The game of "twenty questions" with a liar

Peter Gács
Boston University

Joint paper (1991) with Aditi Dhagat and Peter Winkler.

The problem

A game between Questioner and Responder. Responder thinks of a number in $\{1, \ldots, N\}$. Questioner asks yes/no questions, Q of them. In her answers, Responder may lie, $r Q$ times, where the fraction r is given in advance.
Variants:
(1) What kind of questions?
(2) What other restrictions?
(1) In our game, only comparison questions are allowed: is $x<y$? Other possibilities:

- general questions of the sort $x \in S$ for sets S.
- questions asking one bit of a binary representation of x (bit questions).
(2) Questions are allowed to be adaptive. Other possibilities:
- Questions must be submitted in advance (batch questions);
- Responder cannot lie in more than a fraction r of any starting segment.

General questons

Batch questions: same as an error-correcting code. Indeed, for a number x, let

$$
C(x)=\left(c_{1}, c_{2}, \ldots, c_{Q}\right)
$$

where c_{i} is the correct answer to the i-th question. Then the set

$$
\{C(x): x=1, \ldots, N\}
$$

is a code correcting $r Q$ errors, with rate $Q^{-1} \log N$.
Adaptive questions: code with feedback.
First studied by Berlekamp. Exact solution is known for up to 3 lies (you do not want to see the algorithm!).

Batch game uninteresting for bit and comparison questions

Theorem For bit and comparison questions, there is a function $f(r)$ such that Responder wins unless $N<f(r)$.

Proof for the comparison questions. Since Responder sees all questions in advance, she knows which question of the form $x<k$ has been asked not more than Q / N times.

- yes to questions $x<j$ for $j>k$.
- no to questions $x<j$ for $j<k$.
- yes to half of the questions $x<k$. This is allowed if $r Q>0.5(Q / N)$, that is $N>0.5 / r$.
Then Paul cannot decide between $k-1$ and k.

Lower bounds for general questions

After t questions and answers, let $f_{t}(x)$ be the number of lies made by Responder, if x was the number she thought of. All relevant information for the analysis is found in the numbers

$$
V_{t}(i)=\left|S_{t}(i)\right|=\left|\left\{x: f_{t}(x)=i\right\}\right| .
$$

If k lies are allowed then the game ends when

$$
\sum_{i \leqslant k} V_{t}(i) \leqslant 1 .
$$

Theorem (Winkler, Spencer)

In the adaptive game, if $N>2$ and $r>1 / 3$ then Questioner loses.

Proof. Winning strategy for Responder: it is sufficient to consider $N=3$. Watch the three numbers $f_{t}(1), f_{t}(2), f_{t}(3)$. As long as all three are $<r Q$ choose the answer that increases at most one of them. Once there are only two numbers left, choose the answer that increases the smaller one.
This way, it will take $\geqslant 3 r Q-1$ steps to drive two of the numbers beyond $r Q$.

Adaptive, comparison questions

It does not seem easy to win no matter how small is r and how large is Q.
A failed idea: repeat each question many times. This does not help since Responder can save up all lies to the end. Still:

Theorem With comparison questions, Questioner wins for all $r<1 / 3$, asking

$$
\left\lceil\frac{8 \log N}{(1-3 r)^{2}}\right\rceil
$$

questions.
Proof of $O(\log N)$ for the case $r<1 / 4$. (The case $r<1 / 3$ requires more sweat.)
Ideas: instead of trying to decide early the truth, count contradictions.
Try binary search but let Responder pay with contradiction every time when you have to abandon a cut-in-half.
trusted

Adaptive strategy, comparison questions, $N=64$. Every line in the thrashbox has $\leqslant 4$ questions containing a contradiction, so at least 1 lie.
For $1 / 4 \leqslant r<1 / 3$, a similar strategy, but each nested interval (a pair of questions) must be repeated a certain number of times.

General questions

Theorem (Spencer, Winkler) Consider general questions. Let b be

 an upper bond on bounds r needed for Questioner to win.(1) If the game is non-adaptive, $b=1 / 4$.
(2) If the game is adaptive, $b=1 / 3$, the same as even with the special, comparison questions.
(3) If r bounds the fraction of lies in all beginning segments, then $b=1 / 2$.
In all cases, for $r<b$ the number of questions needed is $O(\log n)$.
The proof analyses error-correcting codes.
Let M be a $Q \times N 0-1$ matrix showing all the questions in its rows. For Questioners to win, the Hamming distance between its columns must be more than $2\lfloor r Q\rfloor$. Let us ignore integer parts from now.

Lower bound The sum of all distances must at least
$\frac{N(N-1)}{2} \cdot 2 r Q \approx r Q N^{2}$.
Each row, containing $k 1$'s, contributes at most $k(N-k) \leqslant N^{2} / 4$ to this sum, hence the total of Q rows is at most $\frac{1}{4} Q N^{2}$.
Upper bound Let $2^{Q H(\rho)}$ be the volume of a Hamming ball of radius ρQ. Let us choose $0-1$ vectors of length Q one-by-one, such that the distance of the next one is always at least $2 r Q$ from the previous ones. If we found n and cannot continue then the balls of radius $2 r Q$ around these vectors cover the space, so $n \cdot 2^{Q H(2 r)} \geqslant 2^{Q}$. But then

$$
n \geqslant 2^{Q(1-H(2 r))}
$$

Since $H(2 r)<1$ if $r<1 / 4$, we will be done with $O(\log N)$ questions in this case.

