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Introduction 
A considerable part of combinatorics deals, even if i t  is not stated explicitly, with 

finite structures : the combinatorial objects considered can be described as finite struc- 
tures, in such a way that the properties investigated are invariant under isomorphism. 
A property of structures is automatically isomorphism-invariant if it states the sat- 
isfaction of a given formula on the structure. The “simplicity” of the property can 
then be characterized by the simplicity of the defining formula. Another important 
characterisation of properties arises by considering the complexity of their computa- 
tion. R. FAGIN [l -41 discovered that a class of structures can be defined by the sat- 
isfaction of an existential second order formula if and only if it is recognizable by a 
non-deterministic Turing machine in polynomial time. In this note we use his results 
to add some remarks on polynomially complete problems and diagonalization. 

The simplest formulas are the first order ones. For a formula y ,  Mod,(y) is the 
class of finite models of y .  A class A is called elementary if it is Mod,(y) for some y .  
Many important classes of structures are elementary : finite groups, ordered sets, 
lattices etc. I n  dealing with structures we shall need not only classes of them but 
also their functions: let us call them operators. I n  analogy with elementary classes 
we shall define the notion of an elementary operator. 

Def in i t ion  1. Let us have a similarity type Y = { Q , , .  . . ,Q, , ,> ,  where Qj are 
relation or function symbols. By a structure ?I of similarity type Y we understand 
a set (?I( with an interpretation QY of the relation and function symbols on it and 
a relation E%(z, y) written also as z y called equality which satisfies the usual 
equality axioms. 

The pair of structures (!XI, ?12) is a new structure given in the following way. If the 
similarity type of 91, is Y ,  then the similarity type of ?i = (?1,, ?[,) is Y ,  u Y ,  u { U >  
where U is a new unary predicate symbol. l?il = l?ll( u 1?I,J. Equality and all old 
relations remain as they were on /?I , / .  Elements from different )%,I are unequal. The 
old relations are false on mixed tuples of elements, f(x,, . . ., zk) = zl, if f is an old 
function symbol and (r,, . . , q,) a mixed tuple of elements. U?‘(z) c, z E l9ll1. 
(a,, ?12, W,) is defined as ((?1,, ?I2), ?I3) and so on. 

Def in i t ion  2. Let A ,  B be two elementary classes of similarity type 9’,F respec- 
tively. F :  A --* B is called an elementary operator if it can be obtained in the follow- 
ing way: 

1) We choose a natural number k and two formulas z(q, , . ,,a), ~ ( x , , .  . , c~,,) 111 
the language L(Y). 

2)  With each predicate symbol R of degree d in F we associate a formula 
pn(.c, ,  . . ., xkd) ,  with each function symbol R in F of degree d we associate a formula 
n n ( q  7 . ’ > z ( d + l , / J .  
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3) We define the underlying set of F ( % )  = ‘$3 (?( E A )  as { (a , l ,  . . . , a/<) I ai E 19(1 and 
z’(al, . . . , ah.) holds}, 

8 (a,, . . . , ah) = . . . , 

RY(a1, . . . , ah.), . . . , ( a ( d - l ) k + l ,  . * ’ , %k)) 4+ &(a,, . . . , a d d .  

cf &Yal, . . . , a 2 k )  

and the relation R by 

Function symbols are defined analogously. Moreover, we choose E such that = B  should 
satisfy the equality axioms. 

An elementary operator of two arguments is an elementary operator on the pair of 
structures. The composit,ion of elementary operators is again elementary. Elementary 
operators often arise when we reduce a combinatorial problem to another one, e.g. 
the problem of finding a maximum matching to a problem of integer programming. 

There are very common non-elementary classes of structures : t,he simplest example 
is the class of finite sets with odd cardinality. To express tJhis class we have t,o allow 
a t  least one quantifier on relations: we need a second order formula. The simplest 
second order formulas contain, in prenex form, only existential quantifiers on relations 
and functions. They are of the form (3R1, . . . , 3R,,.) p where p is a first order formula. 
A set A of nat8ural numbers is the spectrum of t,he first order formula p E L(Y) 
(9 = { Q l ,  . . ., Q,,,)) if A = In 1 (3&,, . . ., Q,?,) p is true on (1, . . ., n>} (see [l]). 

A class A of structures of similarity type 9 is the generalized spectrum of the first 
order formula q E L(.Y u 9) (9 = (R , ,  . . . , R,,]) if 

A = {!A I (3R,, . . . , R,) y is true on a}. 
Spectra and generalized spectra can be regarded as projections of elementary classes: 
A is the projection of B = {!I3 E Fin(Y w 9) 1 p is true on B} to Fin(.M). We shall 
denote the generalized spectrum of p by Mod,(3Fp). Every generalized spectrum 
call be obtained as the projection of an elementary class of a very simple type: the 
formula p can be required to have the form (Vx,, . . ., xk) cr where 6 is quantifier free. 
(The transformation process is known from logic: The essence is to replace parts of 
the form Vx 3y by parts of the form “there is a function such that”  . . .) On the other 
hand, projections of more general classes give also generalized spectra. FAGIN has 
shown in [l] that the projection of any class of structures which is recognizable in 
polynomial time on a (determinisbic or non-deterministic) Turing machine is a gener- 
alized spectrum. It is relatively easy to decide tJhe satisfaction of a first order formula y 
on tfhe structure ?(: on an appropriate determinuistic Turing machine this does not take 
running time more than (card ?OR(@ where g(p) is some funct,ion of p. Not all classes 
decidable in polynomial time are elementary: an example is the class of odd numbers. 
Generalized spectra are characterizable as classes recognizable in polynomial time on 
a non-detern?inistic Turing machine. 

For elementary classes no such characterization is known. A hierarchy among ele- 
mentary classes and the existence of non-elementary generalized spectra can be estab- 
lished by model-theoretic methods. A hierarchy of classes given by second order for- 
mulas (the “analytic hierarchy”) is not yet proved to exist: if the famous hypothesis 
P = NP holds then all these classes are generalized spectra, i.e. can be given already 
by an existential second order formula. More generally: denote by CNP the class of 
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all sets which are complements of NP sets. Then CNP = NP is a weaker assumption, 
but i t  also implies that, the above classes are generalized spectra. We return to  this 
statement and give some estimat,es in Sect,ion 2. 

P C D L ~ K  [lo] proved that for all k ,  there is a generalized spectrum Mod,(3@p), 
where a, contains k quantifiers, which is not representable as Mod,(Wy) with y hav- 
ing less than k quantifiers. His result relies on COOK'S result on the hierarchy of non- 
deterministic Turing machine computations [9]. 

,4mong the generalized spectra there is a supposed hierarchy according to  the maxi- 
mum degree d of the predicates R E 9- quant'ified. If d = 1, the generalized spectrum 
is called monadic. The class of generalized spectra with d 5 k is denoted by Jk(Y). 
FACIX proved in [2] that the class of connected graphs, which is of t'he form Mod,(3%p) 
wit,h 92 of degree two, is not monadic. (He uses the method of FraissB-games. The 
same result was obtained somewhat later by H ~ J E K ,  who used semiset technique. 
Ultraproducts also yield t'his result,.) Whether non-monadic spectra can be further 
classified is unknown. [3 -41 cont.ains much information about this supposed hierarchy. 
The results of Section 2 imply that if CNP = NP holds then a hierarchy related to  
the degree hierarchy exists among the generalized spectra, thus compensating for the 
collapse of the analytic hierarchy. In fact, let us bring tJhe second order formula p 
to an equivalent form 

( 1 )  1 3 9 , .  . .13w, 1 (3x1, . . ., xk) y 
where y is quantifier-free and the W i  are sets of relation symbols. We define the depth 
d(p) of rp as the maximum degree of the relation symbols present in y and the height 
h(p) of a, as the m in (1). (The degree of a function symbol f ( x l ,  . . ., x,) is r + 1.)  
Then CNP = XP implies t,hat for all d .  h there are generalized spectra which are not 
Mod,(y) for any sentence 9 wit,h d ( 9 )  2 d and h ( q )  5 h. 

The results of COOK and LEVIN imply that among the generalized spectra there are 
universal ones: the decision problem for any ot,her generalized spectrum can be reduced 
to the decision problem of a universal one. We strengthen these results slightly in Sec- 
tion 1 by showing that the functions accomplishing the reduction can be required to  
be elementary operators. See JONES [12] and SCHNORR [11] for an  analogous result. 
This also proves the existence of " complement-complete " generalized spectra wit,hout 
reference to automata theory. 

Classical diagonalization fails to  work for non-deterministic Turing machines : this 
makes the P = NP problem so hard. Yet the more modest results of Section 2 are 
obtained by t,his procedure. 

1. 

The results of COOK, KARP and LEVIN on polynomially complete combinatorial 
problems were reformulated by FAGIN for spectra not in their full power. He proved 
that there are certain generalized spectra -called complement-complete oneb -the 
complement of which is a generalized spectrum if and only if the complement of every 
generalized spectrum is a generalized spectrum. The reason for this weakening was 
perhaps that until now there is no appropriate translation of the notion of a function 
computable in polynomial time on a deterministic Turing machine. Now we introduce 
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a stricter reducibility notion replacing polynomially computable functions by elemen- 
tary operators. For convenience, we shall treat generalized spectra as subsets of ele- 
mentary classes : 

, R,,] be two similarity types, 
p E L(Y), y E L ( Y  u 9) two first order formulas. The set of structures {?( E Fin(Y) I p 
holds on ?I and (3R,, . . ., RJ y holds on ?(} is called the yen,eralized spectrum of the 
p& of formulas (p,y). It is denoted by Mod,(p Rr. 3Fy) .  The pair of formulas 
M = (v, y )  will be called an (elementary) search problem. (On a structure sat)isfying p 
we are searching for the appropriate relations F, .) 

Defin i t ion  4. For two classes of st,ructures B ,  g Fin(Yi) ( i  = 0, 1) we say t,hat 
B, is (eZernen,tarily) reducible to B, and write B, 5 B, if an elementary operator 
F :  Fin(Y,) -+ Fin(Y,) exists with ?[ E B, iff F(?I) E B,.  Clearly if B, is a generalized 
spectrum and @, 5 B, then so is B, and, if R, E Jk(YpI) then B, E Jk,JYo) where k, 
is the k in the definition of an elementary operator. Let us have two pairs of similarity 
types (Y , ,  Fz) (i = 0, l ) ,  and two pa,irs of formulas (y!, y J  determining the search 
problems M,, M , .  Denot'e Ai = Mod,(pj), Bi = Mod,(rpi & 3Fiyi) .  We say that M ,  
is elementarily reducible 60 M I  (we write M ,  5 M I )  if we have the following: 

Def in i t ion  3. Let 9' = {Q,, . . .,Q,,,], 9 = { R , ,  

1. An elementary operator li': A, + A,.  

2. An elementary operator G :  A, x Mcd,,(q, & y,) --* Mod,(cpo 6r yo) .  

3. For every 9( E A,,  ?[ E B, iff li'(91) E B, . 

4. If F ( % )  E B, ,  then the corresponding extension of 91 can be found effectively 
by cr': For a structure Q over Y u 9  denote by 0. P Y its restriction t'o 9'. We require 
that if B r Y1 = P(I[), B E Mod,,(y, & y,) then G(%, B) i' .Yo = 9;. 

Since composition preserves elementarity 5 is a partial order. 

Now we describe a variant of the satisfiability problem in propositional lo,' wc as 
a search problem and then show that it is universal in some F ~ Y S C .  

Defin i t ion  5. The satisfiability problem SAT = ( Q ,  a) is defiTed as follows. The 
similarity type 9, consists of one binary relation syinhol < and three unary predicate 
symbols P ,  U , ,  U , .  Intuitively, < defines a logical network, P(.r) tciis whether a t  the 
point x of the network stands a sign i or v, U ,  tells in which nodes is the trut,h value 
prescribed and CT, gives the prescribed values in these ncidTs. The siiiiilarity t,ype 7, 
consists of a unary predicate symbol T which, int#uit,ively: orders truth values to t,he 
nodes. e says that < is a strict partial order. We eay that y is an iinmediate prede- 
cessor of r if y < ,r and there is no z wit>h y < z < .c. CT s a p  t,hat U,(x)  + (U,(z)  t--t T ( z ) )  
and tells how to compute the truth values T ( x ) :  if P(.r) holds and 2 has an immediate 
predecessor y then T ( x )  = i T ( y ) .  If i P ( x )  and x has some immediate predecessors 
then T ( x )  iff for at, least one of them, y, T(;y) holds. 

Theorem 1. Let  11s have a search problein X = ( ~ 1 ,  y )  with d = Mod,(v) where 
p E L(9'); y E L(Y w y ) .  Suppose that a formula d(x) E L(9') can be gizien such 
that for all ?( E A  there are two elements x, y of \!I with 6(x) true a i d  S(y) false. T h e n  
M 5 SAT. 

Note.  The assumption of t,he theorem requires some minimal expre.ssing power of 
the struct'ures of A .  
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Proof .  For simplicity we suppose that in our formulas all terms are variables, 
i.e. we have minimal subformulas only of the forms Q(xI, . . . , zk) and f ( x l ,  . . . , zk) = y. 
This can always be achieved. We confine ourselves to formulas using only 1, v and 3. 

Def in i t ion  6. Let us fix the similarity type 9 = { s ,  2 ,  N ,  V ,  P,, P,,f ,g} 
where 5 ,  9, - are binary, V ,  P, , P, are unary predicate symbols, f and g are unary 
function symbols. Having a similarity type Y = {Ql, . . . , QnL> and the second order 
formula Q! E L,(Y) we define the structure s(p?) E Fin(=!?) (it is intended as an encod- 
ing, a "numbering" of p) as follows. An occurrence of a variable x in Q! is every writ- 
ten occurrence of it not counted when it occurs after a quantor. 

15) = ( y  E L(9') 1 y is a subformula of 91) u 

u ( t  1 t is the occurrence of a variable in p?}. 

V3(t)  - 1  is the occurrence of a variable in p?. 

On a subformula t ,  P, and P, tell if it is a negation or a disjunction. (If both are false, 
then t is a quantified subformula.) is the ordering of subformulas according to in- 
clusion. 

On the minimal subformulas, establishes an ordering according to the order of 
the corresponding predicate or function symbols in Y (e.g. Q r ( z , ,  . . . , xk) 9 Ql(yl, . . . , y m )  
iff i 5 j ) .  On occurrences of variables, 2 establishes the order of their first occurrence. 
For occurrences of variables t ,  - t, holds iff t ,  and t, occur on the same place of two 
occurrences of the same predicate symbol. f orders to every occurrence of a variable 
the minimal subformula in which it occurs. g orders to every variable the subformula 
where it is being quantified and to every minimal subformula the subformula where 
the corresponding relation symbol is quantified. These predicates and functions can 
be defined in an arbitrary way on any place where they are not given by the above 
definitioii. 

Clearly, s ( y )  is a one-to-one coding of formulas by structures. It is easy to  give 
the elementary class L g F i n ( 9 )  of codes of formulas. 

Having this definition and the formula 8(x )  we can easily give an elementary opera- 
tor D :  A -+ ( s ( 3 Y y ) )  i.e. to define 8 from any element of A .  We now define 
F(?O = 23 E Mod,(@) as follows. Denote by k the number of different variables in y. 
183) = { (c,  a , ,  . . . , n A )  ] c E 151, c is a subformula of y ,  a ,  E I % ]  (i = 1, . . ., k)}. 

Defin i t ion  7 .  For a structure ?I of similarity type Y an %-formula is an arbitrary 
first order formula p? E L(Y)  in which every free variable is replaced by an element 

The elements of 1231 define in a natural way Q(-subformulas of y.  (c, a , ,  . . ., ak) 
gives us namely a subformula c of y.  Substituting a ,  if the i-th variable of y is free 
in c gives us the desired ?L-subforniula. Let us have two elements of 1231, b,  = ( c a .  . .), 
z = 0, 1. If c ,  are not, both minimal subformulas of y ,  then b, = %  b, iff co = rl and 
for all free variables of c , ,  the correspondmg substituted elemrnts of 1'31 are equal. 
If c; are minimal, then b, = B  b, iff a )  c, S c1 and c1 4 c, and b) for every p a r  of 
occurrences of variables t o ,  t ,  such that /(ti) = c, and to - t, the corresponding sub- 
stituted elements of )?() are equal. This defines @. b, < 6, holds iff for the correspond- 
ing %-formulas the first is equal in % to a subformula of the second. P(b) is true if 

of 1 % 1 .  

36* 
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the corresponding subformula is a negation. U,(c, . . .) holds iff 1. c is the whole ftxr- 
mula y ,  or 2. c is a minimal subformula and the corresponding relation symbol is not 
quantified in 3.9-y. U ,  holds on (c, . . .) in case 1. of the above definition and in case 
that U ,  has the same truth value as the corresponding relation of ?[ on the correspond- 
ing elements of I%/ .  

This completes the defmition of F .  The definition of G as well as the verification 
that F and G satisfy the conditions of a reduction is trivial. 

Def in i t ion  5. The search problem ill = ( y ,  y ) ,  is called a search prohlerri with 
order if a formula l(x, y) E L ( 9 )  can be given such that p implies that 1. the 
structure has a t  least two different elements, 2 .  I(c, y) defineb a linear order on the 
structure. 

Consider the combinatorial problems which were proved to  be complete in [6]. 
Exclude of them the last four, i.e. KNAPSACK, PARTITION, SEQUENCING and 
MAX CUT. The remaining ones are easily reformulable as search problems. 

Theorem 2. Let M ,  be one of the aforementioned search problems. Every search prcblem 
with order is eleme?itarily reducible to N o .  

Ske tch  of t h e  proof. By Theorem 1, every search problem with order reduces 
to SAT. The order can be transferred naturally, thus transforming SAT into a search 
problem with order. SAT with an order reduces easily to SATISFIABILITY of ~ ~ A R P ,  

with order. Further every reduction which can be found in [6] (not counting the last 
four) can be easily transformed into an elementary reduction using an additional ordcr 
relation. On the other hand, the order always generates an order on the defined structure. 

2. 
We consider the classes 

E(.Y)  = {(S(q), ?O I q E I&q, ?[ E Fin(Y)} 1 

E,(Y)  = {(3(q), (20 E E ( Y )  1 y is an existential formula, the number of dif- 

We remind that the similarity type of S(q) was denoted by 9. Denote by Zd the 
similarity type Z v {Rd+', U }  where Ed+' is a relation symbol of degree d + 1, U is 
a unary relation symbol. For any similarity type Y with maximum degree of rela- 
tions 5 d,  y E L2(Y), \21 E Fin(Y) we define the structure 8 = [s(q), 911 E Fin(Pd)  
as follows. 181, the interpretation of U and the relations of s(p)  are the same as for 
(s(q), ?[). R"+'(t, t , ,  . . . , td )  is true if and only if t is an element of I3(q)I, correspond- 
ing to a minimal subformula &(sl, . . ., %,,) with Q free in q, t ,  E 1911 and & ( t l ,  . . ., t , )  
holds on 8. We define the classes 

G ( d )  = { [ s ( y ) ,  I for some Y with maximum degree <= d,  q E L,(Y), ?I E Fin(Y)}. 
G ( d ,  h)  = { [ # y ) ,  ?I] E Q ( d )  1 q is in the form (1) with d ( q )  5 d ,  h(9)  5 h } .  

ferent variables in q is not more than k}. 

All these classes are easily been to be elementary. 

Theorem 3. a) The class 

E;,(Y) = {(;3(pj, '?[) E E, , (Y)  19 is true o n  ?[I 
i s  a generalized spectrum, moreover, FIL E j/l (J,< was defined in the Introduction). 
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b) Let d 2 1. Suppose P = XP and, in particular, that Mod,( i3r0a)  E Js where 
SL4T = (p, a). Then the class 

H(d,  h) = [[g(pl), ?(] E G ( d ,  h )  1 pl is true on %} 
is a generalized spectrum, and, moreover, H(d ,  h )  E JL  where 1 = (d  + 1)  sh. 

Proof a) The reduction to SAT given in Theorem 1 is uniform if we can use g ( ~ ! )  
and the number of variables is bounded by k. Hence the statement easily follows. 

b) By induction on h. Let h = 0, i.e. Q! of the form (3x1, . . . , xh) y where y is quan- 
tifier free. In  this case, on [S(pl), a] we can define the truth of pl in the following way: 
“There is a function u( t )  from the occurrences of variables to elements of ) ? ( I  (having 
the obvious properties vf an assignment of values to xl ,  . . . , q,), and an assignment 
of truth values to subformulas of y which is in accordance with the assignment u 
and makes y true.” 
This sentence can clearly by written in an existential second order formula of degree 
two. Suppose that the statement is true for h, we prove it for h + 1.  If for any 
formula pl Mod,(qj) E Jn then by the assumption about SAT and the reduction to  it, 
Mod,(ipl) E J,,, . This is true especially of the formula pl with Mod,(v) = H(d ,  h) .  

Sow, to define H ( d ,  h + 1 )  only one more quantor of the form 3Td+’ is needed. 
Let us now turn to the actual aim of this preliminary theorem, the diagonalization 

Theorem 4. a) The complement of F z k ( 9 )  is not the generalized spectrum of any 

b) The complement of H(d,  h) is not Mod,(qj) for any second order formula pl with 

Proof. Consider the class of structures 

result. 

formula with number of variables at most k. 

4 p )  5 d,  h ( p )  5 h. 

Ah = {S(pl) I p l ~  L,(2)  is an existential formula with number of 
variables not more than k and q is false on S(q)}. 

A h  is easily seen to be reducible to the complement of Pak by an elementary opera- 
tor F such that all formulas needed in the definition of F are quantifier free and the 
definition is in S(p) x 3(pl). Suppose that the complement of Fzh is Mod,(EWpl,) for 
some yo having number of variables not more than k.  Then Ah = Mod,(3Ypl,) for 
some pll E L ( 9 )  having number of variables not more than 2k .  In  this case the ques- 
tion 3(3Tq4 E Ah? leads us to a contradicion. The proof of b) is analogous. 

Corollary. Suppose SP = CNP. Then 
a)  for all k there exists a generalized spectrum which is not Mod,(3Fy) for any first- 

order formula yj with number of variables less than k. 
b) For all k there exists a generalized spectrum which is not Mod,(?) for any second- 

order formulu y with d(?) s k, h(p) 5 k. 
S o t e .  Corollwy a) IS true without the tioridition NP = CNP: it follows from COOK [9] 

as in PGDLAK [lo]. 
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