 1) does not oc-
cur; indeed, it could only occur to member cells c1, but the condition
|Age(c1) amod U | > 2Q+ split-n implies |Age(e) amod U | > split-n.

Here is the sense in which we will be attributing a cell c0 = (x0, t0) to
some colony. Recall the definition of J,K in (16.2).

Definition 16.2 (Attribution) We say that c0 is attributed to colony C if there
is a path P1 going back to time t0 − attrib-tQ, and a union E0 of intervals of
total length < |K|/2 such that P1(t) ∈ C for t in K, and C is covered by a
domain for all times in K \ E0. ⌟

Suppose that another cell (x1, t0) is attributed to some colony C1; Then
even the union of their exception sets E0 ∪ E1 has a total length < |K|, and
therefore there is some time in K where both colonies C0 and C1 are covered
by a domain. It follows that they are either disjoint or identical. The following
lemma again uses the intervals J,K in (16.2).

Lemma 16.3 (Attribution) Assume that the live cell c0 = (x0, t0) is trace-
able, and is not a germ cell younger than grow-end + 2|J |/p1T•. Then we
have:

a) c0 can be attributed to its originating colony.

b) If it is a member cell, or an outer or germ cell older than grow-end +
|J |/p1T• then it can also be attributed to its own colony.

Proof. Build a trace-back path P1 from c0 backwards in time. Due to the
absence of Damage∗, at most one island occurs in the area of P1. Lemma 16.1
(Cover) implies that unless c0 is an outer or germ cell younger than grow-end+
2|J |/p1T•, we can continue the path P1 all the way to time t0− attrib-tQ and
stay in the colony of c0. Let E be the set of times t of K that are either within
distance split-t of the damage or such that |Age(P1(t)) amod U | ≤ 2Q+split-n.
Then |E| ≤ 2 split-t+(4Q+split-n)τ1 < |K|/2. Lemma 16.1 implies that for all
times t in K \E the cell P1(t) is contained by a domain covering its originating
colony.

In case b), the domain must contain the colony of c0, because being past
grow-end otherwise it would have an exposed edge. So c0 can be attributed to
its own colony.

We will estimate the amount of progress in a given time made by a colony
in the absence of higher-order damage.

166

Lemma 16.4 (Colony Trace-back) Consider a time interval (t0, t1]. Suppose
the following, with I = z0 + [−1.1QB, 2.1QB):

1. The rectangle I × (t0 − split-t , t0] is damage-free, and Damage∗ does not
intersect I × (t0 − split-t , t1].

2. At time t1, colony C, with starting cell z0, is covered by a maximal domain
with member cells in C, and no exposed edges.

Assume that some trace-back path P starts within 0.2QB of the center at time
t1, goes back to time t0, and does not come within 2Q steps of a work period
boundary time. Then:

a) Path P moves at most to a distance 2λ heal-span split-nB from where
it started. If there is no damage in I × (t0, t1] then P does not move
horizontally at all.

b) The colony C is covered by a maximal domain without exposed edges also
at time t0.

c) The age progress from t0 to t1 along path P is at most t1−t0
p1T•

+∆+3, and

at least t1−t0
4p1T • − 6Q.

The following corollary is just the inversion of part c) of the above lemma.

Corollary 16.5 (Progress) Under the assumptions of Lemma 16.4, suppose
that the age progress along the path is n. Then

(n−∆− 3)p1T• ≤ t1 − t0 ≤ 4(n+ 6Q)p1T
•.

Proof of Lemma 16.4. Let P = (c1, c2, . . .) be the trace-back path mentioned
in the lemma, listed backwards in time, with ci = (xi, ui). In the given time
interval, at most one island intersects colony C. Let K be the interval of times
within split-t of this island, then |K| ≤ 2 split-t+ island-sizeT •.
1. For times outside K, the maximal domain containing the cell P (t) has only

protected edges.
Proof. If there was an exposed edge, then Lemma 15.17 (Bad Gap Infer-
ence), combined with Lemma 15.12 (Running Gap) would imply that the
colony C would not be covered by a domain at time t1.

2. Claims a) and b) are true.
Proof. The island may cause at most ∆ horizontal links (with ∆ defined
in (13.4)), all other links are vertical or parental. As shown in part 1,
the path can have parental links only within distance split-t in time of the
island. Since they use Adapt(·) with a delay of at least p1, parental links are
separated from each other by at least p1 vertical links. If follows then, using

167

the definition of split-t and split-n in (15.3-15.4), that the path can move at
most ∆ + |K|/p1T• steps away, where

|K|/p1T• = (2 split-t+ island-size)τ2 split-n /p1T• ≤ 3λ heal-span split-n /2

(and will therefore stay in the colony). Assume now that, contrary to
claim a), there is a first cell ci with a parental link to ci−1, farther than split-t
in time from the island. Then xi is at distance at most λ heal-span split-nB
from x1, and as by assumption does not come within 2Q steps of a work
period boundary time, is an exposed member cell, or growth cell with age
≥ grow-end, inside the the colony. Lemma 15.17 (Bad Gap Inference) im-
plies then a bad gap which would not close until time t1, contrary to the
assumptions. Reference to the same lemma proves also the statement b).

3. Claim c) is true.
Proof. The upper bound follows because according to Lemma 15.5 (Skirting)
there are at most ∆+1 horizontal links in the path, while along the vertical
part of the path, age increases at most by 1 every p1 steps. We proceed to
the lower bound.

3.1. We will build a new path, P ′ = (c′0, . . . , c
′
m) with c

′
i = (x′i, t

′
i).

Start with c′0 = c0. Within the set K we continue P ′ as a trace-
back path; consider the cases t′i ̸∈ K. We have Healing(x′i) = 0 and
Frozen(x′i) = 0 for times near t′i, since otherwise Lemma 15.14 (Healing
Cause) would imply the nearby presence of exposed edges. In the absence
of freezing, the age cannot decrease in time. If Age(x′i) did not increase in
time t′i, then this can only have the following reasons:

1) Cell x′i is in the process of decreasing its Wait.March variable from p1.

2) Cell c′i has just been born.

3) There is a neighbor y at the last observation time t′ of x′i that does
not let its age advance, by condition (1) of the March rule 13.3. Thus
it is either lower in age (call this a delay link of the first kind) or is
equal in age but then it is closer to the center of the originating colony
(call it a delay link of the second kind).

In cases 1) and 2), let c′i+1 be found by regular trace-back: thus, the
previous switching time of x′i if there is one, and the parent, if x′i has just
been born. In case 3), let c′i+1 = (x′i, t

′), ci+2 = (y, t′).

We will now lower-bound age decrease and upper-bound age decrease back-
wards on path P ′.

3.2. Let us upper-bound age increase inside the set K.

168

Inside the time set K, the only horizontal links on the path P ′ come
from Lemma 15.5 (Skirting), adding at most ∆ to the total age increase
backward. There is no increase on parental links, and at most one back-
ward increase on each vertical link (as Heal-sync may decrease age). This
is a total increase of at most |K|/T• +∆.

3.3. Let us lower-bound age decrease outside the set K.

Going to the parent via alternative 2) above is always going towards
the originating colony: since we are in a maximal domain without exposed
edges, the only possible kind of cell creation is growth. The cells created
by growth have age equal to the creator cell. During a colony work period,
there are at most 4Q growth steps (growing a channel and then a growth
arm to the left, and also to the right), this bounds the number of parental
links. Let n1 be the number of delay links of the first kind and n2 that of
delay links of the second kind, n = n1 + n2. We have n2 ≤ 2Q + n1, as
one can move towards the center of the originating colony only after being
moved away from it. The total age decrease on these non-vertical links is
hence at least n1 ≥ n/2 − Q. The total number of non-vertical links is
m ≤ 4Q+ n, so

n1 ≥ (m− 4Q)/2−Q = m/2− 3Q. (16.3)

In a vertical segment of the path of time projection l, age decreases at least
by 1 in every p1 vertical steps. So it decreases at least 0∨(l

p1T • −1). Let us
call a vertical segment short if this number is < 1, that is whose length is
≤ 2p1T

•, else long. On a long segment of length l, the decrease is at least
l

p1T • − 1 ≥ l
2p1T • . Let L1 be the union of long vertical segments, and L2

that of the short ones. The time decrease on L1 is at least ≥ |L1|/2p1T •.
The number of non-vertical links is at least m ≥ |L2|/2p1T • − 1, and
by (16.3) the age decrease on these links is at least

m/2− 3Q ≥ |L2|/4p1T • − 3Q− 1.

So the total decrease of at least

|L1|/2p1T • + |L2|/4p1T • − 3Q− 1 ≥ t1 − t0 − |K|
4p1T • − 3Q− 1.

3.4. Let us add up all the decreases inside and outside of K.

169

We get

t1 − t0 − |K|
4p1T • − 3Q− 1− |K|/T• −∆ =

t1 − t0 − |K|
4p1T • − V,

V ≤ 3Q+ |K|/T• +∆+ 1 ≤ 4Q,

where the last step follows from our assumptions about Q. At time t0,
there is no exposed edge between P (t0) and P

′(t0), since this would imply
a bad gap between these cells. This could not close, and at least one of
the paths would need to cross it in order to meet, which is not possible.
Therefore these two nodes are connected by a chain of siblings and so their
age differs by at most 2Q. Since P (t1) = P ′(t1), this shows that the age
progress along P differs from that of P ′ by at most 2Q.

17 Healing

This section shows how the effect of an island will be healed. By its definition,
the healing process only tries to bridge gaps inside a colony of member cells.
If a connecting arm gets damaged, it can just regrow from the healthy part.
If growth is thwarted by damage, and is still possible in the next work period,
then it will happen then. Similarly, a germ killed by damage can regrow later.

The effect of an island can be delayed, in one case.

Definition 17.1 (Successor) Given a set E of cells at time t, let us call a cell
x′ a successor of E at time t′ > t if (x′, t′) is reachable by a forward trace-back
path of cells from some (x, t) with x in E. ⌟

Recall the definition of siblings in Definition 13.6, and the definition of
(multi-) domains in Definition 13.13. Let

heal-t = purge-t+ 4∆τ1, (17.1)

where purge-t was defined in (15.2).

Lemma 17.2 (Healing) Let [a0, a1)× (u0, u1] be an island. Let C be a colony
with starting cell z0, covered at time u0 by a domain of member cells, with
no doomed cells of age > U − 3Q. Then a domain covers C at time w0 =
u1 + heal-t.

Proof. The damage affects directly at most ∆ neighbor cells of C (with ∆
defined in (13.4)). At time t, let L(t) be the set of successors in C of cells

170

of C on the left of the affected part, and R(t) the successors from cells to
the right. (These sets are not necessarily disjoint.) Both L(t) and R(t) are
(possibly empty) domains; indeed, the only rule that would change the domain
property is the killing of a doomed cell at age 0, but there is not enough time
for this.
1. Let u2 = u1+purge-t. If the sets L(u2) and R(u2) are both nonempty then

there is no live cell between them at time u2 other than possibly germ cells
with age ≤ 1.
Proof. The only cells in question are the up to ∆ cells affected directly by
the damage, others could not have reborn yet after dying. Consider the up
to ∆ domains between L(u1) and R(u1); they can shrink or merge during
the time interval (u1, u2]. According to Lemma 13.14, each will still have
an exposed side, hence each will be killed by the time u2 by the purge rule
(while having no time yet to grow due to the delay in the rule Adapt)—
unless they are germs so new that the purging did not have time to finish
yet: in this case they have age ≤ 1.

2. Any live cell at time u2 whose body intersects C and that does not belong
to L(u2) ∪R(u2) cannot be a member cell.
Proof. Assume by way of contradiction, that there is such a member cell x.
In this case clearly either L(u2) or R(u2) is empty; without loss of generality
assume that L(u2) is empty. Consider a trace-back path from x. It cannot
lead to C at time u0, since then according to part 1 above, x would belong
to either L(u2) or R(u2). Therefore it must lead to a domain outside; given
that R(u2) is nonempty, this must be on the left. Let y be the right end
of this domain at time u0. It must be outside C, so it is to the left of x
whose body, by assumption, intersects C. By Lemma 15.5 (Skirting), the
path has at most ∆ horizontal links, and one parental link (there is no time
for a complete animation delay), so x and y are within distance (∆ + 1)B
from each other. All cells of the short chain from (x, u2) to (y, u0) have
ages within a few steps of each other. If (y, u0) is a right colony end then x
(assumed to be a member cell to the left of R(u2)) would have been purged
away due to its small depth. If it is not then the right edge of (y, u0) is
exposed, since it is either a member cell not at a colony end or a growth
cell near the end of the work period, and so during its shrinking phase. But
then Lemma 15.17 (Bad Gap Inference) would imply large gap on the right
of (y, u0), making the path from it to (x, u2) impossible. (Indeed, due to the
age of (y, u0) the conclusion 2) of that lemma is not applicable.)

3. If both L(t) and R(t) survive until time u2, then the gap between them
will have size ≤ ∆ during the whole time. If L(t) disappears then the the
gap from z0 to R(t) has size ≤ 2∆ during the whole time.

171

Proof. If both L(t) and R(t) survive, then there were up to ∆ cells affected
by damage between them. Only these cells can disappear. If L(t) disappears,
this is only since its size was ≤ ∆ to begin with.

4. If both L(t) and R(t) remain nonempty then they will become part of a
domain.
Proof. As shown above, between times u2 and w0, the gap between L(t)
and R(t) does not become larger than ∆. Rule Heal-revive brings together
L(t) and R(t) at some time t ≤ ∆τ1, at some point x ∈ L(t), x+B ∈ R(t).
The possible germ cells of age < 2 in the gap are not an obstacle: they
are weaker than the cells that are being created, so they will be erased. It
can only happen that L(t) and R(t) are not joined if |Age(x) − Age(x +
B) amod U | > 1. But as said in the remark at the end of Example 14.15,
then rule Heal-sync will bring the two ages together in time at most 2∆τ0.
This creates a single domain by time u2 +∆(τ1 + 2τ0).

5. If L(t) does not survive then z0 ∈ R(w0).
Proof. The left endcell of R(t) will be exposed to the left and therefore
the rule 14.21 (End-heal) will apply to it. Part 2 above shows that no
member cell’s body intersects the colony C. Other possible cells that might
intersect are weaker than the member cells that end-healing creates, and
will therefore be killed off by rule Adapt of Algorithm 14.6. The end healing
thus proceeds in time 2∆τ1.

18 Communication

Here, we will give the rules for information retrieval, which eventually will be
used in rules Send and Retrieve at the beginning of the work period as in
Algorithm 12.1. Compared to Section 9.3, there are two main differences:

A) the neighbor colonies may not be adjacent;

B) they may be in different stages of their work period.

To deal with issue A), during the time of observation, a colony whose neighbor
is not adjacent extends an arm of channel cells. By Definition 12.4, rightward
channels would override leftward channels. This way at the time of commu-
nication there will be only one channel arm between the neighbor colonies,
assuring that their distance is less than QB.

To deal with issue B), within the colony work period, note that the unsafe
time interval of the colony work period during which information to be sent
to neighbor colonies can change starts with the time when one of the cells
is within 2Q of the beginning of the work period or the end of the Compute

172

rule. The retrieved information from the neighbor colonies will carry the age
of sending. The information will be used only when it comes from both of
these colonies at a safe ages. The safe interval is designed to be much longer
than the unsafe one, so a safe time will be found. We define Mail-ind as in
Section 9.3, with some additions:

Mail-ind = {(k, d) : k ∈ {−1, 0, 1}, d ∈ {−1, 1}}.

Recall that we defined e−1 = 0, e1 = Q − 1 in (14.2). The relation of cells
and their originating colonies will define the predicate Edgej(x). In words:
Edgej(x) = 0 if y is a neighbor in the same extended colony, 1 if it is an
adjacent neighbor in an adjacent colony, 1.5 if it is a neighbor in an (extended)
neighbor colony, but only one of the two colonies at the junction can be an
extended one. Formally:

Edgej(x) =



0 if Addr(y) = Addr(x) + j,

1 if y = ϑj(x), Addr(x) = ej , Addr(y) = e−j ,

1.5 if Edgej(x) ̸∈ {0, 1}, y = ϑj(x),

(Addr(x)− ej)/j ≥ 0, (Addr(y)− e−j)/j ≥ 0,

but at most one of these is > 0.

∞ otherwise.

The additional issues that copying has to deal with are the unsafe times,
as mentioned above, non-adjacent colonies, and that the mail track may be
narrower than the information in any one cell it needs to carry. In particular,
the Payload field will consist of slices Payload i only one of which fits into the
mail field. It will be convenient to have a separate mail field for every kind of
copying from some track F to some track G , that is

Mailk,d,F ,G .

However, while discussing the general rules covering all kind of mail, we will
suppress the indices F ,G . We have three widths to consider: that of the
sender, of the receiver, and of Mailk,d.Info. The latter will always have the
same width as the smaller of the other two, and the bigger width will always
be an integer multiple of the smaller one. To deal with these issues, the
field Mailk,d for (k, d) ∈ Mail-ind will have some additional sub-fields besides
the sub-fields defined in Section 9.3. The sub-field Toaddr has already been
mentioned, but there will also be sub-field Fromaddr . The sub-field

Adj

173

will show whether the neighbor the direction from which the mail is retrieved
is adjacent. Recall the definition of

j(k, d), peer(k, d)

in Section 9.3: Mailk,d of a cell will read, from direction j(k, d), the mail field
with index peer(k, d). Recall the definition of Mail-to-receive(k, d) in (9.5):

Mail-to-receive(k, d) = Mail
j(k,d)
peer(k,d).

Now we modify this to account for missing neighbor colonies and to pass the
information on whether the mail is coming from an adjacent colony to the bit
track Mailk,d.Adj of the receiving colony.

• If Edgej(k,d) =∞ then Mail-to-receive(k, d) = # (no non-adjacent neighbor
colony, neighbor big cell will be considered vacant).

• If Edgej(k,d) = 1 then Mail-to-receive(k, d).Adj = 1 (adjacent neighbor
colony).

• If Edgej(k,d) = 1.5 then Mail-to-receive(k, d).Adj = 0 (non-adjacent neigh-
bor colony).

To deal with asynchrony, we add a “hand-shaking” condition
Mail-freek,d(x): it says that the cell x is free to rewrite Mailk,d with a de-
fined value if the new value is not destined for an earlier address, and either
its current value is undefined or if it is for a later or equal address and has al-
ready been passed on. (This is sufficient: every piece of mail must be distinct
due to (Toaddr , Fromaddr).) Let j = j(k, d), where (k, d) = peer(k, d′) and
note that necessarily j(k, d) = j(k, d′). Then

Mail-freek,d ⇔ sign(Addr −Mail-to-receive(k, d).Toaddr) ̸= −j(k, d)

∧ (Mailk,d ∈ {#,Mail−jk,d′} ∨Mailk,d.Toaddr = Addr).
(18.1)

Some situations in which mail is used will also need some error-checking, as its
output cannot be stored in extra copies for voting. For this, we will check that
mail has not gone beyond the cell with Addr = Toaddr (in the direction −j of
mail movement), and that both Toaddr and Fromaddr are increasing by 0 or 1
from left to right, between a cell and the one to which mail would be forwarded.
Here we assume that if Mailk,d = # then Mailk,d.Toaddr , Mailk,d.Fromaddr
and any expressions they enter into have the value Undef . For r ∈ {−1, 1},
Mail-legalk,d(r) checks whether mail is legally formed between the cell and its

174

neighbor in direction r.

Mail-legalk,d(r) ⇔ sign(Addr −Mailk,d.Toaddr) ̸= r

∧Mailrk,d.Toaddr −Mailk,d.Toaddr ∈ {0, r,Undef }
∧Mailrk,d.Fromaddr −Mailk,d.Fromaddr ∈ {0, r,Undef }.

Rule Move-mail in Algorithm 18.1 will be more elaborate than its example
version in Algorithm 9.5 by checking these two conditions.

Algorithm 18.1: sub-rule Move-mail(k, d)

let j ← j(k, d)
if not Mail-legalk,d(−j) then Mailk,d ← #

else if Mail-freek,d and Mail-legalk,d(j) then
Mailk,d ← Mail-to-receive(k, d)

As Mailk,d has the additional indices F ,G , eventually we would write
Move-mail(k, d,F ,G). The condition Mail-legal will not let pass any piece
of mail whose Toaddr , Fromaddr is not gradually non-decreasing from left to
right. The replacement with # eats up the illegal pieces and allows the rest
behind it to move. This way the damage can have two effects: one in the
place where it occurred, and another, in (or near) the Toaddr where the mail
is headed. But it cannot affect several other destinations by substantially
changing Toaddr .

Mail will be posted by the rule Post-mail and received by the rule
Receive-mail . Both of these will be running for certain intervals of Age.
We start with defining Receive-mail(k,F , S, a, b, n) in Algorithm 18.2, as it
is somewhat simpler. Parameter k has the same role as k in Mailk,d. Param-
eter F is the track into which the mail is to be received. Parameter S shows
how many times the width of this field is a multiple of Mailk,d.Info; if S > 1
then F i are the slices with the same width as Mailk,d.Info. If S = 1 then let
F 0 = F . Parameters a, b are the starting addresses of the sender and receiver
location, and n is the length of the receiver location. When the width of the
two locations is different then if their intervals could intersect then this would
complicate the posting and receiving rules. Therefore we will always arrange
that when the width of the two locations is different then their intervals are
disjoint.

175

Algorithm 18.2: sub-rule Receive-mail(k,F ,G , S, a, b, n)

if k ̸= 0 then let d← −1 else let d← sign(b− a)
let j ← j(k, d), A← (Mail jk,d,F ,G .Fromaddr − a)
if Addr ∈ [b, b+ n) and Addr − b = Toaddr then

GA mod S ← Mail jk,d,F ,G .Info

In Post-mail(k,F ,G , S, a, b, n), Algorithm 18.4, parameters k, a, b have
the same role as in Receive-mail . Parameter F is the track from which the
mail is to be sent: its width is S times that of Mailk,d.Info, with slices F i
as in Receive-mail . Parameter n is the length of the sender location: the
receiver location has length Sn. It assumes that at its start the Mailk,d track
on interval [a, a+ n) is covered by #. Post-mail is somewhat more complex
than Receive-mail , as the order in which the slices F i are posted depends
on the direction in which mail will be sent. For simplicity we first look at
Post-mail(1,F ,G , S, a, b.n), that is the case for Mail1,1: the slices of location
F ([a, a+ n)) will be posted starting with address a+ n− 1, going backwards
towards address a, also the slices are posted one-by-one backwards starting
from FS−1. The information will just get posted onto theMail1,1 track, relying
on Move-mail to forward it to the right. The posting in each cell begins only
when Mail1,1 = #, and except for the right end-cell, the right neighbor must
have already posted all its slices. If a slice F i with i > 0 is currently in Mail1,1
then slice F i−1 is posted only if the current one has already been forwarded
to the right neighbor. When everything has been posted and forwarded from
the leftmost cell then it posts #. This will be forwarded by Move-mail , and
eventually the whole interval [a, a+ n) will be covered by #; at this point the
posting will start again from the right end. A fault will not make the posting
process stuck forever, as Move-mail will keep moving whatever it finds on the
mail track. For readability here as well in Algorithm 18.4 below we suppress
the indices F ,G from Mailk,d,F ,G .

Case (1) is when the slice of the field F to be posted first can actually be
posted. Condition (2) is testing whether the posted value has been passed on
(by Move-mail): this is similar to part of the condition Mail-freek,d in (18.1).
For the general k, d, recall the direction j(k, d) from which mail is received,
defined after (9.4).

Let us estimate the time it takes the posted information to arrive, in a
typical special case.

Lemma 18.1 Consider a case of Post-mail(1,F ,G , 1, 0, 0, Q) when a track
F is sent to a track G of a right neighbor colony (not necessarily adjacent).

176

Algorithm 18.3: sub-rule Post-mail(1,F ,G , S, a, b, n)

let Addr ′ ← Addr − a
if Addr ′ ∈ [0, n) then

if Mail1,1 = # then
(1) if Addr ′ = n− 1 or Mail11,1.Toaddr − b = S(Addr ′ + 1) then

Mail1,1.(Info,Fromaddr ,Toaddr)←
(FS−1,Addr , b+ S · Addr ′ + (S − 1))

(2) else if Mail1,1.Fromaddr = Addr and Mail11,1 = Mail1,1 then

let i← (Mail1,1.Toaddr − b) mod S
if i ̸= 0 then Mail1.1.(Info,Fromaddr ,Toaddr)←
(F i−1,Addr ,Mail1,1.Toaddr − 1)
else if Addr ′ = 0 then Mail1,1 ← #

Algorithm 18.4: sub-rule Post-mail(k,F ,G , S, a, b, n)

if k ̸= 0 then let d← 1 else let d← sign(b− a)
let Addr ′ ← Addr − a, δj ← (j + 1)/2
if Addr ′ ∈ [0, n) then

if Mailk,d = # then
if Addr ′ = δ−j(n− 1)

or Mail−jk,d.Toaddr − b = S(Addr ′ − j)− δj(S − 1) then
Mailk,d.(Info,Fromaddr ,Toaddr)←
(F δ−j(S−1),Addr , b+ S · Addr ′ + δ−j(S − 1))

else if Mailk,d.Fromaddr = Addr and Mail−jk,d = Mailk,d then

let i← (Mailk,d.Toaddr − b) mod S
if i ̸= δj(S − 1) then Mailk,d.(Info,Fromaddr ,Toaddr)←
(F i+j ,Addr ,Mailk,d.Toaddr + j)
else if Addr ′ = δj(n− 1) then Mailk,d ← #

Assume that between the sending time t0 and the receiving time, the space-time
area of concern is damage-free. For a cell x let d(x) be the distance of x from
the right end of the receiving range. Let x be a cell and y be a cell that is m
steps (over neighbors) to the right of x. Then at time t0 + 2T •(m + 2d(x))
the information from x has reached y.

177

Proof. Induction on n = m + 2d(x). For i = 0 the information did not have
to travel any steps. So the statement holds for i = 0 and hence also for n = 0.
Suppose that the statement holds for n− 1, we will prove it for n.

Let y′ be the left neighbor of y, and let t′1 be its first switching time after
t1 − 2T •. For y′, distance m′ = m− 1, we have n′ = m′ + 2d(x) = n− 1. By
the inductive assumption on n, information from x must have reached y′ by
the time t′1. It follows that at the decision time t1 of y, it must have seen this
information.

If d(y) = 0 then it has no right neighbor to consider and will receive
the information of y′ at time t1. Suppose that it has a right neighbor y′′ to
consider, and let t′′1 be the first switching time of y′′ after t1 − 2T •. Then y′′

is at distance m′′ = m+1 to the right of x. Let x′′ be the right neighbor of x,
then d(x′′) = d(x)−1, and for the pair x′′, y′′ we have n′′ = m′′+2d(x′′) = n−1,
therefore by time 2T •(n − 1) = 2T •n − 2T • the cell y′′ has the information
from x′′. Cell y will see this and hence will be free to receive the information
from y′ at time t1 (if it still does not have it).

The copy command will now be defined with more care than in the example
simulation in Algorithm 9.6. Actually, we will only define it for copying within
the colony, so from now on we will just write

Copy(loc1, loc2).

For retrieving information from the neighbor colonies, another mechanism will
be used. For the command

Copy(F ([a, a+ n1)),G ([b, b+ n2,)) ,

we will need only the case when for some w = |Mailk,d.Info| and S ≥ 1 we have
either |F | = Sw, |G | = w, n2 = Sn1 or |G | = Sw, |F | = w, n1 = Sn2. In the
implementation here, we simply run the rules Post-mail and Receive-mail

for a certain length of time. If S ̸= 1 then we require here the two intervals
[a, a+ n1), [b, b+ n2) to be disjoint. In applications we will not insist on this
condition because if the intervals are not disjoint we could replace one copy
operation with two that satisfy the condition.

Two kinds of information will be retrieved before the computation. The
information that is found within the colony itself will be retrieved using the
rule Copy of Algorithm 18.5. Retrieving from the neighbor colonies is more
complex, as these colonies may not be there or may be in different stages of
their work period. It will be handled in Section 19.2.

178

Algorithm 18.5: sub-rule Copy(F ([a, a+ n1)),G ([b, b+ n2)))

let d← sign(b− a)
if n1 > n2 then let S1 ← n1/n2, S2 ← 1
else let S1 ← 1, S2 ← n2/n1
Mail0,d,F ,G ← #
for λSQ steps of Age do

Post-mail(0,F ,G , S1, a, b, n1)
Move-mail(0, d,F ,G)
Receive-mail(0,F ,G , S2, a, b, n2)

19 Computation

Before defining the rules that carry out the computation of a colony, we define
some of the simple data structures that support it.

19.1 Coding and decoding

Let us say more about the error-correcting code used.

Definition 19.1 (Errors) Our error-correcting code will distinguish, similarly
to Examples 5.14 and 5.16, information symbols and error-check symbols. A
string s of symbols that can be the argument of a certain error-correcting
decoding has d errors if, when applying the decoding and encoding to it, the
result differs from s in d symbols. We will work with a code

α (19.1)

of Example 5.15 that can correct errors in t symbols with just 2t error-check
symbols. When loc is a location representing a string s then we will use the
notation

α∗(loc) = α∗(s)

for the value decoded from it. We expect having to deal with at most one
damage rectangle. It can corrupt a group of ∆ consecutive cells (where ∆
was defined in (13.4)). The symbols of the code will be chosen in such a way
that a code symbol stretches over ∆ cells. A damage rectangle can damage
therefore up to 2 symbols, for which 4 error check symbols suffice. ⌟

In the subdivision of the state of our simulation cells into fields, we develop
here a more elaborate version of Example 5.16. Like there, we have a field
Work , to be subdivided into a constant number of fields like Addr , Mail , and

179

so on. In Definition 12.1, we introduced a field called Info partitioned into
sub-fields Payload , Pl-redun and Util . We will build a uniform amplifier as
in Lemma 11.7, with an aggregated field Payload . Different parts of the Util
track in the colony will represent the fields Work∗, Pl-redun∗, Color∗ and Util∗

of the simulated big cell, and contain also the error check symbols for the Util
track itself. Let

Payload ′ = Payload ∪ Pl-redun

denote the payload along with its error-check symbols. Just as in Exam-
ple 5.16, all fields other than Payload have relative width O(w); in particular,
Pl-redun has relative width w. With wk chosen as in (11.9), this allows the
capacity Cap1 of the base medium M1 to still be constant, as the sum over all
levels k of the relative widths of all non-aggregated fields is bounded.

Our transition function Tr will have bandwidth rate w = wk, as in (11.6),
and so the simulated transition function Tr∗ has bandwidth rate w∗ = wk+1.
This way the amount of information needed from the neighbor colonies will
be small. Small bandwidth requires, however, another complication. All in-
formation processing will happen on the Work track, which has relative width
O(w). As at any one time, this track can only handle a small portion of the
the Payload track of the colony, we introduce the notion of packets.

Definition 19.2 (Packets) As the payload of a simulated cell is the aggre-
gated payload of the cells of its simulated colony, we define the payload capacity
as

Cap′k = |Payloadk| = Bk|Payload1|.

We partition the Payload field into P sub-fields of relative width w called field
packets numbered 0, 1, . . . , P − 1. The ith field packet of the Payload field
will be denoted Payload i. We also partition each track F of whole colony into
P ∗ track packets of w∗Q cells each. The jth track packet, with addresses in
[jw∗Q, (j + 1)w∗Q), will be denoted as the location F j , In particular the jth
track packet of the Payload track is location Payload j ⌟

Definition 19.3 (Payload error checks) The error checks of track packet
Payload j , will be in location Pl-redunj on the Pl-redun track. Location

Payload ′
j = Payload j ∪ Pl-redunj (19.2)

combines location Payload j with its error check symbols for a complete code.
We consider the whole Payload track of each consecutive ∆ cells in the

packet Payload j as an information symbol; the error check symbols of Payload j

180

0 1 . . . P ∗ − 1

0

1

...

P − 1

Payload . . .
...

Pl-redun1
@
@RPl-redun

Util

Work

Figure 11: Subdivision of the payload into field packets (horizontal lines) and
track packets (vertical lines).

go to location Pl-redunj . To avoid that the damage rectangle affect both an
information symbol and an error-check symbol of the same code, we divide
the track packet Payload ′

j into left and right halves. The error checks for the
left half of Payload j go into the right half of Pl-redunj , and those for the
right half go into the left half of the same. ⌟

The error check symbols in each half of the track packet Pl-redunj have
4∆ error check symbols of size < Cap. The number of bits in Pl-redunj′ is
Qw∗wCap so these error checks will fit in, according to condition (11.15) on
amplifier our parameters.

The leftmost and rightmost packet of the (encoded) payload will be dis-
played to neighbor colonies as tracks

Payload-to-nbj , j = ±1 (19.3)

of width w; these displays will only be updated in the last step of the work
period.

The code of the amplifier Let us define the code and decoding φ∗,Φ
∗

used in the simulation Φ taking medium M =Mk into medium M∗ =Mk+1.

181

Definition 19.4 (Encoding) The encoding

φ∗ : Sk+1 → SQk
k

takes the state of a cell, applies to it the error-correcting code α∗ introduced
above in Definition 19.1 and copies the result to the Info track of a colony.
The other parts of the colony are set in such a way as they are to be found at
the beginning of a work period. ⌟

There belongs a decoding function φ∗ : SQk
k → Sk+1 to this encoding,

but the actual decoding Φ∗ : η 7→ η∗ depends on the history, not only on the
current configuration η(·, t). One reason is that the transition of a colony from
one work period to the next one takes some time, due to asynchrony. But we
can also use the looking-back to avoid dependency on small noise in the near
past.

Definition 19.5 (Decoding) If the (x, t) is not in Damage∗, then define

η∗(x, t) = φ∗(x, t) = Vac,

unless there is a latest time t′ ∈ (t− 2QT •, t] that is a switching time of a cell
of C(x) such that the rectangle

[x− (Q+ 1.1)B, x+ (2Q+ 1.1B))× (t′ − split-t , t′]

is damage-free, and the colony is covered by a domain of cells belonging to the
same work period (the condition on switching just makes sure that a “latest”
value exists). In the latter case, let us define the strings s = η(C(x), t′).Util
and pi = η(C(x), t′). Payload ′

i. For the decoded value to be nonvacant, we
also require that each of s, pi contains at most 4 errors in the sense that
α∗(α

∗(s)) differs from s in at most 4 places of up to 2 consecutive symbols)
and the same for each pi for i = 0, . . . , P ∗ − 1. If this is satisfied, then
η∗(x, t).Payloadc = α∗(s) while η∗(x, t).Payload is the concatenation of all
α∗(pi). We will say that η(C(x), t) is error-free if each of s, pi are error-free. ⌟

Note that if this definition gave a nonvacant, non-bad value to η∗(x, t),
then it gave the same value to all η∗(x, u) for u ∈ [t′, t] where the time t′ was
defined above.

Rules for coding and decoding Before introducing the coding and decod-
ing rules, a few more notions are needed. In each rule of the present section,
the operation

Maj2i=0 si

182

when applied to strings s0, s1, s2 is the result of taking the bit-wise majority
of these three strings. The rule

Broadcast(loc,F (I)) (19.4)

takes the information found in location loc and writes it into the F field of
every cell in interval I. The default for I is the whole colony [0, Q).

We will use a general type of rule

Check0(prop,F (I), X1, X2, . . .) (19.5)

checking some global property of some parameters X1, X2, . . . each of which
is either an explicit string or a location. Here it is assumed that prop is some
program for the universal computing medium such that after we run the rule
of that medium for Q steps the bit b representing the outcome of the check will
be broadcast into location F (I) (with the help of the rule Broadcast given
above).

The coding and decoding functions can be computed on the universal
medium simulated on one of the tracks. Recall rules 9.6 (Copy) and 9.2
(Write) defined in Section 9.3 and again in Section 18.

Definition 19.6 Let
Vacant-str

be a string representing the state Vac in our code α as in Definition 19.1. Let
Decode-prog be a program for the medium Univ such that after applying

Univ(Decode-prog ⊔ S;Q, 2Q),

location Decode-output on track Cpt.Output contains α∗(S) (see (19.1)) if
α∗(α

∗(S)) differs from S in at most 4 groups of 2 consecutive symbols each;
otherwise, it contains Vacant-str . ⌟

Rule 19.1 (Decode) takes a string from location loc1, decodes it and copies
the result to location loc2. It will always give a result, even if its input in
loc1 is not a code word. (By the assumption made in Definition 9.2, Univ
is commutative, so we do not have to worry about the order of execution in
different cells.)

The rule Encode(loc1, loc2) performs encoding in a similar way. It will
always output a code word; so applying first Decode and then Encode turns
every word into a code word. The locations loci in the encoding and decoding
rules will be allowed to be given indirectly, as explained in Definition 9.17.

In view of Condition 10.16c), for certain information X retrieved from the
neighbors we want to make sure that it has the proper form of a code-word.

183

Algorithm 19.1: sub-rule Decode(loc1, loc2)

Cpt.Input ← ∗;
Write(Decode-prog , Prog);
Copy(loc1, Decode-arg);
apply 2Q times the rule Univ to track Cpt;
Copy(Decode-output, loc2)

Decoding and then encoding it would do this in the absence of the damage
rectangle. The rule Legalize in Algorithm 19.2 will make sure that this
happens even in the presence of a damage rectangle. It repeats the decoding-
encoding three times (using a temporary location Decoded) and then takes
the majority of the results. Moreover, then repeats the whole procedure again.

Algorithm 19.2: sub-rule Legalize(F (I))

repeat 2 times
for j = 0 to 2 do

Decode(F (I), Decoded);
Encode(Decoded ,Votej(I))

if Addr ∈ I then F ← Maj2j=0 Votej

Lemma 19.7 After an application of the rule Legalize(F (I)), location F (I)
contains a word with at most 2 errors. Moreover, if F (I) has at most 2 errors
and decodes to some value X then result also decodes to X.

Proof. Suppose first that F (I) has at most 2 errors and decodes to X. Con-
sider any one of the two repetitions; the decoding-encoding writes Votej(I). If
damage happens during it then the result is worthless. But otherwise, earlier
damage could add at most 2 more errors, and since Decode corrects 4 errors,
the result in Votej is the code of X. Therefore the result in the first repetition
differs from the code of X in the at most 2 errors added possibly in the last
majority step. The same reasoning applies to the second repetition.

Suppose now that F (I) is an arbitrary word. Suppose that damage does
not occur in the first repetition. Then this part turns F (I) into a code word
(without errors), and the previous analysis applies to the second repetition. If
damage occurs in the first repetition then F (I) may be again arbitrary as the
result of this part. But then the second repetition is damage-free and writes
a code word into F (I).

184

19.2 Sending and retrieval

In order to satisfy Condition 10.16e), it is necessary to find a time when the
information received from both neighbor colonies can be attributed to the
same moment. For this, the communication part of the work period will be
substantially longer than the rest. During this time, the colony will continually
post the information destined for the neighbor colonies. One of these pieces
of information will be the age (the age of one cell would be sufficient, but for
simplicity and safety, all cells will send their age). On the other hand, the
receiving colony keeps checking (using the sender’s age) whether the sender’s
age of both neighbors is from a safe part of their work period: if yes then it
stops receiving (by setting Receiving ← 0), and keeps the information already
has to be used later by Compute .

Recall the colony work period in Algorithm 12.1. The rule Send , running
almost all the time, will try to mail information to the neighbor colonies,
running the rules Post-mail listed in Algorithm 19.3 simultaneously. The
retrieval part is played by two more rules running simultaneously. The rule
Extend of Algorithm 14.9 tries to extend some arms of the colony (consisting
of cells of kind Channel j) left and right, for use in communicating with a
possible non-adjacent neighbor colony. The rule Retrieve in Algorithm 19.4
(which is very different from the example in 9.4) will try to retrieve information
sent by the neighbors this way. It records in track Agek, etc. the Age, Doomed
and New fields sent from the neighbor colonies in direction k (see below the
explanation for New). For example Age−1 at address a is expecting the Age
of cell at address a of the left neighbor colony. As the neighbor keeps sending
this information, the receiving cell keeps updating it.

The main fields of the represented big cell of each colony are encoded
onto its Util track. This entire track of the left neighbor will be sent to
the Retrieved−1 track of the receiving colony. The slices of Payload i of the
represented cell (i = 0, . . . , P ∗ − 1) are encoded into the locations Payload ′

i

of the colony.

Algorithm 19.3: rule Send

if Age < grow-start then
for k ∈ {−1, 1} do

Post-mail(k,Age,Age−k, 1, 0, 0, Q)
Post-mail(k,Doomed ,Doomed−k, 1, 0, 0, Q)
Post-mail(k,New ,New−k, 1, 0, 0, Q)
Post-mail(k,Util ,Retrieved−k, 1, 0, 0, Q)

185

The Send rule of Algorithm 19.3 will run most of the time, and each
Post-mail in it will keep sending its information over and over. At the
beginning of the work period the field

Receiving

gets its default value 1, and the

AdjColk, k = ±1

field, indicating whether there is an adjacent neighbor colony in direction
k, gets the default value 0. The Retrieve rule in Algorithm 19.4 will set
Receiving ← 0 as soon as it finds that the information from both directions
is safe: it has not changed “recently” and will not change “soon” (precise
definition is in (19.6)). When Age is safe any information sent from any other
cell of the colony must have already been from the same work period, and the
updating of payload has not yet been started—so all payload information sent
from this colony is consistent. Here we use the fact from Lemma 18.1 that the
sending process itself is reasonably fast, happening in O(Q) time. Let

Safe = {Undef } ∪ (K ·Q, proc-payload-start−K ·Q], (19.6)

where K is the constant started to be used in (12.3). Information from direc-
tion k has not changed lately and will not change soon if Agek ∈ Safe. Indeed,
if Agek = Undef then for a while before, the neighbor colony in direction k
was either vacant or consisted of doomed cells, and for a while after, if it is
not vacant or doomed then its New track is filled with 1’s—in all these cases
the neighbor big cell in direction k will be treated as vacant.

The definitions in (12.3) show that, with R and K large enough the over-
whelming majority of the work period is safe. Indeed, the safe part has age
length KQ(2RP ∗ − 1), hence has a time interval of length at least

KQ(2RP ∗ − 3)T• ≥ 1.5KRP ∗QT• (19.7)

in which all age is safe. Unsafe are only parts outside it, in up to two time
intervals of total age length Q(RP ∗+6λ+4+K), and hence total time length
≤ 1.5RP ∗QT • if R is large.

The Retrieve rule uses the Adj field of the one of the mails (say the
one sending the age information) to set AdjColk. The bits Doomed , New ,
AdjColk would normally be the same over the whole colony, and would differ
from the common value only at the places directly affected by damage (the
damage may have happened elsewhere, with the mail carrying the change to
its destination).

186

Algorithm 19.4: rule Retrieve

if Receiving = 1 then
for k ∈ {−1, 1} do

Receive-mail(k,Age,Age−k, 1, 0, 0, Q)
Receive-mail(k,Doomed ,Doomed−k, 1, 0, 0, Q)
Receive-mail(k,Util ,Retrieved−k, 1, 0, 0, Q)
Receive-mail(k,Payload-to-nbk,Payload-from-nb−k, 1, 0, 0, Q)
if Doomedk = 1 or (Newk = 1 and Agek < K ·Q) then
Retrieved−k ← Vacant-str(Addr)
AdjCol−k ← Mailk,−1,Age,Age−k

.Adj

if {Age−1,Age1} ⊂ Safe then Receiving ← 0

19.3 Computation rules

Recall that we are proving Lemma 11.7 (Amplifier) by building the transition
function of the mediumMk. Given the amplifier parameters and the number k
denoting the level, let us fix where the frame information is to be found, using
the scheme with parameteres introduced in Definition 9.14. (The rule evaluat-
ing the transition function assumes that the collection of amplifier parameters
are described in a parameter called Frame, the parameter k is described in
parameter called Height .

Recall also the structure of the colony work period in algorithm 12.1.
Here we will describe the Compute , Proc-payload and Finish rules. The
main simulation will interpret the program that needs to be applied to the
represented states of the big cell and its neighbors. Given that all computation
happens on the narrow Work track, the rules processing the payload rely
extensively on the copying rule of Algorithm 18.5. The copy process, by its
simplicity, is fault-tolerant: the damage rectangle can only locally corrupt the
information processed by it.

By Theorem 9.2, our rule language can be interpreted by a cellular auto-
maton on some work track. In our example simulation in Section 9.3 the
evaluation rule Eval worked on a track was named Cpt, with its result on
the track Cpt.Output. Now some post-processing will also follow, but let us
discuss first the input information to the rule, some of which will be retrieved
from neighbor colonies. That retrieval is defined in Section 19.2. According
to the requirement on amplifiers, the transition function Tr carries out the

187

computational part Pl-trans via Definition 11.4. Denote by

Payloadc = All \ Payload

the complement of the payload field. As arguments to the transition function,
let r = (r−1, r0, r1), and a = (a−1, a1): the latter are the bits showing whether
the left and right neighbors are adjacent. Recall the notations in Example 4.21.
From r, the transition function Tr(r, a) will depend only on

r0, rj .Payload
c, rj .Payload .slice

w,−j , j = −1, 1.

Thus, from the Payload of the neighbors only the last segment from the left
neighbor and the first one from the right neighbor is needed. This way, when
simulating Tr∗ by a colony then due to (11.14), all needed information from
the neighbor colonies for computing Tr∗(r, a) will fit onto the Work track of
the computing colony. Indeed, for j = −1, 1, for rj .Payloadc one needs only the
Util track of the neighbor colony in direction j. For r−1.Payload .slice

w∗,1 one
needs only the information in location Payload ′

P ∗−1 of the left neighbor colony

as defined in (19.2), and for r1.Payload .slice
w∗,−1 one needs Payload ′

0 from
the right neighbor colony. (The part of the simulating program that needs the
latter information is the rule Update-payload as defined in Algorithm 19.10.)

After retrieval, as described in Section 19.2, the encoded argument
rj .Payload

c, j = ±1 for the simulation will be on track Retrieved j , while
for r0.Payload

c it is on track Util . After decoding, the results will appear in
some locations Argm for m ∈ {−1, 0, 1}. The bits a−1, a1 can be determined
directly from tracks AdjCol j , as the Retrieve rule of Algorithm 19.4 has set
them. (Each of these two tracks contains the repetition of the same single
bit, except for the places affected by damage, so decoding can just take the
majority.)

The rule Eval of Section 9.3 computes the transition function on the Cpt
track, using the program Interpr similarly to Algorithm 9.7 in Section 9.3. It
uses the locations Argm and sub-rule Initialize mentioned in (9.6). But
in the current version, in Algorithm 19.5, there are two more arguments, in
locations Adj-arg j for j = ±1, for the bits a−1, a1 in Tr∗(r, a).

The modification also accounts for payload processing. The program
Interpr for the universal cellular automaton, used in the rule Interpret , will
now be enhanced as follows, using some strings, small in size, called symbolic
commands, from the following list.

Update-payload, Refresh-payload,

Mailk,d.Info←Payloadi, Payloadi←Mailk,d.Info,
(19.8)

188

where i ∈ {0, . . . , P ∗ − 1} and k, d are numbers, and the role of the field
Mailk,d is explained after (9.3). When a condition requires it will broadcast
them (using the rule Broadcast(x,F) of (19.4)): write them into the field
Cpt.Output.Pl-commands of each cell. In particular:

• Encountering the command Payload i ← Mailk,d.Info
in the program for the big cell, broadcasts Payloadi←Mailk,d.Info onto
track Cpt.Output.Pl-commands while on command Mailk,d.Info ← Payload i
it broadcasts Mailk,d.Info←Payloadi.

The broadcast symbolic commands will be executed by the rule
Proc-payload—eventually, after they have been written onto a locally main-
tained track Pl-commands.

Algorithm 19.5: sub-rule Eval

Write(Interpr , Interpr);
Write-param(My-rules, Prog);
for i = 1 to N do Write-param(Parami, Parami)
Initialize ;
Interpret

To deal with the possible damage rectangle, rule Compute of Algo-
rithm 19.7 will call Eval three times, storing its output on the track Voter
for r = 0, 1, 2. The track Hold will receive then the majority of these results.
A post-processing step Update-loc-maint will update the locally-maintained
fields

Doomed ,Growing j (j ∈ {−1, 1}),Pl-commands.

It checks via rule Check0(Check-vacant ,F (I), loc) whether the string repre-
sented in location loc is Vac∗ (and broadcasts the result into track F on
interval I). Let

Creating j

be the location of the field Creating∗
j of the represented cell on the

Cpt.Output.Util track. If the represented cell becomes vacant then, as ex-
pected, Creating∗

j = 0. (This is how we will satisfy Condition d) in simulation,
as Definition 10.12 requires creator to survive until after the creation.) The
value found here will be broadcast to the locally maintained track Growing j ,
since when the represented cell is allowed to be creating, say, to the right,
then the representing colony should be allowed to grow to the right in an at-
tempt to create an adjacent new colony to the right. As usual, the argument
F means F ([0, Q)).

189

Algorithm 19.6: sub-rule Update-loc-maint(r), r = 0, 1, 2

Check0(Check-vacant ,Voter.Util ,Voter.Doomed);
pfor j = −1, 1 do Broadcast(Creating j ,Voter.Growing j)

The rule Compute repeats the evaluation process 3 times: after repetition
r, we encode the result into Cpt.Output and copy it onto track Voter. Finally
Hold will be obtained by majority vote from Voter, r = 0, 1, 2. Recall that
Cpt.Output has sub-tracks Util and Pl-commands. Only the sub-track Util
needs encoding, the track Pl-commands contains the same value repeated in
each cell. Rule Compute calls some more rules. The sub-rule Randomize takes
the Rand bit of the first cell of the colony, and places its α∗-code into the
appropriate location on the Hold track. This is done only once, without any
attempt of error-correction. The line (1) tests whether the colony encodes a
germ big cell that expects to become part of a (big) colony. It is interpreted
easily, when we stipulate that Kind∗ and Addr∗ occupy a special location
on the Util track. The last lines of the code of Compute update the locally
maintained variables Doomed , Growing j and Pl-commands in a single step, so
this step is their update time.

Algorithm 19.7: sub-rule Compute

for m ∈ {−1, 1} do Legalize(Retrievedm)
Legalize(Util);
for r = 0 to 2 do

Decode(Util , Arg0) ;
for m ∈ {−1, 1} do

Decode(Retrievedm, Argm);
Decode(AdjColm, Adj-argm)

Eval ;
Encode(Cpt.Output,Voter.Util);
Update-loc-maint(r)

(1) if Kind∗ = Germ and 0 ≤ Addr∗ < Q∗ then
Broadcast(Update-payload,Cpt.Voter.Pl-commands)
else Broadcast(Refresh-payload,Voter.Pl-commands)

Randomize ;
Hold ← Maj2r=0 Voter;
(Doomed ,Pl-commands)← (Hold .Doomed ,Hold .Pl-commands)
pfor j = −1, 1 do Growing j ← Hold .Growing j

190

If we had to do with a single cell and not a represented one then no pay-
load refreshing would be needed, but the rule Refresh-payload (interpreting
the corresponding symbolic command), as it applies to a represented cell, will
perform error-correction. It may seem at first sight that some of these com-
mands might contradict each other. However, when the symbolic command
Update-payload is outputted then it stands alone; indeed, this is done when a
germ cell is represented, and germ cells are not part of any colony performing
simulation. Similarly, Refresh-payload may seem to possibly contradict the
interpretation of the symbolic command Payloadi←Mailk,d.Info; however, as
they are both are trying to keep (or transport) the same string, only some new
fault can cause a (local) contradiction.

The rule Refresh-payload described in Algorithm 19.8 uses the location
To-refresh on the To-refresh track of the work tape to which the packets of
Payload will be spread out for processing. To control for the occurrence of
possible damage during processing, each packet is processed three times for
r = 0, 1, 2: after decoding and encoding, the result is stored in a location
Votej on a track Votej . Then the majority is copied back to the packet.

Algorithm 19.8: sub-rule Refresh-payload

for i = 0 to P ∗ − 1 do
Copy(Payload ′

i, To-refresh);
for r = 0 to 2 do

Decode(To-refresh, Decoded);
Encode(Decoded , Voter)

To-refresh← Maj2r=0 Voter;
Copy(To-refresh, Payload ′

i)

The computation of Pl-trans∗ = Pl-transk+1 in rule Update-payload as
shown in Algorithm 19.10, takes place when Kind∗ = Germ and the repre-
sented germ cell can expect to become part of a colony (so 0 ≤ Addr∗ < Q∗).
This level is the highest, and as will be seen the possibility of damage on this
level can be ignored, so the rule Update-packet in Algorithm 19.9 does not
need the vote over three repetitions used elsewhere.

Recall that Pl-transk+1 = Pl-trans
Bk+1,wk+1

1 is an aggregated and slowed
version of Pl-trans1. We compute it part-by-part, as we can only use the nar-
row track Work . So we will copy, starting from the left, new and new packets
to the Work track, perform the updating using three neighboring ones, and
copy back the result. The actual simulation of Pl-trans1 will take place on a
sub-track called Pl-upd , of width w ·Cap. Recall from Definition 19.2 that the

191

capacity of the medium Pl-trans1 is Cap′1. After copying and decoding, we
will have on the Pl-upd track three consecutive locations of the same length:
Pl-updp for p = −1, 0, 1, A packet Payload i will be distributed in this loca-
tion. The amount of information in Payload i is w

∗Q · Cap, so we need

w∗Q · Cap/w · Cap = w∗QP (19.9)

cells as the width of the track is w ·Cap.. Each cell in this location will contain

S = w · Cap/Cap′1

symbols of Pl-trans1, so this is an aggregation code, and each cell can compute
on this track the aggregated transition function Pl-transS1 in one step. The
number of steps is equal to the number of cells in Pl-upd0, as in (19.9). At
the end, only the result in Pl-upd0 will be used. Decoding, updating and
encoding will be repeated three times just as in the refreshing case. The rule
Update-packet assumes that the needed three packets have already been
copied to the consecutive locations To-updatep for p = −1, 0, 1, and writes
its result into location Updated . In rule Update-payload , in order to update
the first and last package, the last package of the left and the first package of
the right neighbor colonies are needed; but they have already been retrieved
by Retrieve into Payload-from-nbj , j = ±1.

Algorithm 19.9: sub-rule Update-packet

for p = −1, 0, 1 do
Decode(To-updatep, Pl-updp)

repeat w∗QP times

Pl-upd ← Pl-transS1 (Pl-upd
−1,Pl-upd ,Pl-upd1)

Encode(Pl-upd0, Updated)

Algorithm 19.11 (Proc-payload) depends on the locally maintained track
Pl-commands. We will analyze later what happens when it is damaged. (Only
the command Update-payload is not controlled for damage; however, as it
is called only on the highest level, we will be able to assume no damage on
that level.) Location Mail∗k,d.Info is, just as all fields of the represented cell,
on the Util track. In line (1), i = 0 if k = −1 and P − 1 if k = 1. As said
above, now this program outputs not just the candidate values of the fields in
All∗ \Payload∗ onto Cpt.Output.Util but also a couple of symbolic commands
from the list (19.8) onto Cpt.Output.Pl-commands. In particular, every time

192

Algorithm 19.10: sub-rule Update-payload

Copy(Payload-from-nb−1, To-update−1);
Copy(Payload ′

0, To-update0);
Copy(Payload ′

1, To-update1);
Update-packet ;
Copy(Updated , Payload ′

0);
Copy(To-update0, To-update−1);
Copy(To-update1, To-update0);
for i = 1 to P ∗ − 2 do

Copy(Payload ′
i+1, To-update1);

Update-packet ;
Copy(Updated , Payload ′

i);
Copy(To-update0, To-update−1);
Copy(To-update1, To-update0);

Copy(Payload-from-nb1, To-update1);
Update-packet ;
Copy(Updated , Payload ′

P ∗−1)

Algorithm 19.11: sub-rule Proc-payload

if Pl-commands contains Update-payload then Update-payload

if Pl-commands contains Refresh-payload then Refresh-payload

if Pl-commands contains Mailk,d.Info←Payloadi for some k, d, i
then Copy(Payload ′

i, Mail∗k,d.Info)
if Pl-commands contains Payload←Mailk,d.Info for some k, d, i
then Copy(Mail∗k,d.Info, Payload ′

i)

for k ∈ {−1, 1} do
(1) let i = (P − 1)(k + 1)/2

Copy(Payload ′
i,Temp-Payload-to-nbk)

when an instruction Mailk,d ← Payload i is encountered it is not interpreted
by an action, only by outputting the corresponding symbolic command.

At Age = U − 1 a final computation step takes place in the rule Finish

in Algorithm 19.12, which indeed is only a single step. The part applying to
germ cells will be explained later.

193

Algorithm 19.12: rule Finish

if Doomed = 1 or (Kind = Germ and Addr ̸∈ [0, Q)) then
Kind ← Latent

else
Addr ← Addr mod Q
Age ← 0
Receiving ← 1
if Kind ∈ {Growth,Germ} then

Kind ← Member
New ← 1

else
New ← 0
Util ← Hold
for k ∈ {−1, 1} do Payload-to-nbk ← Temp-Payload-to-nbk

19.4 Lifting

Recall that the payload computation was carried out in germ cells. As seen in
Section 14.4, a germ is trying to grow into an area occupied by five colonies.
Only the middle part will become a new colony, intended to simulate a new big
cell: a latent cell on a higher level. Before the germ work period ends, however,
the new colony will carry out a much simplified version of Algorithm 19.8
(Refresh-payload) called Lift , creating the error checks of the new level
for the payload. Also, all cells of the new colony are supposed to be of the
same color, but this color must be recorded also in the new, represented big
cell: assume this information is (along with its error checks) in place Color∗

on the track Util .
As with all germ actions, no damage rectangle is expected, so there is no

repetition-and-vote.

Algorithm 19.13: sub-rule Lift

for i = 0 to P ∗ − 1 do
Copy(Payload i, To-encode);
Encode(To-encode, Encoded);
Copy(Encoded , Payload ′

i)

Encode into Color∗ the Color of cell with address 0.

194

20 The simulated medium is robust

20.1 Legality

Here we will prove parts a)-d) of Condition 10.16 (Computation Property) for
big cells. In the lemmas that follow, we fix a cell x and denote

I = [x− (Q+ 1.1)B, x+ (2Q+ 1.1B)) .

Lemma 20.1 For some time t, let J = (t−2T •∗−split-t , t]. Assume that the
rectangle I×J is damage-free, and at time t the colony C = C(x) is covered by
a domain of cells belonging to the same work period. Then the string η(C, t)
is error-free in the sense of Definition 19.5.

Proof. Suppose that during the whole interval (t − 2T •∗, t], the colony C is
covered by a domain. In the absence of damage, this colony performs at least
one complete work period of computation without any interference from errors
inside C. It follows then from the definition of the program (summarized in
Algorithm 12.1) that the string s, as a result of such a computation, is error-
free.

Suppose now that there is a first time t′ > t− 2T •∗ such that the colony is
covered by a domain after t′, but not before. Leading back a trace-back path
from any cell of C, starting at time t′ the path is at any time in a domain
covering its originating colony. Indeed, otherwise Lemma 15.17 (Bad Gap
Inference) implies a bad gap which would not be closed, contradicting the
assumption that C is covered by a domain at time t. The only possibility is
thus that of a growing arm that finishes covering C at time t′.

Now if t′ ≤ t− 1.5T •∗ Lemma 16.4 (Colony Trace-back) together with the
number of steps allowed between the end of growth and the work period end
implies that a new work period starts before time t − T •∗, leaving a whole
work period until time, guaranteeing an error-free colony. If t′ > t − 1.5T •∗

then Lemma 16.4 together with the number of steps allowed between the start
and end of growth implies that the growth started after time t − 2T •∗ using
the growth rule, so by the time t′ the whole colony encodes a latent big cell
in an error-free way. No new errors arise later.

Lemma 20.2 (Legality) Assume that, for some number a, the set Damage∗

does not intersect [x, x+QB)× (a−2T •∗, a+2T •∗], further that σ1, σ2, as in
Definition 10.13 (Special switching times) are defined for cell x of medium M∗

in the interval (a − 2T •∗, a + 2T •∗], using Definition 19.5 (Decoding). Then
the following holds, using Definition 2.8 (Legality):

a) legalk+1(η
∗(x, σ2−), η∗(x, σ2)) = 1, thus proving Condition 10.16c).

195

b) T ∗
• ≤ σ2 − σ1 ≤ T •∗, thus proving Condition 10.16b).

c) The randomization property g(α(rand), j,W0(x, a), η
∗), as defined in

Condition 10.16a) will hold: it can be expressed in the needed canoni-
cal simulation of Definition 7.13.

Proof. Let I = [x, x+QB). Our assumption implies that damage is covered
by at most one island in I× (a−2T •∗, a+2T •∗]. According to Definition 19.5
(Decoding), there is a latest time v2 in (σ2−2QT •, σ2] that is a switching time
of a cell of colony C(x) such that I is damage-free during (v2− split-t , v2], and
at time v2 the colony is covered by a domain of cells belonging to the same
work period. The value η∗(x, σ2) was decoded from the state of the colony at
time v2. Let y1 be the cell with address ⌊Q/2⌋ in colony C(x), then (y1, v2) is
traceable, as in Definition 15.4. Build a trace-back path from (y1, v2) to the
latest time v1 in (σ1 − 2QT •, σ1] at which the colony is again covered with
member cells belonging to the same work period, moreover I is damage-free
during (v1−split-t , v1]. There is such a time, due to the definition of σ1. Since
σ1, σ2 are defined, the colony C(x) encodes at time v1 with at most 4 errors a
big cell with value different from the one encoded at time v2.
1. If I is damage-free during (v1, v2] then claim a) holds.
Proof. The computation runs now without faults, and as planned, computes
an error-free value. Rule Compute in Algorithm 19.7 applies Legalize to
the information retrieved from the neighbor colonies, so the result computed
from this information will be a legal one. The switching time σ2 occurs just
when the last cell of the colony passes to a new work period. The process
makes sure that either all cells of the colony are doomed (when the computed
value is vacant), or none them. If they are doomed then the whole colony
dies. Otherwise, the rule Finish installs the remaining changes in one step.
In both cases, the state at time σ2 will be a legal consequence of the state
at time σ2−.

2. If I is not damage-free during (v1, v2] then claim a) still holds.
Proof. Let t1 ∈ (v1, v2] be some time at which damage intersects I, and let
t0 be the latest time before min(t1− 1.1 destr-tQ, v1) which is the switching
time of some cell, with the property that all cells of the colony belong to
the same work period. By Lemma 16.1 (Cover), at time t0, the colony is
covered by a domain of cells. Lemma 20.1 implies that the colony encodes
an error-free string.

Let us follow the development of the colony forward in time, starting from
t0. Healing succeeds, due to the Cover Lemma. Locally maintained fields
will be restored in a short time following the occurrence of damage, via the

196

rule Loc-maintain while other fields changed in at most an interval of ∆
cells, with ∆ defined in (13.4). After this, the work of the colony can be
followed as before.

The time of the damage may fall into at most one of the three iterations of
any of the rules with three iterations (Refresh-payload , Update-payload ,
Legalize , Compute). The output of this one iteration in Voter will be
outvoted by the other two values in the final majority vote. So the only
errors in Hold can be the ones due to their short-term damage in the final
majority vote; these change at most ∆ cells. In summary, we can make the
same conclusion as part 1, except that the encoded string may contain up to
2 errors (in case the island occurs in the last part of computation or later).

There is an exception to this reasoning: in the rules Refresh-payload and
Update-payload , the copy command is not repeated three times, so it is
protected from the damage only in a limited way in the rule Move-mail of
Algorithm 18.1. This protection makes sure that wrong information planted
by damage is copied to at most one segment of size ∆; however, that one
segment will still be affected, so the damage rectangle can cause 2 errors
in the place it occurs and 2 more in the place to which the information is
carried. But the error-correcting code, being able to correct 4 errors, will
still deal with this.

3. We have T ∗
• ≤ σ2 − σ1.

Proof. Consider a cell y of the colony, for example the one with address
⌊Q/2⌋, and lead a trace-back path from time σ2 to time σ1. Suppose it has n
links: none of these are parental. At time σj− all cells have ages ≥ U − 2Q,
hence the age progress along the path is at least U − 2Q.

By Lemma 15.8, the age progress is U − 2Q ≤ n/p1 +∆+ 2, hence

n ≥ p1U − p1(2Q+∆+ 2).

By the same lemma,

σ2 − σ1 ≥ nT• − (∆ + 1)T•

≥ T•(p1U − (2p1Q+ (p1 + 1)∆ + 2p1 + 1))

= T•U
′ − T•(2p1Q+ (p1 + 1)∆ + 2p1 + 1)

= T•U
′(1− (2p1Q+ (p1 + 1)∆ + 2p1 + 1)/U ′)

≥ T•U ′(1−RQ/U ′) = T•
∗,

where we used (12.2), further U ′ = U ′
k was defined in Section 11. Indeed,

sufficiently large R will satisfy the last inequality.

197

4. We have σ2 − σ1 ≤ T •∗.
Proof. Lemma 16.4 (Colony Trace-back) lower-bounds the progress along a
trace-back path; then the proof is finished similarly to part 3 above.

5. Let us prove c).
We need to prove essentially P{η∗(x, σ2).Rand = j} ≤ 1/2+ eps′+ ε′′, given
how ε′k is defined in (11.8). Here ε′′ bounds the probability that damage
occurs in the window W0(x, a) at all. On the other hand, when it does not
occur then each cell at each time within the work period performs its needed
action: in particular, it carries out the rule Compute of Algorithm 19.7, and
within it, the rule Randomize . This rule relies on the randomization action
of a well-defined cell at a well-defined age of the work period, with the result
being j with probability ≤ 1/2+ε′. The probability can only be increased by
the probability bound that damage does occur in W0. It would be now just
a tedious exercise to actually express g(α(rand), j,W0(x, a), η

∗) formally as
needed by a canonical simulation.

Lemma 20.3 Assuming η is a trajectory, η∗ satisfies Condition 10.16d).

Proof. The proof is similar to that of the above lemma, only simpler. There is
a latest time v2 in (σ2 − 2QT •, σ2] that is a switching time of a cell of colony
C = C(x) such that I is damage-free during (v2 − split-t , v2], and at time v2
the colony is covered by a domain of cells belonging to the same work period.
The value η∗(x, σ2) was decoded from the state of the colony at time v2. Let
y1 be the cell with address ⌊Q/2⌋ in colony C(x), then (y1, v2) is traceable,
as in Definition 15.4. Now the a trace-back path from (y1, v2) will lead to a
cell still near the middle of colony C, where C is now not covered by member
cells. According to the Cover Lemma it the cell is still in a domain without
exposed edges, so this domain will cover C as well as an originating colony.
Tracing back further one can see that the cells covering C (whether outer or
germ) were all formed by the rule Grow .passive or Germ-grow .passive of
Algorithms 14.8, 14.16 so they encode a latent big cell. This is in accordance
with Condition 10.16d), as the rule Birth of Algorithm 14.4 requires that
a cell born from a vacant one is latent. The trace-back also shows that the
germ growth succeeded only if the created colony is at a distance ≥ 2QB from
existing big cells, as requires the definition of emergence.

Lemma 20.4 Under the same condition on Damage∗ as in Lemma 20.2,
assume that we have a full colony in which all cells have ages before the start
of rule Update-loc-maint (Algorithm 19.6).

198

a) The locally maintained fields Doomed and Growing j will be homogeneous
with the exception of an interval of at most ∆ cells.

b) The value of Doomed is true (almost) everywhere if and only if Hold
represents the vacant state Vac∗.

c) For j ∈ {−1, 1}, the value of Growing j is equal (almost) everywhere
to Creating∗

j of the cell state represented by the colony.

Proof. The statement a) holds by the same reasoning as that of part 2 of
the proof of Lemma 20.2, because being part of the rule Compute , rule
Update-loc-maint is also repeated three times. The effects of later dam-
age on these fields will be corrected via the rules Heal and Loc-maintain ;
when damage happens at the end of the work period, its effect is still limited
to the location of the damage rectangle. The rest of the statement also follows
from the error analysis of the Compute rule.

The lemma below follows easily from the above and from Condition 10.9
(Time Marking).

Lemma 20.5 Assume that, for some number a, Damage∗ does not intersect
{x}×(a−T ∗

• /2, a+2T •∗]. If η∗(x, ·) has no switching time during (a, a+2T •∗]
then η∗(x, a+) is vacant.

The following lemma infers about the present, not only about the past as
the Attribution Lemma. For an island [a0, a1)× (u0, u1], we call the rectangle

[a0, a1)× (u0, u0 + 4τ2] (20.1)

its healing wake.

Lemma 20.6 (Present Attribution) Assume that the live cell c0 = (x0, t0) in
colony C(z0) is not a germ. Assume also that C at time t0 does not intersect
the healing wake of any island. Then one of the following cases holds.

1) c0 is a member cell, attributed to C which is covered by a domain of
member cells at time t0. If Q < Age(c0) < U − 1−Q then every encoded
package of this colony has at most 4 errors.

2) c0 is a member cell from which a path of time projection at most Qτ2
leads back to a growth cell in C. Assume, say, that it is a left growth cell;
then it can be attributed to C + QB. At time t0, if C + QB does not
intersect the healing wake of an island then [x0, z0 + 2QB) is covered by
a multi-domain. If Q < Age(c0) < U − 1 − Q then still every encoded
package of this colony has at most 4 errors.

199

3) c0 is an outer cell, attributed to its originating colony, say C+QB. If C+
QB does not intersect the healing wake of an island then [x0, z0 + 2QB)
is covered at time t0 by a domain.

4) c0 is a member cell, and there is in C a backward path from it, with time
projection ≤ 2 split-t + (Q + 1)τ2, to a domain of doomed member cells
covering C.

Proof.
1. Suppose that c0 is a member cell.
Recall the notation K,E0 from (16.2) and Definition 16.2 (Attribution). By
Lemma 16.3 (Attribution), c0 can be attributed to the originating colony C

which is either the colony of c0 or not. Let time t1 ∈ K \E0 be a time when
C was covered by member cells. Using Lemma 16.4 (Colony Trace-back), we
can go back from t1 to a time t2 before age compute-start in C. Then as in
part 2 of the proof of Lemma 20.2 (Legality), we can follow the development
of the colony forwards and see that it forms a continuous domain together
with its extension. The locations containing encoded information have at
most 4 errors—as seen in the same proof.

If the computation results in a nonvacant value for the represented big cell
then, if C = C(z0) then case 1) holds. The condition Age > Q guarantees
that all cells of the colony belong to the same work period. Otherwise the
represented field Creating j of the colony will be broadcast into the field
Growing j of its cells, as shown in Lemma 20.4. The homogeneity of this
latter field will be maintained by the healing rule and Loc-maintain . Thus,
depending on the value of Creating j of the big cell, growth will take place
and the growth forms a continuous domain with the originating colony until
the age U when growth cells turn into members, and we have case 2). By
the property of the growth rule the colony encodes a latent big cell, so the
statement about errors also holds.

Suppose that the computation results in a vacant value. Then Growing j will
be 0 everywhere but in the healable wake of the damage. Growth cannot
start accidentally by a temporary wrong value Growing j = 1 in an endcell
since there is enough time to correct this value during the long waiting time
of Grow . Also, all cells become doomed. After Age = 1, any doomed cell
dies, and the whole colony decays within Qτ2 time units. Before that, the
colony is full. After that, we have case 4).

2. If c0 is an outer cell then we have case 3).
Proof. Lemma 16.3 (Attribution) attributes c0 to the originating colony
which is covered by member cells during K \E0. If c0 is a channel cell then

200

this colony would not have time until t0 even to finish its computation, so
it could not be destroyed. If c0 is a growth cell then the cell represented
by this colony could not have become vacant, because then Creating∗

j would
have become 0, broadcast as Growing = 0 and so no growth would have
occurred.

It forms a continuous domain with its extension, until the age U − 1. From
that age on, they form a multi-domain. This could only change if the orig-
inating colony goes through a next work period and kills itself; however,
there is not enough time for this: the definitions (15.6), (12.3) show that
destr-tQ is much smaller than compute-start.

20.2 Robust media properties

To prove Condition 10.16e) for big cells, assume that for some a,

Damage∗ ∩ [x− 3QB, x+ 4QB)× (a− T ∗
• /2, a+ 3T •∗] = ∅. (20.2)

Recall the special switching times σ0, σ1, σ2 of Definition 10.13. By Lemma 20.5,
if there is no switching time during (a, a+ 2T •∗] then η∗(x, a+) is vacant.

Lemma 20.7 For a trajectory η, Condition 10.16e) holds for the decoded
trajectory η∗.

Proof. Let us take times v2, v1 close from below σ2, σ1 as in the proof of
Lemma 20.2 (Legality). From time v1 on, follow the development of colony
C. The computation process can be treated similarly to the proof in that
lemma; but in the communication with neighbor colonies, we must show that
all retrieved information can be attributed to a single time. By event (20.2),
the whole space-time area in which this communication takes place contains
at most one damage rectangle. Repeated application of Lemma 14.7 (Cre-
ation) guarantees the success of extending arms via the rule Extend , defined
in Section 14.3, over possible latent or germ cells or an opposing extension
arm, showing that in each direction, within a good time bound either the
extension arm of the colony C reaches its neighbor C′ (provided it exists) or
the neighbor’s reaches it. If there are extension arms from both colony C and
a non-adjacent neighbor colony C′ then the strength ordering gives preference
to one side and therefore soon only (at most) one arm remains on each side.
In what follows, we call the space-time points free if they are outside the
wake of the damage rectangle (see (20.1)). Cell x is called free at time t and
time t is called free at cell x if (x, t) is free. We must find a time during the

201

communication period (0, compute-start] of C introduced in Definition 12.7 to
which the retrieval from both neighbors can be attributed. Let a1 be the
last free time when some cell of C has age 0, and b1 the first free time when
some such cell has age compute-start, and let J1 = (a1, b1]. By (19.7) and the
argument after it, we have

|J1| > 1.5KRP ∗QT•,

while the unsafe parts of the work period (the dwell period of the big cell
simulated by C) have a total length< 1.5RP ∗QT •. Retrieval by rule Retrieve
in Algorithm 19.4 happens in points of J1 (provided it did not happen earlier)
if a safe Age as defined in (19.6) has been seen in both neighbors. We will
find a sufficiently large subinterval of J1 when this condition holds. Let m1

be the midpoint of J1.
1. Suppose that at time m1 the big cell x encoded by colony C has a left

neighbor big cell, encoded by a colony C′. Then there is a time interval
J2 ⊆ J1 of size ≥ 0.7KRQT• in which the Age−1 read by C in Retrieve is
safe.
Proof. It follows from Lemma 20.6 that m1 is contained in a dwell period
D of the big cell encoded by C′, of length ≥ T ∗

• . By (19.7), D has a subin-
terval J ′ of size at least 1.5KRP ∗QT• in which the Age−1 read by C is safe.
Without loss of generality assume that J ′ is above m1. In the worst case all
the unsafe parts of D may come above m1: still, the part J2 of J ′ falling
into J1 has a length of at least

|J1|/2− 1.5RP ∗QT • ≥ 0.7KRP ∗QT•

if K is large enough.
2. Suppose that at timem1 the big cell x encoded by colony C has no left neigh-

bor big cell. Then there is a time interval J2 ⊆ J1 of size ≥ 0.4KRP ∗QT•
in which the Age−1 read by C is safe.
Proof. Let J ′ be the largest subinterval of J1 containing m1 in which C has
no left neighbor. Then either |J ′| > |J1|/3 or there is a subinterval of J1 of
size ≥ |J1|/3 that either contains a whole work period of a left neighbor of C
or is covered by it. In each case, similarly to the reasoning in part 1 above,
a safe time subinterval J2 is found of size at least

|J1|/3− 1.5RP ∗QT • ≥ 0.4KRP ∗QT•

if K is large enough.
We found a time interval J2 of size 0.4KRP ∗QT• in which both Age and
Age−1 are safe. Repeating the argument we find a time interval J3 ⊂ J2 of

202

size 0.1KRP ∗QT• in which also Age1 is safe. This shows that the Retrieve

rule will succeed at some time t′ during the work period of C and the simulation
result can be attributed to this time point t′ just as Condition 10.16e) requires.

Lemma 20.8 (Growth) For a trajectory η, Condition 10.16f) holds for the
decoded trajectory η∗.

Proof. This proof assumes that in case of conflict, growth to the right is pre-
ferred, but this choice is clearly arbitrary. As in Condition 10.16f), we assume
that there is no non-vacant η∗(y, t) with 0 < |y−x| < QB, t ∈ [a, a+3T •∗], and
that for every t in [a, a+3T •∗] at least one of η∗(x−QB, t) and η∗(x+QB, t)
is a potential creator of x.
1. Suppose x−QB is a potential creator in η∗ at some time t ∈ [a, T •∗].
Tracing backward and forward the evolution of the colony of big cell x−QB,
we find a work period (t1, t2] containing t. If the computation does not kill
the big cell x−QB then it will create the big cell x. Indeed, the only seeming
obstacle to the growth to the right could be some non-germ cell z in its way.
But Lemma 20.6 (Present Attribution) shows that such a z must be a left
extension cell of a live big cell y in [x+QB, x+ 2QB), and is therefore not
stronger than the right growth it is preventing.

Suppose that the computation kills the big cell x−QB. Then x−QB could
not become again a potential creator for time of length ≥ p0T•

∗. By our
assumption then by the time t2 < t + T • < 2T •, the big cell x +QB must
be a potential creator. As above, we would find that it has a whole work
period (t′1, t

′
2] containing t2, and its computation cannot kill it because then

neither x − QB nor x + QB would be a potential creator at time t′2. So
x + QB would attempt to create x: let us show that it will succeed before
time a + 3T •. As above, an obstacle to this could only be a non-germ cell
z that is the right growth cell of a big cell y whose body overlaps that of
x−QB. But this big cell y must be new and thus not become a creator for
a time of length ≥ p0T•∗.

2. Suppose x−QB is not a potential creator in η∗ at any time [a, T •∗].
Then x + QB is a potential creator in η∗ at time a. As above, we find a
work period (t1, t2] of the colony C(x+QB) containing a. The computation
does not kill the big cell x−QB because then at time t2 neither x−QB nor
x+QB would be a potential creator. So x+QB will extend a growth arm
to the left, which can only be stopped by some non-germ cell z in the way.
As in the above reasoning, z must be a right growth cell of a live big cell

203

y in (x − 2QB, x]. Because right growth is preferred, this would succeed,
creating a cell y. If y = x then x has become non-vacant, so we are done.

Let us show that other cases are not possible. We cannot have y = x−QB
because we assumed that x−QB is not a potential creator during this time.
The body of y cannot overlap that of x (without being equal to it) because
this was excluded by the original assumption. In the remaining case, y
creates big cell y +QB which overlaps the body of x while not equal to it,
but this is again just what has been excluded.

20.3 The amplifier parameters

Here we prove Lemma 11.7 (Amplifier), and with this, as noted after the
statement of that lemma, we finish the proof of Theorems 7.4 and 7.5 for the
case of infinite space. This lemma says that a uniform amplifier complex can
be built with the parameters defined in Section 11, with large enough R. The
main ingredient is the sequence of media Mk as in (11.19) and the sequence
of codes φk∗, Φ

∗
k, defined in the course of the proof. It remains to verify the

properties of the amplifier complex listed in Lemma 11.7. Let us recall them
here.

a) (Payloadk) is an aggregated field for (φk∗), as defined in Section 11.

b) The damage map of the simulation Φk is defined as in Section 10.1.

c) Trk carries Pl-transk as in Definition 11.4.

d) Φk has ε′′k-trickle-down.

The first two properties follow immediately from the definition of Trk and
the code, given in the preceding sections. It has also been shown, by induction,
that Mk+1 is a robust medium simulated by Mk via the code, with εk as the
error bound and T•k, T

•
k as the work period bounds. In the construction and

the proof we relied implicitly on the properties proved in Lemma 11.6, mostly
expressed as inequalities.

To prove the two other properties it needs to be shown yet that ε′k indeed
serves as the bound in the definition ofMk = Rob(· · ·), and that the simulation
has ε′′k-trickle-down.

ε′k+1 must bound the difference from 0.5 of the probability of the new coin-
toss of the simulated computation, and the simulation in the work period must
be shown to have ε′′k-trickle-down. We must show that in a big cell transition,
the probability that the Rand∗ field is 1 is in [0.5− ε′k+1, 0.5+ ε′k+1]. (We also
have to show that the bounds on the probabilities are of the form of sums

204

and products as required in the definition of canonical simulation, but this is
automatic.)

In case there is no island during the whole work period, the field Rand∗

was computed with the help of the rule Randomize . This rule took the value
X found in field Rand of the base cell of the colony and copied it into the
location holding Rand∗. By the property of Mk, the probability that X = 1/2
is within ε′k of 0.5. By its definition, ε′′k upper-bounds the probability that
any island intersects the colony work period. Therefore the probability that
Rand∗ ̸= X can be bounded by εk. Hence, the probability that the Rand∗

field is 1 is in

[0.5− ε′k − ε′′k, 0.5 + ε′k + ε′′k] = [0.5− ε′k+1, 0.5 + ε′k+1].

As just noted, with probability ε′′k+1, no island occurs during a colony work pe-
riod. Under such condition, the rule Refresh-payload and Update-payloas

work without a hitch and each cell contains the information encoded by the
code φ∗ from the state of the big cell. So the simulation has the ε′′k-trickle-
down property.

The number of steps in the work period fits into U ′
k as long as the re-

quirement (11.16) of amplifier parameters is satisfied. The parts where this
may not be obvious is the coding-decoding part of the program. However
the codes of Example 5.15 we use, for a fixed number of errors, can be com-
puted in a linear number of algebraic operations (multiplication, division).
Indeed, the sets of equations to be solved involve only constant-size matrices,
and multiplications/divisions were explicitly allowed in our rule language in
Section 9.2.

21 Self-organization

In the present paper, self-organization is not a goal in itself but a tool to
achieve reliability without a hierarchical initial configuration. We achieve this
goal via defining a kind of amplifier that while working is creating more and
more higher-level cells.

21.1 Color control

Consider a robust medium

M = Rob(Tr , B, T•, T
•, ε, ε′, r). (21.1)

The field Color will play an important role in self-organization. Recall Defini-
tion 13.4, with two variants if the fitting relation between colors: 1) and 2).

205

From now on, we will focus on variant 2), as all reasoning can be transferred
to the other variant, with simplifications.

Notation 21.1 For an interval I = [a, b) we define its d-neighborhood as

Γ(I, d) = (a− d, b+ d]. (21.2)

We will also write Γ(x, d) = (x− d, x+ d]. ⌟

Definition 21.2 (Color control) Suppose we are given a medium M , along
with a history η. A set E of space is color-fitted in η at time t if Color(x, t) ≤
Color(y, t) for every pair of cells x < y whose body intersects E. A space-time
set is color-fitted if it is color-fitted at each time t. Let

Jt = (t− (p0 + 2)T •, t]. (21.3)

The set E is controlled in η at time t if every subinterval K of it of size B,
is within distance < 2B of the body of a cell at that time, and the rectangle
K × Jt intersects the (space-time) body of a cell. It is color-controlled if in
addition, the set E × Jt is color-fitted. It has color c if it is color-controlled,
and each cell whose space-time body intersects the set E × Jt has color c. ⌟

The following lemma shows that if an interval of size 2B contains a cell
then (in the absence of damage) it will never remain empty long. Indeed, the
cell can only be killed by other cells trying to create a new cell; this creation
fails only if others are in the way, and so on. The d-neighborhood Γ(I, d) of
an interval I was defined in (21.2).

Lemma 21.3 Let t1 < t2 be times. Assume that interval K = [x0, x0 +B)
is controlled at time t1, and

Γ(K, 3B)× (t1 − (p0 + 2)T •, t2]

is damage-free. Then K is controlled at time t2.

Proof. Let I = (x0 − B, x0 + B], then a cell’s body intersects K if and only
if it is in I. Let t ∈ (t1, t2]. Suppose that K is controlled for all t′ < t,
that is for all t′ < t, each set I × (t′ − (p0 + 2)T •, t′] contains some cell. Let
t0 = t− (p0 + 2)T •. We want to show that

a) I contains some cell z at some time in (t0, t],

b) at each such time the interval Γ(K, 2B) intersects a cell body.

The statement a) may not hold only if a cell x1 in I disappears at time t0,
so assume this happens. Then x1 must have been erased by some cell y1

206

about to create an adjacent neighbor whose body overlaps with the body of
x1. Without loss of generality assume

x1 ≤ x0, y1 +B < x1 < y1 + 2B. (21.4)

As x1 > x0 −B, we have

x0 − 3B < y1 < x1 −B ≤ x0 −B. (21.5)

If y1 ∈ I then let z ← y1, now assume it is not. According to the rule
Adapt , cell y1 must have had Dying0 = 0, Creating1 = 1 to be able to erase,
and therefore survives until time t0 + p1T• as Die(p) always has p ≥ p1 by
Condition 14.16. Since according to Condition 14.16 only the rule Create

changes Creating1, and only when a right adjacent neighbor has disappeared,
cell y1 keeps trying to create a right neighbor.
1. Suppose y1 succeeds in creating y1 +B before time t0 + 2T •.
If y1 + B > x0 − B then set z ← y1 + B. Suppose y1 + B ≤ x0 − B. Then
y1+B turns on Creating1 within time p0T

•, and then tries to create y1+2B.
If it succeeds then, by (21.5) we can set z ← y1 + 2B. If it fails then a cell
x2 with y1 + 2B < x2 < y1 + 3B is in the way, and we can set z ← x2.

2. Suppose that y1 does not succeed creating y1 +B before time t0 + 2T •.
Then some cell x2 with y1 +B < x2 < y1 + 2B interferes. This cell was not
there at time t0 as, by (21.4), it would have overlapped with cell x1. Being
so close to y1, cell x2 could not have arisen by spontaneous birth, hence it
must have been created by x2 +B which, as any creating cell, must still be
alive after the creating time, so we can set z ← x2 +B.

We have shown a). The proof also shows that unless x1 survives y1 will,
therefore for all t′ in (t0, t], it is within 2B of interval K, which also shows b).

Lemma 21.4 (Lasting color control) Suppose that in a trajectory η of medium
M =Mk of our amplifier, for an intervals E and times t1 < t2, the interval

E′ = Γ(E,B(t2 − t1)/T•)

is color-controlled at time t1 and I × (t1 − 2T •, t2] is damage-free. Then E is
color-controlled at time t2.

Proof. We have to prove that E is color-controlled at time t2. Lemma 21.3
implies that E is controlled at time t2; what remains to show is that the
rectangle Γ(E,B) × (t2 − 3T •, t] is color-fitted. By the definition of control,
in the space-time area considered, every interval of size B is within less than

207

2B distance from some cell body, and this prevents any germ cell from being
born, due to Condition 10.16d). Suppose that two non-fitting controlling cells
was created: say, a cell with color 1 on the left of a cell with color 0. Then one
could construct a path from both of these backwards, one with color 1 and
one with color 0. These paths cannot cross, being of different color, nor can
reach outside E′ during (t1, t2] since it needs at least T• time units to move
one cell width away from E. So we would find a cell with color 1 on the left
of a cell with color 0 in E′ at time t1, contradicting the assumption.

An interval will become controlled soon even if a cell is only nearby:

Lemma 21.5 K = [x0, x0 +B) be a space interval and t1, t2 times with
t2 = t0 + dp0T

•, where

d < p1/λp0. (21.6)

Assume that Γ(K, (d+ 1)B)× (t1 − 3T •, t2] is damage-free, and the body of a
cell x1 intersects Γ(K, dB) at time t1. Then K is controlled at time t2.

Proof. The proof is similar to that Lemma 21.3, so we only sketch it. Assuming
x1 is the closest cell to K, say from the left, it extends an arm of cells to the
right, where each step of extension takes time ≤ p0T •, for a total of ≤ dp0T •.
This can be stopped only in two ways. 1: if a cell x2 closer to K emerges
as an obstacle, in which case we continue the reasoning from x2, 2: If x1
gets killed by a cell y1 from the left, in which case we continue the reasoning
from y1. We know that y1 cannot die for a time of at least p1T•, and by the
assumption (21.6) we have dp0T

• < p1T•.

Definition 21.6 In a trajectory η of a medium M , we will say that a space
interval at time t is germ-level, if it has no colony cells. ⌟

According to the lemma below, if only a small subinterval has possibly
different color in an otherwise color-controlled interval then the growth of this
discrepancy in time is limited.

Lemma 21.7 Let us be given a time t1, an interval J , and

I ⊃ Γ(J, |J |), I ′ = Γ(I,B∗), t2 = t1 + T•
∗.

In a trajectory η, assume that the space-time rectangle I ′ × (t1, t2] is free of
damage. Assume also that η(·, t1) is such that changing it in J , at time t1 the
whole interval I ′ will become color-controlled and germ-level. Then at time t2
there is an interval J ′ ⊃ J , with size ≤ 2|J | such that changing η in Γ(J,mB),
the interval I becomes color-controlled. If it contains any colony cells at this
time, they encode cells of age at most 0.

208

Proof. Let m = |J |/B. If there are no cells in J then repeated application of
Lemma 21.5 implies that it will be populated with cells coming from outside
it by time t1 +mp1λp0T

•. Assume now that there are some cells in J . Any
colony cells in J can only survive if they become part of a colony connected
to either the left side or the right side, otherwise they will decay within time
mp2T

•, as they are in a small interval at least one of whose ends is exposed. So
assume we have a germ inside J , of a color that is not fitting to its neighbors
outside, say, on the left end. Then the left end of this germ cannot extend
beyond the left end of J . The distance to which the right end can extend is
limited by the rule Germ-grow .active of Algorithm 14.15 to mB. After the
age grow-end, the germ starts decaying, and will disappear by time t1 + T•

∗.
During this time, colony cells may intrude into the interval I ′, but in time T•

∗

they can enter to a distance at most B∗.
Any colony cells in J that arose during the time indicated, belong to a

brand new colony and as such, can only encode a big cell of age 0 that was
not there at time t1. The time T•

∗ is not sufficient to increase this age even
by 1.

In some simulations, color “trickles down”.

Lemma 21.8 (Color trickle-down) Let η be a trajectory of M , define the
times t0 and t1 = t0 + T •∗. For interval J let J ′ = Γ(J, λB∗). If J ′ is
color-controlled at time t0 in Φ∗(η), and the area J ′ × (t1 − (p0 + 3)T •∗, t1] is
damage-free in η, then J is color-controlled at time t1 in η, and its colors can
only be ones that were present in J at time t0.

Proof. Let K be any subinterval of J with |K| = B, and let K ′ = [a, a+QB)
be any subinterval of J ′ of size QB containing K. As J ′ is color-controlled
at time t0, the interval K ′ is intersected by the body of a big cell x1 at some
time t′ with t0 − (p0 + 2)T •∗ < t′ ≤ t0. Without loss of generality assume
that x1 ≤ a. By Lemma 20.6 (Present Attribution) we can find a whole work
period (u1, u2] of x1 containing t′ and ending before time t1. During this work
period its colony will extend some arm to the right. If it does not cover K ′

then again, by the Present Attribution lemma we would find the left extension
arm of another colony meeting this arm from the right. This way, at some
time t′′ ∈ (u1, u2] the whole interval K ′ is covered by up to two intervals of
adjacent small cells, meeting in a gap of size < B. So then the interval K ′

is color-controlled in η, and by Lemma 21.4, this property will be conserved
until time t1.

209

21.2 Colony birth

We will consider a trajectory η. The final goal in this section is to find, in
Lemma 21.11, with large probability, some germ will grow into a big cell.

Recall the definition of ρ in (14.5), and its use in the rule of germ growth.
In what follows we will repeatedly rely on the following observation, for any
ρ > 1. Let 0 < L1 < · · · < Ln be such that Li+1 ≥ ρLi for all i. Then

L1 + · · ·+ Ln ≤
ρ

ρ− 1
Ln. (21.7)

(We will use the fact that with the definition (14.5) of ρ we have ρ
ρ−1 = 5.)

Lemma 21.9 In a trajectory η, let c1 = (x1, t1) be a germ cell with G-size =
L and Age > 3RL. Assume that at time t1, with a germ cell body K =
[x1, x1 + 2B∗), the space-time rectangle

Γ(K, 25B∗)× Γ(t1, T
•∗). (21.8)

is free of damage, and the domain containing c1 has an exposed edge. Then
there is an L′ with ρL < L′ ≤ 5Q such that in

Γ(x1, 5L
′B)×

[
t1, t1 + 5RL′τ2

)
(21.9)

there is a colony cell, or a germ cell with G-size ≥ L′, or one with Addr = e′j
for j = ±1 (recall (14.3)).

When ρL would be larger than 5Q then G-size ≥ ρL is not possible, so
only the case of a colony cell remains.

Proof. Let us note that if there is a colony cell then by Lemma 20.6 (Present
Attribution) there is a whole extended colony containing it.

Let us construct a path P1 backwards from c1, staying inside the germ,
which we will call G1, to of an age that is at the beginning of the computation
part which set G-size(c1). Germ G1 must be without exposed edge during the
first half of this computation part, because otherwise it would decay during
the second half (which is long enough for this), contradicting the age of c1.
Then at the end of the computation, at some time t0, the germ G1 has size
≥ L, and all its cells have the same Dominant value, decided in the first step
of the computation.

Let us follow the development of G1 from time t0 forwards. At some time
one of its edges gets exposed, so some protected edge c′ was killed by an
attack: without loss of generality, assume it is from the left, and consider the
development of the attacker domain G2 after time t0. There are the following
possibilities according to Algorithm 14.16:

210

1) G2 is an extended colony.

2) G2 has G-edge−1 = e′−1, and then naturally G-size ≥ 5Q/2.

3) it has G-size > ρL.

4) it has Dominant = 1 and G-size ≥ L/ρ while G1 has Dominant = 0.

In case 1), this colony is still there at time t1, because the period (t0, t1] is
too short for it to go through another work period and die. In the other cases,
G2 must also be past the computation that led to its G-size. Consider case 2).
If G2 does not get exposed before time t1 then we are done. If it is exposed
by an extended colony, we are back to case 1). If it is exposed by a germ then
we are back to cases 3) or 4), but with a germ size at least ρ times larger than
that of G1. Repeating this we may get to a distance L+ ρL+ . . . ρnL. With
L′ = ρnL, by (21.7) this distance is ≤ ρ

ρ−1L
′.

Consider case 4). If G2 gets exposed then we can repeat the whole above
reasoning starting with G2; however, now it is attacking, so case 4) cannot
occur again with the same G-size. Now assume that G2 does not get exposed:
call this the case X. Then it can override G1, but it is possible that at the same
time, case X occurs also on the right. Still, as a result, within time τ2RL, at
least half of the size of G1 will be added to one of the attacking germs, say
G2, so after it finishes its growth (and new computation), it gets

G-size ≥ L(1/2 + 1/ρ) > Lρ.

The following lemma strengthens the conclusion of Lemma 21.9.

Lemma 21.10 Consider a trajectory η with a germ cell c1 = (x1, t1), K =
[x1, x1 + 2B∗) and L = G-size(c1), and assume that the large space-time rect-
angle (21.8) is free of damage. Let 5τ2RL ≤ H ≤ T •∗. Then at some time
t′ ∈ [t1, t1+H] we can find a cell x′ with a domain of germ size L′ ≥ L, where

x′ ∈ Γ(x1, 5L
′B). (21.10)

If c′ = (x′, t′) does not belong to an extended colony or to a germ with maximal
size then t′ = t1 + H. If L′ ≤ ρL then c′ = c1, and during [t1, t1 + H] the
germ of c1 did not become exposed or have a neighbor that is a colony cell or
a germ cell with G-size ≥ ρL.

Proof. Let t0 = t1 +H. We will iterate the application of Lemma 21.9, with
L1 = L. If the germ of c1 does not get exposed or have a neighbor that is a

211

colony cell or a germ cell with G-size ≥ ρL during [t1, t1 + H] then its germ
has size ≥ L. As we will see this is the only possibility for L′ < ρL.

Suppose now that one of these events does occur. Then Lemma 21.9
gives a cell c2 = (x2, t2) in the area (21.9), without exposed edges, with
G-size(c2) = L2 ≥ ρL1, but with possibly t2 < t0. Follow the development
of the germ of c2 forward. If it reaches its maximum size or time t0 without
getting an exposed edge then we are done. Otherwise, the germ of c2 gets
an exposed edge at time t3. Applying Lemma 21.9, to c3 = (x2, t3), we find
a cell c4 = (x4, t4) that is either a germ end-cell, or has G-size(c4) ≥ ρL2.
Repeat the argument as long as necessary. The relation (21.10) can be proved
similarly to the corresponding relation in Lemma 21.9.

The following key lemma is the only one in this paper using a canonical
simulation with random rectangles as in Section 7.3, and then relying on the
fact that η is a strong trajectory. Let

θk = e−Rk
2
. (21.11)

Lemma 21.11 Consider a trajectory η of Mk, with a germ cell c1 = (x1, t1),
K = [x1, x1 + 2B∗), and assume that the large space-time rectangle (21.8) is
free of damage. The probability that the rectangle contains no colony cell is
bounded by θk. Moreover, there is a canonical simulation in the sense of
Definition 7.13 providing this estimate.

Proof. 1. The following construction iterates that of Lemma 21.10, with cells
cs = (xs, ts), Ls = G-size(cs) and time period of size

Hs = 10λτ2RLs (21.12)

in step s.
Starting with cell c1, find a cell c′ given by the conclusion of Lemma 21.10,
call it c2 = (x2, t2). Repeat, getting to cells c3, c4, . . ., until cell cn when we
reach a germ with maximal size, or a colony, or time t1 + 2T •∗. Let us call
step s a growth step if Ls+1 ≥ ρLs, and stalling step otherwise. As seen in
Lemma 21.10, in a stalling step a germ of cs of size Ls does not get exposed,
nor does it meet a colony cell or a cell with G-size ≥ ρLs.

Let us examine a stalling step starting at time ts, at the shorter end of the
germ Gs of cell cs, that is on the end in which direction its Grow-dir points;
without loss of generality, assume that it is the left end. Let xs be the cell
of Gs with address Q/2. After ts, the germ Gs may grow, but since it will
not reach ρLs, it will stall soon, at some time u1. One possibility is that the

212

left end has reached its farthest possible address, another that another germ
is in the way: one with G-size between Ls/ρ and ρLs; we already excluded
the other possibilities. In case the left end has reached the farthest address,
we will turn attention to the right end, so without loss of generality, assume
that the left end does not reach the farthest address, because another germ
G′ is in the way.

Let x′ be the central cell of G′, and look at the next λ+2 times in which xs
or x′ make a random choice of Dominant. Let E be the event that each choice
is Dominant(xs) = 1 and Dominant(x′) = 0. We claim that if E occurs then
Gs will advance, so the current step is not a stalling step. To avoid some
case distinctions, call xs = y1, x

′ = y0. Let j be such that the first choice of
y1−j , at some time τ , falls between two choices of yj at times τ ′ and τ ′′. If
τ happens at least 0.1RL age steps before τ ′′ them Gs will advance before
τ ′′. Otherwise Gs will advance soon after τ ′′. Now, τ occurs before λ + 1
choices made by yj ; indeed, T

•/T• ≤ λ implies that the stages of y1−j are
at most λ times longer than those of yj . So the current step is stalling only
if ¬E holds, that is with probability

P(¬E) ≤ 1− (1/2− ε′)λ+2 < 1− (1/2− ε′)5 < 1− 2−5,

because λ ≤ 2 according to (11.2), and ε′ can be chosen small.

by Condition 10.16a) on robust media.
2. Let us estimate first the probability that there is no colony in (21.8) infor-

mally (that is not in the sense of canonical simulation yet).
We assumed that the rectangle (21.8) is damage-free; the straightforward
estimation of the probability of damage will come later. Our construction
gives in step s a cell cs = (xs, ts). The number of growth steps is at most
log(5Q)/ log ρ. Recalling (14.5), this is < 4 logQ when Q is large. As Ls <
5Q, each step has time length ≤ 50λτ2Q. So the total number of steps is at
least

n ≥ T •∗/25λp2T
•Q. (21.13)

We are using the parameters in (11.9):

Q = Qk = Rk+1,

w = 1/Rk2,

U ′ = RQ/w,

T •∗ < 2U ′
kT

• < 2T •∗,

logQ = (k + 1) logR.

(21.14)

213

so by (21.13) we have

T •∗/QT • > U ′/Q = R/w = R2k2,

n ≥ R2k2/25λp2 =: cR2k2. (21.15)

As we have seen the probability for any particular step s to be a stalling
step is ≤ 1− 2−5. Using ln(1 + x) < 1 + x we have ln(1− 2−5) ≤ −2−5,

r := − ln(1− 2−5) > 2−5. (21.16)

For any particular m-element subset of steps the probability to be stalling
steps is at most (1− 2−5)m = e−rm. As seen, the number of stalling steps is
at least n− 4 logQ, so the probability of no colony is

≤
∑

i>n−4 logQ

(
n

n− i

)
e−r(n−i) =

∑
i<4 logQ

(
n

i

)
e−r(n−i)

< 4 logQ · n4 logQe−r(n−4 logQ) = 4 logQe−(rn−4r logQ+4 lnn logQ),

(21.17)

because the term inside the sum is increasing with i. Given (21.15) and (21.14),
for large R the right-hand side is < 4 logQe−rn/2, and the sum of (21.17)
for all n > cR2k2 is

≤ 4 logQ
∑

n>cR2k2

e−rn/2 ≤ 4(k + 1) logR · e−rcR2k2/2
∑
n>0

e−rn/2.

The multipliers of e−rcR
2k2/2 don’t change the rate of growth much, so we

can bound the probability by θk as defined in (21.11).
3. Now we repeat the construction above, turning it into a canonical simula-

tion.
As we constructed the sequence of cells cs = (xs, ts), s = 1, 2, . . ., the times
ts were chosen on the basis of the trajectory η before ts, so these times
ts are stopping times according to Definition 7.8. It is not important to
upper-bound the number of steps, but n∗ = 2T •∗/T • will serve. Following
the reasoning in part 2, choose in every possible way a subset S of size
> n∗ − 4 logQ of the set {1, . . . , n∗} of indices. Number these subsets as
S1, S2, . . . , SN . Subset Si represents the assumption that the steps s ∈ Si
are the stalling steps. In order to define the canonical simulation, we repeat
the reasoning of part 1 above.

Let us fix one of the sets S = Si. For each element s ∈ S in increasing order,
let us examine a presumed stalling step starting at time ts, at the shorter

214

end of the germ Gs of cell cs. Without loss of generality, assume it is the
left end. Let u1 be the start of a growth part of a new work stage of Gs
after ts (started by the center cell of Gi). After u1, the germ Gs may grow.
If it reaches ρLs, or meets a colony cell or a germ cell with G-size ≥ ρLs,
then s is not a stalling step: we set

βS,s = ω, Wi,r = ∅, (21.18)

and proceed to j+1. We will call this action bailing out. Another possibility
is that the left end has reached its farthest possible address, another that
another germ is in the way: one with G-size between Ls/ρ and ρLs; we
already excluded the other possibilities. In case the left end has reached
the farthest address, we will turn attention to the right end, so without loss
of generality, assume that the left end does not reach the farthest address,
because another germ G′ is in the way. Let xs be the central cell of Gs and
x′ be that of C ′. Now we look at the first m = λ+ 2 times τ∗1 , τ

∗
2 , . . . when

x2 or x′ make random choices, let yj ∈ {xs, x′} be the element making its
choice. For every possible binary sequence b = b1, . . . , bm we will bail out
unless yj = xs if and only if bi = 1. We will also bail out if the choice is
Dominant(yj) = j for all j. Both of these decisions can be made at the last
time τm, if not earlier. For the remaining cases,

βS,s,b,j := α(rand , fj), WS,s :=W0(yj , τ
∗
j),

where α(rand , d) and W0(x, t) were defined in Condition 10.16a). This con-
struction results in the required canonical simulation. Summing up the
non-bailed out bounds results in the same estimate as the more intuitive
one given in parts 1 and 2 above.

We now strengthen the conclusion of Lemma 21.11 for the cases when more
is known about interval we start with.

Lemma 21.12 Let us be given an interval K = [x1, x1 + 2B∗), and let

t2 = t1 + 26p0T
•∗, K ′ = Γ(K, 2 · (26p0 + 2)λB∗).

In a trajectory η = ηk of medium M = Mk, assume that the space-time
rectangle K ′× (t1, t2] is free of damage. Assume also that there is an interval
J of size < |B∗|/3 in which when changing η at time t1 the whole interval K ′

can be made color-controlled in M . Then at time t2, except for an event of
probability θ defined in (21.11), the interval K is color-controlled in trajectory
η∗ of M∗. If K ′ is germ-level for η at time t1 then K is germ-level for η∗

at time t1.

215

Proof. Assume Γ(J,B∗) ⊆ K ′; if this is not true then we can simply ignore J .
Let K ′′ be the larger of the two intervals or K ′ \ J . By Lemma 21.11, except
for an event of probability θ, before time t1 + T •∗ a colony arises in K ′′, not
farther than 25B∗ from K. Then applying Lemma 21.5, to η∗, until time t2
the interval K becomes controlled in M∗. Indeed, given that by Lemma 21.7,
any non-fitting germ that started in J can grow only by a factor of 2 in each
time interval T•

∗, the size of such a germ remains much smaller than B∗, and
will be overridden by the colonies.

Cells that are not color-fitted can only intrude over germ cells if they are
colony cells. In time T•

∗ they can cover at most one colony length, so in time
26p0T

•∗, this amounts to ≤ 26p0(T
•∗/T•

∗) = 26p0λ colony lengths, still away
from K.

Let us show that K will be germ-level in η∗. At time t1, there were no
colony cells yet in K ′, so even if a new colony occurs right after t1, it starts
simulating a germ cell of M∗, with age 0. Every dwell period of such a cell
takes time at least T•

∗, so until time t2 it can have at most 26p0λ dwell periods,
a constant less than the age U∗ needed to become a colony cell of M∗.

21.3 Lifting the simulation level

Definition 21.13 (Probabilistic color control) Let us define the constants

C1 = (26p0 + 2)λ, C2 = 26p0 + 2. (21.19)

Let “blue” be some color. For some parameter σ > 0, let E be an event derived
from the behavior of trajectory η of mediumM before time t. We will say that
trajectory η is germ-level blue modulo (σ,E) at time t on the finite or infinite
interval H if for every set of space intervals I1, . . . , In ⊂ H, of size C1B, at
distance ≥ 2C1B from each other, the probability that ¬E holds and none of
the Ij is germ-level and blue is at most σn. When H is the whole space then
we will have E = ∅, so the “modulo E” qualification can be omitted.

For an amplifier, the parameter θk was defined in (21.11). Let

σk =

{
θ1 if k = 1,

2θk−1 if k > 1.
(21.20)

As usual, for level k we will simply write σ = σk, σ
∗ = σk+1, and so on. ⌟

A special case of the lemma below says that if H is the whole space then
for every trajectory η of M , if H is germ-level blue in η at time t1 modulo
σ then it is germ-level blue for the trajectory η∗ of M∗ modulo σ∗ at time

216

t1+C2T
•∗. The statement is a little more complex if H is not the whole space,

because of intervals Ij that may fall close to its boundary.

Lemma 21.14 (Self-organization) For a trajectory η of one of the media
M = Mk, of our amplifier, and E an event depending on the behavior of
η before t1. For a finite or infinite space interval H, assume that H ′ :=
Γ(H,C1B

∗) is germ-level blue modulo (σ,E) in η at time t1, and let t2 =
t1+C2T

•∗. Let E∗ be the event that E holds, or not all (0,1 or 2) intervals of
size C1B

∗ at the ends of H ′ are blue in η at time t1. Then H is germ-level
blue modulo (σ∗,E∗) at time t2 for the trajectory η∗ in M∗.

Proof. Let I1, . . . , In ⊂ H be any system of intervals of size C1B
∗, at distance

≥ 2C1B
∗ from each other. We need to bound the probability by (σ∗)n that

¬E∗ holds and none of the intervals Ij are good in η∗. It is sufficient to look
at one of these intervals—call it I, with

I ′ = Γ(I, C1B
∗).

Indeed, as the space-time rectangles of the argument for all of them are dis-
joint, and the probability estimates come from a canonical simulation, the
bounds σ∗ on the probability will multiply. Here is an outline of the argu-
ment.
We will work within the space-time rectangle

I ′ × (t1, t1 + C2T
•∗]. (21.21)

• Estimate the probability of the event F1 that damage occurs in the rectan-
gle (21.21).

• Estimate the probability of the event F2 that at time t1 it is not true that
the interval I ′ is germ-level blue with the possible exclusion of a subinterval
J of size C1B.

• Show that assuming ¬(F1 ∪ F2), except for an event F3 of probability ≤ θ
the interval I turns germ-level blue for M∗ by time t2.

Condition 10.4 (Restoration Property) gives the upper bound

P(F1) ≤
3C1B

∗ · C2T
•∗)

BT • ε ≤ 4C1C2QU
′ε. (21.22)

Assuming ¬E∗ implies ¬E as well. Let F2 be the event that ¬E holds and
there is no interval J of size C1B such that, setting J ′ = Γ(J, 2C1B), the set
I \ J ′ is blue at time t1.
1. We have P(F2) ≤ (C1Qσ)

2.

217

Proof. Let Ji = iC1B+[0, C1B). Under the assumption of ¬E, which we will
omit to write in the estimates below, for some i, h with |i− h| ≥ 4, let Fi,h
be the event that neither Ji nor Jh is germ-level and blue, and both intersect
I ′.. The germ-level blueness of η at time t1 modulo σ implies P(Fi,h) ≤ σ2,
and hence P{∃i, h : Fi,h} ≤ (3C1Q)2σ2. If there is no such pair i, h then it
is easy to see that there is an i such that I \ J ′

i is blue.
2. Let F3 be the event that ¬(E ∪ F1 ∪ F2) holds and I does not become

germ-level blue in η∗. Then P(F3) ≤ θ, where θ was defined in (21.11).
Proof. By ¬F2 there is a J of size C1B such that I ′ \ J is germ-level blue
at time t1, so we invoke Lemma 21.12.

Summarizing, the probability that under condition ¬E the interval I does not
become blue in η∗ is bounded by

P(F1 ∪ F2 ∪ F3) ≤ 4C1C2QU
′ε+ (C1Qσ)

2 + θ. (21.23)

Let us show that the latter is ≤ σ∗, using the definitions in (21.20), those
in (21.14), and the inequality (11.10). We have, for large enough R and small
enough ε:

4C1C2QkU
′
kεk = 4C1C2R

2k+4k2εk < θk/2,

(C1Qkσk)
2 = C2

1R
2k+2e−2Rk2 < θk/2,

so (21.23) is bounded by 2θ = σ∗.

21.4 Computing supported by self-organization

Here we will prove the remaining main theorems, which rely on self-organization.

Proof of Theorem 7.4. The field that will be remembered will be Color . For
the size N of our space, let us define the finite or infinite level K:

K =
∨
{k : 5Bk ≤ N }.

For a certain value of the field Color that we call blue, we create an initial
configuration η1(·, 0) with blue latent cells covering the whole space. Let the
trajectories η1, ηk be defined as before. The proof will show that by time
C2T

•
k the space will be germ-level blue modulo σk; from this via trickle-down

we will be able to control the probability of any particular space-time point
(x1, t1) not being blue.
Let F1 be the event Blue ̸= η1(x1, t1).Color

1. Eventually, we want to upper-
bound P(F1). Let us consider first the case of infinite space, that is K = ∞.

218

Let

v1 = t1, vk+1 = vk − T •
k+1,

I1 = {x1}, Ik+1 = Γ(Ik, λBk+1),

u1 = 0, uk+1 = uk + C2T
•
k+1.

By Lemma 21.14, for each k ≤ K, in the trajectory ηk, the whole space is
germ-level blue at time uk modulo σk. Let Fk be the event that Ik is blue at
time vk in ηk.
1. We have P(Fk+1 \ Fk)

∗
< U ′

kQkεk, where we used the notation introduced
in (2.1).
Proof. If damage does not occur in ηk in Ik+1 × (vk − (p0 + 2)T •

k+1, vk]
and Fk+1 holds then Lemma 21.8 (Color trickle-down) implies Fk. The
right-hand side above upper-bounds the probability of damage there. Now

U ′
kQkεk < ε2

n−2+2(n−3)/2
< ε2

n−2
,

Let

n =
∧
{k : vk+1 ≤ uk+1 or k = K}, t2 = un.

If K =∞ then we always have vn+1 ≤ un+1, hence

vn+1 = vn − T •
n+1 ≤ un+1, un < vn,

vn ≤ un+1 + T •
n+1, vn − un ≤ (C2 + 1)T •

n+1.

Let I ′ = Γ(In, (C2 + 1)BnT
•
n+1/T•n). Let B be the event that I ′ is blue in ηn

at time un. Since η
n is blue at time un modulo σn for each n, we have

P(¬B)
∗
< U ′

nσn.

We claim P(B \ Fn)
∗
< (U ′

n)
2εn. Indeed, if damage does not occur in ηk in

I ′ × (un, vn] then B and Lemma 21.4 imply Fn. And the right-hand side
upper-bounds the probability of damage occurring there. Thus,

P(¬F1) ≤
n−1∑
k=1

P(Fk+1 \ Fk) + P(¬B) + P(B \ Fn)

∗
<

n−1∑
k=1

U ′
kQkεk + U ′

nσn + (U ′
n)

2εn.

219

With the parameters of (11.9), large enough R and small enough ε we have

n−1∑
k=1

P(Fk+1 \ Fi) = O(ε),

U ′
nσn = Rn+3n2e−Rn

2
< e−Rn

2/2,

(U ′
n)

2εn = R2n+6n4ε2
n−2+2(n−3)/2

< ε2
n−2

,

for any somewhat large n and small ε, giving P(¬F1)
∗
< e−Rn

2/2 + ε. Let us
upper-bound e−Rn

2/2 by lower-bounding n. We have

t1 ≤ (C2 + 1)
n+1∑
k=1

T •
k

∗
< T •

n+1.

From (11.18) for large k:

t1 ≤ T •
n+1 = R(n+2)(n+3)/2−2(n!)2,

ln t1 < 0.6n2 lnR,

n2 > (1/0.6 lnR) ln t1,

e−Rn
2 ≤ t−R/0.6 lnR1 ,

which leads to the estimate in Theorem 3.1.
2. Suppose un+1 < vn+1, hence n = K and the space is finite.
Given Bn ≤ N ≤ 5Bn and the explicit expression for Bn and (within con-
stant factor of) T •

n in (11.18), the estimate for εn in (11.10) and the defi-
nition (3.2), we have for large n,N , where for a later application we have
been a little more generous:

N < Bk+1 = R(n+1)(n+2)/2−1,

logN < (n+ 1)2 logR/2,

n− 2 > (logN)1/2(2/ logR)1/2 − 4, (21.24)

2n−2 > c(logN)1/2 = h0(N, c) for an appropriate c > 1,

εn < ε2
n−2 ≤ εh0(N,c).

Let B be the event that the whole space ZN is blue in ηn at time un. Since
ηn is blue at time un modulo σn, and 5Bn+1 > N , we have

P(¬B)
∗
< Qnσn.

220

The event B \ Fn occurs only if there is any damage in ηn between times
un and vn. We can upper-bound the probability of this within a constant
factor by

εnNt1/BnT
•
n ≤ εnt1/T •

n ≤ εnt1 ≤ εh0(N,c)t1,

which is what Theorem 3.1 states.

Proof of Theorem 7.6. This also proves Theorem 6.1, and the remark at the
last part of the proof also proves Theorem 7.5 for the finite space. Let Tr be a
given standard computing transition function over an alphabet Σ. Construct
an amplifier as in Lemma 11.7 with the transition function Pl-trans1(·) =
Tr(·). This amplifier defines cell body sizes Bk for all k. Given a string
ρ ∈ Σn0 in the input-output alphabet, let

l =
∨
{k : Bk ≤ n}.

Create a germ of cells of Ml covering the space interval [0, n), with address
Ql/2 somewhere inside it. Fill its Payload track first with ∗, then write over
the Payload .Input track the string ρ. Now apply consecutively the encodings
ϕ∗l, ϕ∗(l−1), . . ., to get a string ρl of S1. The code ψ∗ whose existence is
stated in the theorem is defined as ψ∗(ρ) = ρl, which gives nl := |ρl| < 2n
as required by the theorem. From here, with Init as in Definition 3.6, we
obtain the initial configuration of M1 as η(·, 0) = Initψ∗(ρ). For readability,
we will call the color −1 “blue”, color 0 “white” and color 1 “red”. First, for
simplicity, assume that the space is infinite.
By the construction, the interval [0, nl) is already an l-level white germ. First
we will show how the space outside it will also promptly self-organize to level
l: of color blue on the left and red on the right. From then on, the self-
organization continues on the whole space, and at the same time, the com-
putation in the white germ proceeds reliably, lifting to a higher level in every
step of self-organization. Finally, the trickle-down argument shows that at
any time the result can be read out at the lowest level.
For k = 1, 2, . . ., let

ak =
k∑
i=2

C1Bi, vk =
k∑
i=2

C2T
•
i ,

Jk = [−ak, nl + ak) , H−
k = (−∞,−ak), H+

k = [nl + ak,∞) ,

221

then Jl = [0, nl), H
−
1 = (−∞, 0). For j = 1, 2, 3 let Ak,j be the event

that in ηk at time vk, the interval [−jak+1,−ak) is not germ-level blue or
[nl − ak, nl + jak+1) is not germ-level red. Let

Dk =

k⋃
i=1

Ai,1.

Note that A1,1 = D1 = ∅.
1. For each k, in ηk at time vk, the set H−

k \ H
−
k+1 is germ-level blue and

H+
l \H

+
l+1 is germ-level red modulo (σk,Dk−1).

Proof. Interval H−
1 is germ-level blue at time 0 in η1 by definition.

Lemma 21.14 implies that H−
2 is germ-level blue in η2 at time v2 mod-

ulo (σ2,D1), further H
−
3 is germ-level blue in η3 at time v3 modulo (σ3,D2),

and so on. The same argument works for H+
k .

For k ≥ l, let Fk be the event that there is damage in ηk in the space-time
rectangle

Γ(Jl, 3ak+1)× (0, vk+1].

2. Assuming ¬Fl, the interval Jl is part of a white germ at time vl in η
l.

Proof. We started from the interval Jl of level l cells surrounded by level
1 latent cells. In the absence of damage in ηl, these cells perform according
to the program, hence up to time vl < 2T •

l+1, none of them would die.

3. From ¬(Al,3 ∪ Fl) follows that in ηl at time vl + 2T •
l+1, interval Jl is part

of a white germ, and Γ(Jl, 2al+1) is germ-level color-controlled.
Proof. At time vl in ηl, as part 2 shows, ¬Fl implies that Jl is part of a
white germ. And ¬Al,3, implies by definition that [−3al+1,−al) is germ-
level blue and [nl − al, nl + 3al+1) is germ-level red. We can now apply
the argument of Lemma 21.7 simultaneously with with I = [−3al+1, nl),
J = [−al, 0), and with I = [0, nl + 3al+1), J = [nl, nl + al), to imply that
in ηl at time vl + 2T •

l+1, the whole interval Γ(Jl, 2al+1) becomes germ-level
color-controlled.

4. From ¬(Al,3∪Fl) follows that in ηl+1 at time vl+1, the interval Jl is part of
a white germ, and interval Γ(Jl, al+1) is germ-level color-controlled, except
for an event El of probability

≤ (2C1 + 7)θl,

where θl was defined in (21.11).

222

Proof. From Fl follows that Jl is part of a white germ also in ηl+1. By part 3,
from ¬(Al,3∪Fl) follows that in ηl at time vl+2T •

l+1, the interval Γ(Jl, 2al+1)
is germ-level color-controlled. Note that vl+1 = vl+2T •

l+1+26p0T
•
l+1. Apply-

ing Lemma 21.12, for case η = ηl, t2−t1 = 26p0T
•
l+1, to any subinterval K of

length 2Bl+1 of Γ(Jl, al+1), we find that K becomes color-controlled in ηl+1

except for an event of probability θl. If each of the r intervals of the form
[iBl+1, (i+ 2)Bl+1) intersecting Γ(Jl, al+1) becomes color-controlled then so
does [−al+1, nl − al+1). Let El be the event that any one of them does not be-
come color-controlled, then P(El) ≤ rθl. The construction gave |Jl| < 5Bl+1,
we know al+1 < 2C1Bl+1, hence |Γ(Jl, al+1)| < (4C1 + 5)Bl+1, r ≤ 4C1 + 9.

Let us handle now first the case of infinite space Z.
5. Let k > l. Assume that in ηk at time vk the interval Jl is part of a white

germ, and the interval Γ(Jl, ak) is germ-level color-controlled. Then from
¬(Ak,2 ∪ Fk) follows that in η

k+1 at time vk+1, the interval Jl is part of a
white germ, and interval Γ(Jl, ak+1) is germ-level color-controlled, except
for an event Ek of probability ≤ (2C1 + 3)θk.
Proof. (This proof is similar to the one above.) From Fk follows that
Jl is part of a white germ also in ηk+1. From ¬Ak,2 follows that in ηl at
time vl also the interval Γ(Jl, 2ak+1) is germ-level color-controlled. Applying
Lemma 21.12, for case η = ηk, t2 − t1 = C2T

•
k+1, to any subinterval K of

length 2Bk+1 of Γ(Jl, ak+1), we find that K becomes color-controlled in ηk+1

except for an event of probability θk. If each of the r intervals of the form
[iBk+1, (i+ 2)Bk+1) intersecting Γ(Jl, al+1) becomes color-controlled then so
does Γ(Jl, al+1). Let Ek be the event that any one of them does not become
color-controlled; then P(Ek) ≤ rθk. The construction gave |Jl| < Bk+1, we
know ak+1 < 2C1Bk+1, hence |Γ(Jl, al+1)| < (4C1 + 1)Bl+1, r ≤ 4C1 + 5.

For k ≥ l let

D′
k =

k⋃
i=l

Al,2, Gk = Dl−1 ∪Al,3 ∪D′
k−1 ∪

k−1⋃
i=l

Fi ∪
k−1⋃
i=l

Ei,

where the events Ei were defined in the proofs of part 4 and part 5.
6. Let k > l. Assuming ¬Gk, in ηl+1 at time vl+1 the interval Γ(Jl, ak) is

germ-level color-controlled, and the interval Jl is part of a white germ.

223

Also,

P(Gk) ≤ 2
l−1∑
i=1

Qiσi + 6Qlσl + 4
k−1∑
i=l

Qiσi

+ 33
k−1∑
i=l

QiU
′
iεi + (2C1 + 7)θl +

k−1∑
i=l+1

(4C1 + 5)θi = O(σ1).

(21.25)

Proof. The statement before the probability estimate, for k = l+1, follows
from part 4. For k > l + 1, it follows by induction from part 5. It remains
to prove (21.25). From the definition, Dk =

⋃k
i=2(Ai,1 \Di−1). From

P(Ai+1,j \Ai,j) ≤ 2jQkσk

we have P(Dk) ≤ 2
∑k−1

i=1 Qiσi, P(D
′
k) ≤ 4

∑k−1
i=l Qiσi. Given nl < 5Bl+1,

ak+1 < 2Bk+1, vk+1 ≤ 2T •
k+1, we have

P(Fk) ≤ 11(Bk+1/Bk) · 2(T •
k+1/T

•
k) ≤ 33QkU

′
kεk.

The estimates for Ek were given in parts 4 and 5.
In the reasoning below, we assume ¬Gk. Between times vk and vk+1, we
have a white germ containing Jl, around the germ cell with address Qk/2.
Besides lifting from level k to level k + 1, the trajectory ηk performs its pay-
load computation; for each level i ≤ k, this proceeds without faults up to
time vi+1, in the area Γ(Jl, ai+1) which is all the area that matters, as the
germ does not grow beyond it. But we are interested in the output of level
1, so trickle-down will be invoked. According to the rules Compute of Al-
gorithm 19.7 and Update-payload of Algorithm 19.10, payload computation
happens on level k representing germ cells of level k + 1 with addresses in
[0, Qk+1). We will estimate the number of payload computation steps per-
formed, but first assume that time t′ is the end of a dwell period of a germ
cell x′ of ηk, in which x = x′+a for some a ∈ [0, Bk), and η

k(x′, t′).Payload(a)
is supposed to have the value ζ(x, t). Under the assumption ¬Gk indeed
ζ(x, t) = ηk(x′, t′).Payload(a). A trickle-down reasoning just like in Sec-
tion 5.3, in the proof of Theorem 3.3, with Dk = T •

k , as done for information
storage in the discussion after Lemma 11.7 (Amplifier), will bring the equality
down to level 1:

P{ζ(x, t).Output ̸= η(x, t′).Output} ≤ P(Gk) + εk +

k−1∑
i=1

ε′′i

= O(σ1) = O(e−R).

224

Let us now estimate t′ in terms of t. Let t′k be the time by which the first
white cell of Mk will be created, then we have vk−1 < t′k ≤ vk. Between
times t′k and t′k+1, there are enough computation steps to simulate in Tr the
Bk+1 − Bk steps of the expansion of an area of size Bk to one of size Bk+1.
This shows that if Bk < t ≤ Bk+1 then tk ≤ t′ < tk+1. Recall the definition of
bandwidth wk in (11.9). During the time interval (t′k, t

′
k+1], starting at time

t′k until the payload of a germ of size Bk+1 is filled, each work period of a
germ cell simulates at least a constant times wkBk steps of Tr . So if t > Bk
then to simulate t steps of Tr we need, within constant factor, t/Bkwk work
periods, each of length ≤ T •

k , so

tT •
k /Bkwk.

For t ≤ Bk we need less, so we are conservative when going with this estimate
for all t. Noting that

∏
i<k U

′
i is within constant factor of T •

k , and using (11.18),
we have within constant factor

T •
k /Bkwk = Rk(k!)2 < 22.1k log k.

Using (11.18) we have for large t,

t > Bk = Rk(k+1)/2−1,

log t > logR · k2/2,
k < (log t)1/2(2/ logR)1/2, (21.26)

22.1k log k < c(log t)
1/2 log log t,

for a constant c depending on R. So we can estimate t′ ≤ t · c(log t)1/2 log log t as
Theorem 3.4 states.
In case of the finite space ZN we can only hope to simulate the computation
ζ(·, t) while it fits into a space of size N , so let

K =
∨
{k : Bk < N }.

7. In case of a space ZN for finite N , adding εh0(N,c)t to the estimate with a
constant c > 1 will do. The same argument works also to finish the proof
of Theorem 7.5 for a finite space.
Proof. After the level has been raised to K, it will not be raised any longer.
In every time period of size T •

K , the computation may fail if a fault of level
K occurs, that is with probability εK . In time t the probability of this

225

happening at least once can be (generously) be upper-bounded by εKt. We
estimate, similarly to (21.24), for k = K:

εK < εh0(N,c)

for an appropriate c > 1.

22 Some applications and open problems

22.1 Non-periodic Gibbs states

Consider spin systems in the usual sense (generalizations of the Ising model).
All 2-dimensional spin systems hitherto known were known to have only a fi-
nite number of extremal Gibbs states (see for example [1]): thus, theoretically,
the amount of storable information on an n × n square lattice did not grow
with the size of the lattice. In 3 dimensions this is not true anymore, since we
can stack independent 2-dimensional planes: thus, in a cube Cn of size n, we
can store n bits of information. More precisely, the information content of Cn
can be measured by the dimension of the set of vectors

(µ{σ(x) = 1} : x ∈ Cn)

where µ runs through the set of Gibbs states. This dimension can be at
most O(nd−1) in a d-dimensional lattice, since the Gibbs state on a cube is
determined by the distribution on its boundary. The stacking construction
shows that storing Ω(nd−2) bits of information is easy. We can show that
Ω(nd−1) is achievable: in particular, it is possible to store an infinite sequence
in a 2-dimensional spin system in such a way that n bits of it are recoverable
from any n sites with different x coordinates.

For this, we apply a transformation from [20] (see also [3]): a proba-
bilistic cellular automaton M in d dimensions gives rise to an equilibrium
system M ′ in (d + 1) dimensions. Essentially, the logarithms of the local
transition probabilities define the function J and histories of M become the
space-configurations of M ′. Non-ergodicity of M corresponds to phase transi-
tion in M ′. In the cellular automaton of Theorem 7.5, each infinite sequence
ϱ gives rise to a history storing the bits of ϱ in consecutive cells. Now, each of
these histories gives rise to a separate Gibbs state belonging to one and the
same potential.

Let us note that though the Gibbs system is defined in terms of an energy
function H(σ), it is not helpful to represent this energy function in terms of a

226

temperature T as H(σ)/T . The reason is that the individual terms of H(σ)
do not depend linearly on the error probability ε (or any function of it). In
fact, we believe it can be proved that if an artificial T is introduced (with
T = 1 for a certain sufficiently small value of ε) then a slight decrease of T
destroys the phase transition.

22.2 Some open problems

Turing machines It is an interesting question (asked by Manuel Blum)
whether a reliable Turing machine can be built if the tape is left undisturbed,
only the internal state is subject to faults. By now this question has been
answered affirmatively, in [8]. The hierarchical construction shares many sim-
ilarities with the one of this paper, but there is quite a number of additional
details.

Non-hierarchical construction in continuous time The simple three-
dimensional reliable cellular automaton in [19] (with its simpler and stronger
proofs in [5] and [16]) relies strongly on being in discrete time. Each plane
supposed to store copies of a single symbol needs to switch instantly in each
step. In fact, currently no (proved) construction is known in any dimen-
sion of a simple reliable cellular automaton in continuous time whose work is
non-hierarchical. There is a simple way to simulate a discrete-time cellular
automaton by a continuous-time one, described in Section 8 and called the
“marching soldiers” scheme, and also used in this paper. However, without
the hierarchy, its issues caused by randomness and faults are not yet solved.
Besides the possibly large local delays during which the self-correction stalls
while the faults continue to occur, in dimensions higher than one the faults
can also create deadlocks in the synchronization scheme. An important step
was taken by Cook and Winfree with a rule that, under plausible conditions,
eliminates these deadlocks: see the report [10]. Further progress depends on
the ability to bound the probability of large local delays.

Does a 1-dimensional solution have to be “hierarchical”? Over the
years, there have been several attempts to define a non-ergodic one-dimensional
cellular automaton that is “simple”. All these attempts ended up similar
to [18], which is ergodic (at least under some small noise, as shown in [30]).
By “complexity” I don’t just refer to the number of states, rather to the fact
that the history requires inhomogenities (to exist or to arise) on a larger-and-
larger scale. Ideally, we will see a result confirming the intuition that this

227

sort of complexity is necessary, but as a first step, we need a mathematically
formulated conjecture.

Relaxation time as a function of space size Recall relaxation time
in Definition 6.10. Consider now Toom’s medium as a typical example of
a medium non-ergodic for m = ∞. It follows from Toom’s proof that, for
small enough fault probability ε, we have limm→∞ rm(0, 1/3) = ∞, that is
the increase of space increases the relaxation time (the length of time for
which the rule keeps information) unboundedly. The speed of this increase
is interesting since it shows the durability of information as a function of the
size of the cellular automaton in which it is stored. Toom’s original proof
gives only rm(0, 1/3) > cm for some constant c. The proof in [5], improving
on [19], gives rm(0, 1/3) > ecm for some constant c, and this is essentially the
meaning of saying that Toom’s rule helps remember a bit of information for
exponential time.

So far, the relaxation times of all known nontrivial non-ergodic media
(besides Toom’s, the ones in [13] and [14]) depend exponentially on the size
of the space. It is an interesting question whether this is necessary. In a later
work, we hope to show that this is not the case and that there are non-ergodic
media such that rm(n, 1/3) < mc holds for all n, for some constant c. The
main idea is that since the medium will be able to perform an arbitrary reliable
computation this computation may involve recognizing the finiteness of the
space rather early (in time mc) and then erasing all information.

Relaxation time as a function of observed area Lemma 6.11 seems
to suggest that the issue of information loss in a cellular automaton is solved
by the question of ergodicity for m = ∞ where m is the space size. This is
not so, however: as noted together with Larry Gray, Leonid Levin and Kati
Marton, we must also take the dependence of rm(n, δ) on n into account. As
time increases we may be willing to use more and more cells to retrieve the
original information. Even if r∞(n, δ) < ∞ for each m, we may be satisfied
with the information-keeping capability of the medium if, say, rm(n, 1.9) > ecn

for some constant c.
In some mixing systems, the dependence of rm(n, δ) on n is known.

Example 22.1 (The contact process.) The contact process is a one-dimensional
CCA as defined in Section 2.4. Let us note that this this process is not noisy:
not all local transition rates are positive. The process has states 0,1. In tra-
jectory η(x, t), state η(x, t) = 1 turns into 0 with rate 1. State η(x, t) = 0

228

turns into 1 with rate λ(η(x− 1, t)+ η(x+1, t)). It is known that this process
has a critical rate λc ∈ (0,∞) with the following properties.

If λ ≤ λc then the process is mixing with the invariant measure concen-
trated on the configuration ξ with ξ(x) = 0 for all x. If λ > λc then the
process is non-ergodic.

If λ < λc then it is known (see Theorem 3.4 in Chapter VI of [26]) that
the order of magnitude of r∞(n, δ) is log n.

If λ = λc then the convergence is much slower, with an order of magnitude
that is a power of n (see Theorem 3.10 in Chapter VI of [26] and [6]). ⌟

We believe it possible to construct a medium that is mixing for m = ∞
but loses information arbitrary slowly: for any computable function f(n), and
a constant c there is a medium with

rm(n, 1.9) > f(n) ∧ ecm

for finite or infinite m. Notice that this includes functions f(n) like ee
en

.
Such a result could be viewed as an argument against the relevance of the
non-ergodicity of the infinite medium for practical information conservation
in a finite medium. The construction could be based on the ability to perform
arbitrary computation reliably and therefore also to destroy locally identifiable
information arbitrarily slowly.

Acknowledgement

I am very thankful to Robert Solovay for reading parts of the paper and
finding important errors. Larry Gray revealed his identity as a referee and
gave generously of his time to detailed discussions: the paper became much
more readable (yes!) as a result.

Bibliography

[1] Michael Aizenman, Translation invariance and instability of phase co-
existence in the two-dimensional Ising system, Comm. Math. Phys 73
(1980), no. 1, 83–94. 22.1

[2] Charles H. Bennett, G. Grinstein, Yu He, C. Jayaprakash, and David
Mukamel, Stability of temporally periodic states of classical many-body
systems, Physical Review A 41 (1990), 1932–1935. 1.3

[3] Charles H. Bennett and Geoffrey Grinstein, Role of irreversibility in sta-
bilizing complex and nonergodic behavior in locally interacting discrete
systems, Physical Review Letters 55 (1985), 657–660. 22.1

229

[4] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your
mathematical plays, Academic Press, New York, 1982. 4.4

[5] Piotr Berman and Janos Simon, Investigations of fault-tolerant networks
of computers, Proc. of the 20-th Annual ACM Symp. on the Theory of
Computing, 1988, pp. 66–77. 1.1, 1.3, 6.2, 8, 22.2, 22.2

[6] C. Bezuidenhout and G. Grimmett, The critical contact process dies out,
Annals of Probability 18 (1990), 1462–1482. 22.1

[7] R. E. Blahut, Theory and practice of error-control codes, Addison-Wesley,
Reading, MA, 1983. 5.15, 5.15

[8] Ilir Çapuni and Peter Gács, A reliable Turing machine, Theory of Com-
puting (2021), 1–82, Submitted. 22.2

[9] Matthew Cook, Universality in elementary cellular automata, Complex
Systems 15 (2004), 1–40. 4.4

[10] Matthew Cook, Peter Gács, and Erik Winfree, Self-stabilizing syn-
chronization in 3 dimensions (draft), Tech. report, Boston Univer-
sity, Department of Computer Science, Boston, MA 02215, 2009,
www.cs.bu.edu/faculty/gacs/papers/3Dasync.pdf. 22.2

[11] Paula Gonzaga de Sá and Christian Maes, The Gács-Kurdyumov-Levin
Automaton revisited, Journal of Statistical Physics 67 (1992), no. 3/4,
607–622. 1.1

[12] R. L. Dobrushin and S. I. Ortyukov, Upper bound on the redundancy of
self-correcting arrangements of unreliable elements, Problems of Informa-
tion Transmission 13 (1977), no. 3, 201–208. 1.1

[13] Peter Gács, Reliable computation with cellular automata, Journal of Com-
puter System Science 32 (1986), no. 1, 15–78, Conference version at
STOC’ 83. 1.2, 3.1, 6.2, 6.2, 10.1, 22.2

[14] , Self-correcting two-dimensional arrays, Randomness in Compu-
tation (Silvio Micali, ed.), Advances in Computing Research (a scientific
annual), vol. 5, JAI Press, Greenwich, Conn., 1989, pp. 223–326. 1.2, 3,
5, 22.2

[15] , Deterministic computations whose history is independent
of the order of updating, ArXiv e-prints (1995), 1–15, also
www.cs.bu.edu/faculty/gacs/papers/commut.pdf. 8

230

[16] , A new version of Toom’s proof, Tech. report, Department of
Computer Science, Boston University, TR 95-009, Boston, MA 02215,
1995, arXiv:2105.05968. 1.1, 22.2

[17] , Reliable cellular automata with self-organization, Journal of Sta-
tistical Physics 103 (2001), no. 1/2, 45–267, See also arXiv:math/0003117
[math.PR] and the proceedings of STOC ’97. (document)

[18] Peter Gács, Georgii L. Kurdyumov, and Leonid A. Levin, One-
dimensional homogenuous media dissolving finite islands, Problems of
Inf. Transm. 14 (1978), no. 3, 223–226, Translation of the Russian ver-
sion whose page numbers are 92-96. 1.1, 22.2

[19] Peter Gács and John Reif, A simple three-dimensional real-time reliable
cellular array, Journal of Computer and System Sciences 36 (1988), no. 2,
125–147, Short version in STOC ’85. 1.1, 1.3, 3, 22.2, 22.2

[20] Sheldon Goldstein, Roelof Kuik, Joel L. Lebowitz, and Christian Maes,
From PCA’s to equilibrium systems and back, Commun. Math. Phys. 125
(1989), 71–79. 22.1

[21] Lawrence F. Gray, The positive rates problem for attractive nearest neigh-
bor spin systems on Z, Z. Wahrscheinlichkeitstheorie verw. Gebiete 61
(1982), 389–404. 1.1, 2.4, 2.4

[22] , The behavior of processes with statistical mechanical proper-
ties, Percolation Theory and Ergodic Theory of Infinite Particle Systems
(Harry Kesten, ed.), Springer Verlag, 1987, pp. 131–167. 1.1

[23] Gene Itkis and Leonid A. Levin, Fast and lean self-stabilizing asyn-
chronous protocols, Proc. of the IEEE Symp. on Foundations of Computer
Science, 1994, pp. 226–239. 4.3, 5.1

[24] G. L. Kurdyumov, An example of a nonergodic homogenous one-
dimensional random medium with positive transition probabilities, Soviet
Mathematics Doklady 19 (1978), no. 1, 211–214. 1.2

[25] F. Thomson Leighton, Parallel algorithms and architectures, Morgan
Kaufmann, San Mateo, CA, 1992. 9.6

[26] Thomas M. Liggett, Interacting particle systems, Grundlehren der math-
ematischen Wissenschaften, vol. 276, Springer Verlag, New York, 1985,
Reprinted with new postface in 2005. 1.3, 2.4, 2.4, 2.4, 22.1

[27] T. S. Mountford, A coupling of infinite particle systems, Journal of Math-
ematics of Kyoto University 35 (1995), no. 1, 43–52. 6.5

231

[28] Jacques Neveu, Bases mathematiques du calcul des probabilités, Masson
et Cie, Paris, 1964. 7.2

[29] Nicholas Ollinger and Gaétan Richard, Four states are enough!, Theoret-
ical Computer Science 412 (2011), no. 1-2, 22–32. 4.4, 4.4

[30] Kihong Park, Ergodicity and mixing rate of one-dimensional cel-
lular automata, Ph.D. thesis, Boston University, Boston, MA
02215, 1996, See https://cs-web.bu.edu/faculty/gacs/papers/

1996-015-park-phdthesis.pdf. 1.1, 22.2

[31] Nicholas Pippenger, On networks of noisy gates, Proc. of the 26-th IEEE
FOCS Symposium, 1985, pp. 30–38. 1.1

[32] Charles Radin, Global order from local sources, Bull. Amer. Math. Soc.
25 (1991), 335–364. 5.1

[33] Daniel A. Spielman, Highly fault-tolerant parallel computation, Proc. of
the 37th IEEE FOCS Symposium, 1996, pp. 154–163. 1.1

[34] Tommaso Toffoli and Norman Margolus, Cellular automata machines,
MIT Press, Cambridge, MA., 1987. 4.4

[35] Andrei L. Toom, Stable and attractive trajectories in multicomponent
systems, Multicomponent Systems (R. L. Dobrushin, ed.), Advances in
Probability, vol. 6, Dekker, New York, 1980, Translation from Russian,
pp. 549–575. 1.1, 6.1, 6.1, 6.2

[36] Boris S. Tsirel’son, Reliable information storage in a system of locally in-
teracting unreliable elements, Locally Interacting Systems and their Ap-
plication in Biology (V. I. Kryukov R. L. Dobrushin and A. L. Toom,
eds.), Lecture Notes in Mathematics 653, Springer, 1978, Translation
from Russian., pp. 15–30. 1.2

[37] John von Neumann, Probabilistic logics and the synthesis of reliable or-
ganisms from unreliable components, Automata Studies (C. Shannon and
McCarthy, eds.), Princeton University Press, Princeton, NJ., 1956. 1.1

[38] Weiguo Wang, An asynchronous two-dimensional self-correcting cellular
automaton, Ph.D. thesis, Boston University, Boston, MA 02215, 1990,
Short version: Proc. 32nd IEEE Symposium on the Foundations of Com-
puter Science, 1991. 1.3, 7.4

https://cs-web.bu.edu/faculty/gacs/papers/1996-015-park-phdthesis.pdf
https://cs-web.bu.edu/faculty/gacs/papers/1996-015-park-phdthesis.pdf

	Contents
	1 Introduction
	1.1 Historical remarks
	1.2 Hierarchical constructions
	1.3 New features
	1.4 Overview of the paper

	2 Cellular automata
	2.1 Deterministic cellular automata
	2.2 Fields of a local state
	2.3 Probabilistic cellular automata
	2.4 Continuous-time probabilistic cellular automata
	2.5 Perturbation

	3 Some results
	3.1 Information storage
	3.2 Computation

	4 Codes
	4.1 Colonies
	4.2 Block codes
	4.3 Generalized cellular automata (media)
	4.4 Block simulations
	4.5 A single-fault-tolerant block simulation
	4.6 General simulations

	5 Hierarchy
	5.1 Hierarchical codes
	5.2 Amplifiers
	5.3 Information storage: proof from an amplifier assumption
	5.4 Error-correcting codes
	5.5 Major difficulties

	6 Results for the finite space
	6.1 Relaxation time and ergodicity
	6.2 Information storage and computation

	7 More restrictions on media
	7.1 Trajectories
	7.2 Strong trajectories
	7.3 Canonical simulations
	7.4 Primitive variable-period media

	8 Synchronization
	9 Some simulations
	9.1 Functions defined by programs
	9.2 The rule language
	9.3 A basic block simulation

	10 Robust media
	10.1 Damage
	10.2 Computation

	11 Amplifiers
	12 Outline of the program
	12.1 Cell kinds
	12.2 A colony work period
	12.3 Timing
	12.4 Plan of the rest of the proof

	13 Local consistency
	13.1 Local maintenance
	13.2 Fitting neighbors
	13.3 Edges

	14 Killing and creation
	14.1 Killing
	14.2 Birth, creation, adaptation
	14.3 Growth
	14.4 Germ growth
	14.5 Healing rules
	14.6 Continuity

	15 Gaps
	15.1 Paths
	15.2 Running gaps
	15.3 Non-damage gaps are large

	16 Attribution, progress
	17 Healing
	18 Communication
	19 Computation
	19.1 Coding and decoding
	19.2 Sending and retrieval
	19.3 Computation rules
	19.4 Lifting

	20 The simulated medium is robust
	20.1 Legality
	20.2 Robust media properties
	20.3 The amplifier parameters

	21 Self-organization
	21.1 Color control
	21.2 Colony birth
	21.3 Lifting the simulation level
	21.4 Computing supported by self-organization

	22 Some applications and open problems
	22.1 Non-periodic Gibbs states
	22.2 Some open problems

	Bibliography

