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Introduction

Introduction

I will present some results of V. V. V’yugin that I find interesting. The
motivation is that I wanted to present a topic here that is connected with
the theory of randomness but at the same time relates to interests of the
audience. I assume that ergodic theory falls into the latter category.
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Introduction

The train of thought

1 In the theory of randomness, random sequences are defined as those
that do not fall into any “constructive null sets” (see later).

2 Such sequences can be expected to satisfy the “almost every”-type
laws of probability theory. Why? Since the proofs of those laws
generally enclose the violating sequences into a constructive null set.

3 Example: the strong law of large numbers. The proofs also yields a
speed of convergence.

4 In the proof of the Ergodic Theorem, no speed of convergence is
obtained. V’yugin’s Theorem 1: sometimes, there is no computable
speed of convergence here, even “in probability”.

5 V’yugin’s Theorem 2: the proof of the Ergodic Theorem can still be
constructivized, showing that all random sequences obey the Ergodic
Theorem.
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Introduction

Content

The non-effective convergence.

Notions of randomness.

Constructive content of the Ergodic Theorem.

A characterization of randomness via complexity.
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Introduction

I assume that the audience is not expert in the theory of computability, but
the extent to which it is used here should be understandable. Let Σ be an
alphabet and Σ∗ the set of strings in this alphabet.
We will work with an intuitive notion of algorithms. The following is
known. Fix some computer (a “Turing machine”, but is OK to think of an
ordinary computer). It defines a function

A(i, x)

as follows: we start the computer with program i and input x. If it stops
with some output y we set A(i, x) = y, else A(i, x) is undefined.
We call A(i, x) a universal computable function since it is known that for
every function f : Σ∗→ Σ∗ computable with the help of any algorithm
there is a computer program i such that f(x) = A(i, x) for all x.
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Introduction

Consider a measure µ over the set ΣN of sequences in the alphabet Σ. It is
determined by the values

µ(x) := µ(xΣN)

for all segments x ∈ Σ∗.

Definition
Such a measure µ is called computable if there is a computable function
µ(x,ε) with rational values such that for all rational ε we have

|µ(x)−µ(x,ε)|< ε.
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Introduction

Let X1, X2, . . . be a sequence of random variables and Y a random variable.
As usual, we say Xn→ Y in probability if P

�

|Xn− Y|> δ
�

→ 0 for all δ.

Definition
The convergence above is effective if there is a computable integer-valued
function m(δ,ε) such that for all rational ε,δ > 0 and all n, n′ >m(δ,ε)
we have

P
�

|Xn− Xn′ |> δ
�

< ε.

It is easy to check that, for example, Chebyshev’s inequality provides
algorithmically effective convergence in the Law of Large Numbers (where
applicable).
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The non-effectiveness theorem

The non-effectiveness theorem

Consider a measure over the set of infinite 0-1 sequences giving rise to the
stationary sequence of random variables X1, X2, . . . , with Sn =

∑n
i=1 Xi. By

the (weak) Ergodic Theorem there is a random variable Y with the
property that Sn/n→ Y in probability.

Theorem
There is a computable measure of the above form such that the above
convergence in probability is not effective.

We will do a little better, showing that there is not even a computable
function m(ε) with P

�

|Sn/n− Sn′/n
′|> 1

4

�

< ε for all n, n′ ¾m(ε).
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The non-effectiveness theorem

We will define the stationary measure µ as the mixture

µ=
∞
∑

i=1

2−iPi,

with the help of the auxiliary processes Pi as follows.

Let K(i,ε) be a universal computable function (for rational argument
ε).

Let t(i,ε) be the number of steps for the algorithm to compute K(i,ε)
(∞ if the algorithm does not terminate). We can assume
t(i,ε)¾max(K(i,ε), 10). Let k(i) = t(i, 2−(i+1)).

Let Pi be a simple two-state Markov process with states 0,1, with
Pi[X1 = 0] = Pi[X1 = 1] = 1

2
, and with the following transition

probabilities:

P
�

Xs+1 6= Xs
�

= αi = 2−k(i).
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The non-effectiveness theorem

The process is designed to thwart every possible computable convergence
bound m(ε). Assume m(ε) = K(i,ε), then αi = 2k(i) > 0, hence the Markov
chain Pi satisfies

Pi
�

|Si/n− 1
2
|< 0.1
�

→ 1.

Further, we have

Pi(0
k(i)) = Pi(1

k(i)) = 1
2
(1−αi)

k(i)−1 > 1
2
(1− (k(i)− 1)αi)

= 1
2
(1− (k(i)− 1)2−k(i))> 2

5

since k(i)> 10. Hence for all sufficiently large n we have

Pi
�

|Sk(i)/k(i)− Sn/n|> 1
4

�

¾ Pi
�

Sk(i)/k(i) ∈ {0,1}
�

> 4
5
,

µ
�

|Sk(i)/k(i)− Sn/n|> 1
4

�

¾ 2−iPi
�

|Sk(i)/k(i)− Sn/n|> 1
4

�

> 2−(i+1).

But k(i) = t(i, 2−(i+1))¾m(2−(i+1)), so m(2−(i+1)) fails.
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The non-effectiveness theorem

Open question

This example is not ergodic. Is there an ergodic example?

This example is a countable Markov chain. Is there an example that is
an ergodic Markov chain? (If not, this would mean that every
computable ergodic Markov chain has a computable convergence
speed in the law of large numbers.)
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Randomness

Randomness

Let Ω = ΣN be the space of infinite sequences.

Definition

A cylinder is of the form Γx = xΣN for some x ∈ Σ∗.
An open set is the union of cylinders.

It is constructively open if it is
⋃

iΓxi
for a computable sequence

x1,x2, . . . .

A sequence of sets G1, G2, . . . is uniformly constructively open if there
is a recursive function x(i, j) such that Gi =

⋃

jΓx(i,j).

LetB be the set of Borel sets generated by these open sets. Then (Ω,B) is
a measureable space. Let µ be a computable probability measure on
(Ω,B), then we have a measure space (Ω,B ,µ).
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Randomness

If N is a set of measure 0 then for all ε > 0, it can be covered by an open
set Gε with µ(Gε)< ε.

Definition
The set N is a constructive nullset if for rational ε the above sets Gε can be
chosen to be a sequence of uniformly constructively open sets.

There is only a countable number of constructive nullsets.

Definition
An element ω is random if it is not in any constructive set of measure 0.
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Randomness

Let us introduce a useful equivalent definition.

Definition
A function f : Σ∗→ R is lower semicomputable if the set

{ω : f(ω)> r }

is a constructive open set, uniformly in the rational number r.
A function t : Ω→ R+ ∪∞ is a payoff test with respect to measure µ if

1 It is lower semicomputable.
2 We have
∫

t(ω)dµ¶ 1.

Proposition
An element ω is random if and only if for every payoff test t we have
t(ω)<∞.
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Randomness

We can imagine the function t(ω) as the payoff function of a fair bet
against ω. We pay 1 dollar for the game, and ω pays us t(ω). The bet is
fair since the expected bet is

∫

t(ω)dµ¶ 1. The bet is lower
semicomputable, allowing to increase our win as we discover new and
new “regularities” in ω.
The element is random if we cannot win an infinite amount against it.
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The ergodic theorem

The ergodic theorem

Definition

A function f : ΣN→ ΣN is a computable transformation if there is a
program i for our machine that, reading sequentially the symbols of any
input sequence s1s2 . . . , computes and outputs gradually more-and-more
symbols of an output sequence t1t2 · · ·= f(s1s2 . . . ).

Note that a computable transformation is always continuous in the
topology of ΣN.
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The ergodic theorem

Let T be computable measure-preserving transformation over (Ω,B ,µ)
with Ω = ΣN, and let f(ω) be an integrable function with
Sn(ω) =
∑n−1

i=0 f(Tiω).

Theorem (Constructive Ergodic Theorem)
For all random ω we have

Sn(ω)/n→ f̃(ω)

for a certain integrable f̃ .

For the proof, we define a payoff test for the set of points ω for which
Sn(ω)/n does not converge. Note that in this case there are rational α,β
with

lim inf
n

Sn(ω)/n< α < β < limsup
n

Sn(ω)/n.
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The ergodic theorem

So there are infinitely many u, v with

Su(ω)− uα < 0< Sv(ω)− vβ .

Let

u
ω→ v⇔ v

ω← u⇔ Su(ω)− uα < Sv(ω)− vβ ,

(−1)
ω→ v ⇔ 0< Sv(ω)− vβ .

A sequence s= (u1, v1, . . . , uN, vN) is n-admissible if

−1¶ u1 < v1 ¶ u2 < v2 ¶ . . .¶ uN < vN ¶ n.

We denote |s|= N. Let
σn(ω,α,β) =max{N : u1

ω→ v1
ω← u2

ω→ v2
ω← · · · ω→ vN } where

(u1, v1, . . . , uN, vN) is running over all n-admissible sequences.
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The ergodic theorem

It is easy to check that σn(ω,α,β) is lower semicomputable, and so is

σ(ω,α,β) = sup
n
σn(ω,α,β).

The tough part of the proof is to show
∫

σ(ω,α,β)dµ < C(α,β)

for a constant C(α,β). Then we can construct a payoff test t(ω) combined
from all the σ(ω,α,β) (with constant weights).
If Sn(ω)/n does not converge then σ(ω,α,β) =∞ for an appropriate
α,β , so t(ω) =∞.
Summarizing: we do not get a speed of convergence, but we get an
effective probabilistic bound on the maximum number of oscillations
through any interval [α,β].
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The ergodic theorem

To estimate σn(ω,α,β) we introduce a quantity:

Definition
The oscillation cost of an admissible sequence d= (s1, t1, . . . , sN, tN) is

S(d,ω) =
N
∑

j=1

�

(Svi
− viβ)− (Sui

− uiα)
�

.

The following lemma brings us close:

Lemma (Cost shift)
For every n-admissible sequence q there is an n-admissible sequence r with

S(q,ω)¶ S(r, Tω) + |f(ω)−α|+− (β −α)σn(ω,α,β).
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The ergodic theorem

Let us apply this lemma. With λn(ω) = sup{S(d,ω) : d is n-admissible },
we get:

λn(ω)¶ λn(Tω) + |f(ω)−α|+− (β −α)σn(ω,α,β),

(β −α)σn(ω,α,β)¶ λn(Tω)−λn(Tω) + |f(ω)−α|+,

(β −α)
∫

σn(ω,α,β)dµ¶
∫

|f(ω)−α|+dµ,

∫

σ(ω,α,β)dµ¶ (β −α)−1

∫

|f(ω)−α|+dµ,

and we will be done.
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The ergodic theorem

To prove the cost shift lemma, the following lemma is used:

Lemma (Combinatorial)
For a given ω and any n-admissible sequence q there is an n-admissible
sequence d with S(d,ω)¾ S(q,ω) and |d|= σn(ω,α,β).

Its proof would take some work. Also, define the shift for an admissible
sequence d= (s1, t1, . . . , sm, tm):

d′ =







(s1− 1, t1− 1, . . . , sm− 1, tm− 1) if s1 ¾ 0,

(−1, t1− 1, . . . , sm− 1, tm− 1) if s1 =−1, t1 > 0,

(s2− 1, t2− 1, . . . , sm− 1, tm− 1) otherwise.

The following can be verified directly:

S(d,ω)¶ S(d′, Tω) + |f(ω)−α|+− (β −α)m.
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The ergodic theorem

Using the combinatorial lemma, for all n-admissible q there is an
n-admissible d with with S(d,ω)¾ S(q,ω) and |d|= σn(ω,α,β). Applying
it:

S(q,ω)¶ S(d,ω)¶ S(d′, Tω) + |f(ω)−α|+− (β −α)σn(ω,α,β),

which proves the cost shift lemma.
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The ergodic theorem

History

Birkhoff→ Bishop→ V’yugin. (With some credit to Lambalgen.)
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Randomness and complexity

Randomness and complexity

It turns out that there is one payoff test function encompassing all:

Proposition (Universal test)

Let us be given a computable measure over (Ω,B) where Ω = ΣN. Then there
is a universal payoff test u(ω) for µ in the sense that for every other payoff
test t(ω) there is a ct such that for all ω we have

ctu(ω)¾ t(ω).

From now on, we fix a universal payoff test u(ω). In order to understand
what it measures, we define the notion of description complexity.
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Randomness and complexity

Definition
A (partial) computable function A : {0,1}∗→ Σ∗ is called an interpreter if
its domain of definition is prefix-free: if A(p) and A(q) are both defined
then p is not the prefix of q. If A(·) is an interpreter then we define the
description complexity:

KA(x) =min{ |p| : A(p) = x }.

A theorem similar to the existence of a universal test is the existence of an
optimal interpreter:

Proposition (Invariance)
There is an optimal interpreter U in the sense that for every other interpreter
A there is a constant cA such that for all x we have

KU(x)¶ KA(x) + cA.

From now on we fix a universal interpreter U and write K(x) = KU(x).
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Randomness and complexity

The following theorem characterizes a universal payoff test in terms of
complexity:

Proposition (Test characterization)
Let µ be a computable measure over the measureable space (Ω,B) with
Ω = ΣN. Let ωn denote the prefix of length n of the infinite sequence ω. Then
we have

log u(ω) = sup
n
(− logµ(ωn)−K(ωn)) +O(1).

Thus, ω is random if and only if the complexity of each of its prefixes x is
never much smaller than − logµ(x).
In a sense, such a nice characterization justifies the appropriateness of
both the randomness notion and the complexity notion.
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