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Abstract. In the context of the dynamical systems of classical mechanics, we in-
troduce two new notions called “algorithmic fine-grain and coarse-grain entropy”.
The fine-grain algorithmic entropy is, on the one hand, a simple variant of the
randomness tests of Martin-Löf (and others) and is, on the other hand, a con-
necting link between description (Kolmogorov) complexity, Gibbs entropy and
Boltzmann entropy.

The coarse-grain entropy is a slight correction to Boltzmann’s coarse-grain
entropy. Its main advantage is its less partition-dependence, due to the fact that
algorithmic entropies for different coarse-grainings are approximations of one and
the same fine-grain entropy. It has the desirable properties of Boltzmann entropy
in a wider range of systems, including those of interest in the “thermodynamics of
computation”. It also helps explaining the behavior of some unusual spin systems
arising from cellular automata.

1. Introduction

The present paper is an elaboration of the ideas proposed first in [6]. In its
present form, the intended audience is mainly computer-scientists interested in the
relation of description complexity to thermodynamics. This determines the form
of exposition somewhat: Section 8 gives a (very brief) introduction to some ther-
modynamical concepts and problems that physicists probably do not need. But we
hope that the main technical content of the paper will ultimately be also considered
a contribution to physics and dynamical system theory: mainly in providing some
tools to extend thermodynamical reasoning to some new classes of systems.

The concept of computability is assumed to be known; for computability in con-
tinuous spaces, we refer to [5]. We also assume some familiarity with the notions
of computabilitly and description (Kolmogorov) complexity. A good survey of the
latter is [10].

1.1. Coarse-graining. The physical model considered in the present paper is that
of classical mechanics: it is defined by a phase space Ω and a dynamics U t giving the
point U tω on an orbit at time t, where the transformation U t preserves the volume
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measure L (like in Liouville’s Theorem, see Section 8). In case of a container of
“ideal” gas consisting of n simple molecules, the state space is the 6n-dimensional
Euclidean space given by the positions and moments of each molecule.

A thermodynamical system is characterized by a relatively small number of pa-
rameters (functions of the state) called macroscopic parameters u1, . . . , um. The
canonical example is a certain quantity of gas in a container, with the macroscopic
parameters of volume, temperature, energy and pressure. A microscopic state is
the completely specified state. A macroscopic state is determined by the macro-
scopic parameters and it determines only the (by far) most probable behavior and
properties of the system and only when the system is in equilibrium.

We will assume that each macroscopical parameter ui takes only a finite number
of values: a macroscopical parameter that is originally a real number will only be
taken to a certain precision agreed in advance. This gives a partition of the state
space into cells

Ω =
⋃
u

Γu

corresponding to macrostates where u = (u1, . . . , um). Finer and finer partitions
Pi of the phase space can be introduced by adding more macroscopic parameters
and more precision. The partition interpretation of a macrostate is called coarse-
graining.

Coarse-graining solves the paradox of irreversibility: in a mechanical system, any
evolution seems just as possible as the corresponding reverse evolution, and at the
same time, the world seems to be full of irreversible phenomena (examples omitted).
To reconcile the two pictures when we say that a certain transformation from state
a to state b is reversible this statement refers to macrostates; what is meant is that
the reverse transformation exists for most microstates within the macrostate Γb, as
measured by volume. Now asymmetries are quite possible. It is easy to imagine
macrostates a, b such that in a time unit, 99.99% of the elements of Γa end up in Γb

but only 0.01% of the elements of Γb end up in Γa. This is exactly what happens
with the gas, except that the percentages are much more extreme.

Another possible interpretation of a macrostate is as a certain distribution ν
over microscopic states. It is possible (but not always done) to require ν to be a
probability distribution, given by a density function p(ω) with

∫
p(ω)L(dω) = 1.

Gibbs called such a distribution an ensemble. The ensemble pΓ(ω) corresponding to
a macrostate Γ is defined as 1/L(Γ) for ω ∈ Γ and 0 elsewhere.

1.2. Coarse-grained entropy. The Boltzmann entropy of a cell Γ is logL(Γ). This
quantity depends on the choice of the partition: indeed, another digit of precision
will decrease it by about log 10. In the typical classical examples, this difference is
negligible compared to the volumes in question. In nontypical systems, partition
dependence can lead to paradoxes: we will show that the Maxwell demon paradox
is one of these.

We propose a new quantity

S(Γ) = H(Γ) + logL(Γ) (1.1)
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called coarse-grained algorithmic entropy to replace Boltzmann entropy. Here, H(Γ)
is the description (Kolmogorov) complexity of the cell Γ (to be defined later). This
quantity is closely related to the one introduced by Zurek, and we will return to
their relation. The term H(Γ) is typically negligible compared to the Boltzmann
entropy logL(Γ); however, the new entropy is less partition-dependent since it is an
approximation to a certain partition-independent quantity H(ω) = HL(ω) which we
call (fine-grained) algorithmic entropy.

The paper explores the basic properties of fine-grained and coarse-grained algo-
rithmic entropy. Description complexity itself will be shown to be a special case
algorithmic fine-grained entropy. The latter is a simple variant of the randomness
tests of Martin-Löf (and others). Its integral over a Gibbs ensemble is close to the
so-called Gibbs entropy. It possesses a simple conservation property that, together
with coarse-grained algorithmic entropy, is helpful in explaining the Maxwell de-
mon paradox as well as some other physical situations and models not handled well
by Boltzmann entropy. Explanation of the entropy increase property for the new
coarse-grained entropy does not rely on the huge volume differences in cells the way
it does in the case of Boltzmann’s entropy.

We hope that the new quantity extends the possibilities of the kind of reasoning
involving entropy to a wider range of systems (in particular, large computers in which
it is not clear whether the whole memory content should be considered macroscopic
or microscopic information). Here is an overview the content of the paper.

Section 2 defines description complexity H(x) (the self-delimiting version) of a
finite objext x and shows its main properties.

Section 3 introduces randomness tests. The algorithmic (fine-grained) entropy
Hµ(ω) of a state ω of the system with respect to an underlying measure µ (typi-
cally, the volume measure over a finite-dimensional space or the counting measure
over a discrete space) is defined as a common generalization of the description com-
plexity H(x) and the randomness test of Martin-Löf (as modified by Levin). It
is the negative logarithm of the maximal (to within an additive constant) lower
semicomputable function f(x) ≥ 0 with the property that∫

f(ω)µ(dω) ≤ 1.

It is known that the description complexity H(x) is within constant distance from
H#(x) where # is the counting measure. The paper [12] has dealt with some
statistical applications of this quantity.

Section 4 discusses an addition property for algorithmic entropy, which is the
generalization of the information-theoretic addition property of complexity.

Section 5 expresses Hµ(ω) in terms of complexity, with the help of a formula

H(Γ|µ) + log µ(Γ)

similar to (1.1).
In Section 6, we will prove a nondecrease property for algorithmic entropy. We

give some examples that are better handled by our definition, partly due to the
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fact that our entropy automatically satisfies the condition we call here the Non-
compensation Condition. These examples do not belong to mainstream statistical
mechanics, but are borderline cases that may become more important with further
miniaturization of computers (“mesoscopic systems”?). It would also be interesting
to see other chaotic systems in which the extension of the notion of entropy increase
is useful.

Our definition resembles Zurek’s entropy defined in [13] but there are important
differences. It is defined more generally (not just for systems consisting of a clas-
sical and a “demon” part). Its properties are proved with fewer assumptions. It
connects randomness tests, fine-grain and coarse-grain entropy (these notions are
not distinguished by Zurek) and complexity.

Heuristic arguments (and, of course, experience) show that in a nonequilibrium
system, Boltzmann entropy can be expected to increase strongly. These arguments
consist of an easy part, which we will call Noncompensation Condition and a diffi-
cult part, the Weak Mixing Condition which, however plausible, can be rigorously
proved only in some special cases. With our algorithmic Boltzmann entropy, the
Noncompensation Condition comes free. The nontrivial, mixing part of the argu-
ment remains just as difficult and conditional as for Boltzmann entropy but our
framework allows at least to formulate the mixing property in a sharp way.

In Section 7, we will show an additivity property and will discuss its relation to
the so-called Landauer thesis which says that erasing a bit of information from, say,
computer memory (even if it is done indirectly) requires the dissipation of a certain
minimal amount of heat. Maxwell’s demon paradox will also be alluded to in this
context.

For the definitions of the various notions of computability in a continuous space
(like the phase space of a system of particles), we refer to the lecture notes [5].
The concepts involved are quite technical, but it is possible to rely on an intuitive
understanding of computability for the most part.

1.3. Notation. The sets of natural numbers, integers, rational numbers, real num-
bers will be denoted respectively by N,Z,Q,R. The set of nonnegative real numbers
will be denoted by R+. We use ∧ and ∨ to denote min and max. In what follows
log is the logarithm to base 2. The quantities

⌊x⌋, ⌈x⌉

are the largest integer ≤ x and the smallest integer ≥ x respectively. For a set E,
we denote the function taking the value 1 in E and 0 outside by 1E(ω), and call it
the indicator function of E. Borrowing from [11], for a two-variable function f(x, y)
and a measure µ, we will sometimes use the notation

µf =

∫
f(x)µ(dx), µyf(x, y) =

∫
f(x, y)µ(dy).
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Let B = {0, 1}. We introduce a special object Λ called the “empty string”, and
define, as usual, the set of finite binary strings as

B∗ = {Λ} ∪
∞⋃
n=1

Bn.

The set of infinite binary strings will be denoted by Bω. For a string s ∈ B∗, let

l(s)

denote its length.

2. Complexity

Given some computer F , let HF (y) be the length of the shortest program (mea-
sured in bits) that causes F to output string y. We will require the program to be
self-delimiting: no endmarker is allowed. The machine-dependence of this concept
is limited since there is a machine G on which the function HG(y) is optimal within
an additive constant: for every other machine F there is a constant cF such that
for all x we have HG(x) ≤ HF (x) + cF . The notation

f(x)
+

< g(x).

will mean that for some constant c and for all x we have f(x) ≤ g(x) + c. The no-

tation
∗
< will mean the same with a multiplicative constant. The notation

+
= means

that both
+

< and
+

> hold. With this notation, the invariance theorem’s formula can

be written as HG(x)
+

< HF (x). The function H(x) = HG(x) is called the complexity
of the natural number x conditional on the information y. (This is the modified
version of the Kolmogorov-Solomonoff complexity invented by Levin and Chaitin.
The book [10] uses the notation K(x) for the same quantity.) The conditional com-
plexity H(x | y) is defined by leaving y everywhere as a parameter. The elementary
properties of the complexity function are discussed in several expositions, and we

will not dwell on them. Let us just mention that H(n)
+

< log n+ 2 log log n, and

H(f(x) | y)
+

< H(x | g(y))
+

< H(x). (2.1)

for any computable functions f, g.
The function H(x) is not computable, but it has a certain weaker property. Let

Q be the set of rational numbers. We call a function f(x) from natural numbers
to real numbers upper semicomputable if there is a computable sequence fn(x) with
rational values such that fn(x) ↘ f(x). It is easy to see that H(x | y) is upper
semicomputable. Thus, we can compute arbitrarily exact upper bounds on H(x)
but we will not know how close we are to the limit. It is known that no nontrivial
lower bounds can be computed for H(x). However, there are strong statistical lower
bound results. There is a single property from which these can be derived:∑

x

2−H(x|y) ≤ 1.
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It is easy to prove this inequality by considering programs to our standard self-
delimiting machine that are obtained by coin-tossing. We will need the following
important theorem of Levin.

Theorem 1 (Coding). Let us consider the class of lower semicomputable functions

f(x, y) with the property that
∑

x f(x, y) ≤ 1. The function 2−H(x|y) is an element of
this class and is maximal in it, to within a multiplicative constant. In other words,

for each element f of this class, we have 2−H(x|y) ∗
> f(x, y).

3. Randomness

We assume that the reader is familiar with the treatment of randomness tests
in [5]. As there, following [2], we define a computable metric space as a tuple
Ω = (Ω, d,D, α) where (Ω, d) is a metric space, with a countable dense subset D
and an enumeration α of D. It is assumed that the real function d(α(v), α(w))
is computable. As x runs through elements of D and r through positive rational
numbers, we obtain the enumeration of a countable basis

β = {B(x, r) : x ∈ D, r ∈ Q }
(of balls or radius r and center x) of X, giving rise to a constructive topological

space Ω̃. Whenever we will have a transformation group U t we will assume that it
as well as the invariant volume measure L are computable.

3.1. Randomness tests. A nonnegative lower semicomputable function fµ(ω, y)
over the space M(Ω) × Ω × Y is a (parametrized) test of randomness or, shortly,
test with respect to a parameter y, if for all µ, y we have∫

fµ(ω, y)µ(dω) ≤ 1.

Here is some motivation for the case of probability measures. For a moment, forget
the parameter y. If a certain casino claims that it draws elements from Ω according
to the distribution µ then it must accept the following deal:

(1) I prove that fµ(ω) is a test of randomness;
(2) I offer two dollars for a game, and ask for ω;
(3) my payoff is fµ(ω).

If the casino owner indeed draws according to µ then the test property implies that
my expected payoff is at most a dollar, so she even makes more than a dollar of
profit on average. My strategy is to try to find some nonrandomness in ω, (without
seeing ω first) by making an acceptable test function fµ(ω) as large as possible. The
following theorem is proved in [5], relying also on [7]:

Theorem 2. There is a universal test, that is a test tµ(ω) with the property that
for every other test fµ(ω) there is a constant cf > 0 with cffµ(ω) ≤ tµ(ω).

The theorem can easily be generalized to include an extra parameter y in fµ(ω, y).
Then it says that among all randomness tests, there is a certain one, denoted by
tµ(ω | y) and called a universal test, that takes only values of the form 2n for
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(possibly negative) integers n and is maximal to within a multiplicative constant:
it has the property that for all other tests fµ(ω, y), we have

fµ(ω, y)
∗
< tµ(ω | y).

This test is a close relative of the universal tests of Martin-Löf and Levin and can
be used as a criterion of randomness. (The property that t takes only values 2n is
only for convenience.)

In the gambling interpretation, the universal test is, in some sense, optimal. Its
existence is surprising: for example, if ω is supposed to be a sequence of coin tosses
then I could make my test function large for those ω’s in which the frequency of
1’s is at least 60% (since their probability is small). This way, I would profit from
a certain kind of cheating the casino might attempt. Alternatively, I can make f
larger on many other improbable sets of sequences. The universal test anticipates
and combines all these strategies.

The algorithmic (fine-grained) entropy of ω with respect to µ is defined as

Hµ(ω | y) = − log tµ(ω | y).

We will delete µ from the subscript when it is obvious from the context.
H can take arbitrarily large negative values, even −∞. In other words, an object

can be infinitely nonrandom, though the measure of such objects has probability
0. For a finite measure µ, the function Hµ(ω) is bounded from above. For infinite
measures, it can also take arbitrarily large positive values; but it will never be ∞.

Let Hµ(ω) = Hµ(ω | 0) where Y is chosen as the one-element set {0}. If both Ω
and Y have measures µ, ν then we define

Hµ,ν(ω, y) = Hµ×ν((ω, y))

where µ× ν is the product measure.
To give some idea of how Hµ(ω) depends on ω and µ we give an upper bound.

For ω ∈ Ωn ∖ Ωn−1, let m(ω) = µ(Ωn). Then it is easy to show that

Hµ(ω)
+

< log(m(ω) + 1) + 2 log(log(m(ω) + 1) + 1).

Here are some additional easy properties of H(ω).

Proposition 3.1.

µ{ω : Hµ(ω) < m } < 2m (−∞ < m < ∞), (3.1)

Hν(y | µ)
+

< − log

∫
2−Hµ,ν(ω,y)µ(dω). (3.2)

If f is a computable function then

Hµ(ω | y)
+

< Hµ(ω | f(y)).

The first inequality states that H(ω) is large only with small probability. The
second one is needed for the addition theorem, stated later.
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For the volume measure L in the phase space of a dynamical system, we define
H(ω) = HL(ω) as the fine-grained algorithmic entropy of a state ω. Let

Em = {ω : H(ω) < m }.
In (3.1), we have shown L(Em) < 2m for all m. For finite space volume L(Ω), this
implies that

L(ElogL(Ω)−m)/L(Ω) < 2−m, (3.3)

that is, the proportial volume of the set of those points where algorithmic (fine-
grained) entropy is not close to its maximum is very small.

Let us note that the Coding Theorem 1 says

H(x | y) +
= H#(x | y)

where # is the counting measure.
The following statement is similar to the universal uniform test theorem, but for

arbitrary measures:

Proposition 3.2. Let (x, y, ν) 7→ fν(x, y) be a nonnegative lower semicomputable
function with Fν(x) = log νyfν(x, y). Then for all x with Fν(x) > −∞ we have

Hν(y | x, ⌊Fν(x)⌋)
+

< − log fν(x, y) + Fν(x).

The proof is in [5].

4. Additivity

4.1. Additivity of information. Complexity has the following additivity prop-
erty, due in various forms to Kolmogorov, Levin, Gacs, Chaitin:

H(x, y)
+
= H(y) +H(x | y,H(y)).

This property, in an appropriate form, generalizes for algorithmic entropy, as shown
(in a different and slightly less general context) by Vovk and Vyugin:

Theorem 3 (Addition).

Hµ,ν(x, y)
+
= Hν(y | µ) +Hµ(x | y,Hν(y | µ), ν).

Notice that this theorem differs from the original addition theorem only by having
µ, ν everywhere in the appropriate conditions and subscripts. (When µ is in the
subscript it does not have to be in the condition.) The proof is in [5]. A simple
corollary is

Hµ,ν(x, y)
+

< Hν(y) +Hµ(x | y).
The function Hµ(ω) behaves quite differently for different kinds of measures µ. For
example, inequality (2.1) implies

H(y)
+

< H(x, y).

In contrast, if µ is a probability measure then

Hν(y)
+

> Hµ,ν(ω, y).
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This comes from the fact that 2−Hν(y) is a test for µ×ν. Due to these considerations,
the following relation does not follow easily from the addition property (it would be

if Hµ(ω)
+

< Hµ×#(ω, z) would hold): For z from a countable set Y , we have

Hµ(ω)
+

< Hµ(ω | z) +H(z). (4.1)

This relation can be generalized slightly:

Lemma 4.1. For a computable function f(y, z) on a countable set Y , we have

Hµ(ω | y)
+

< Hµ(ω | f(y, z)) +H(z).

The proof is in [5].
Taking fµ(x, y) = 1 in Proposition 3.2 gives the inequality

Hµ(x | ⌊logµ(X)⌋)
+

< logµ(X),

with a physical meaning when µ is the phase space measure. Using (4.1), this implies

Hµ(x)
+

< logµ(X) +H(⌊logµ(X)⌋). (4.2)

The symmetric quantity I(x, y) = H(x) + H(y) − H(x, y) is called the mutual
information between the objects x, y. It generalizes to

Iµ,ν(x, y) = Hµ(x | ν) +Hν(y | µ)−Hµ,ν(x, y).

(with respect to the measures µ, ν). A related quantity is

Iµ(y : x) = Hµ(x)−Hµ(x | y),

the information that y carries about x with respect to µ. When µ is obvious from
the context we omit it from the subscript. The complexity addition theorem is
equivalent to the following relation between the two kinds of information:

I(x, y)
+
= I(x,H(x) : y)

which also generalizes to algorithmic entropy. The right-hand side can be interpreted
as the information that the pair (x,H(x)) carries about y. Thus, I(x : y) is itself not
symmetric but is “almost” symmetric since I(x,H(x) : y) is equal to a symmetric
quantity. More generally,

Iµ,ν(x, y)
+
= Iµ(x,Hµ(x | ν) : y | ν).

On a countable set Y , Lemma 4.1 implies

Iµ(y : x)
+

< H(y). (4.3)

This says that an object cannot carry more information about a string than its own
complexity.
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5. Randomness, complexity, coarse-grained entropy

5.1. Cells. As pointed out in [5], it is not convenient to define a measure µ con-
structively starting from µ(Γ) for open cells Γ. The reason is that no matter how
we fix Γ, the function µ 7→ µ(Γ) is typically not computable. It is better to work
with bounded computable functions, since for such a function f , the correspondence
µ 7→ µf is computable. We therefore introduce a certain fixed, enumerated sequence
of (Lipschitz) functions that will be used frequently. Let F0 be the set of functions
of the form gu,r,1/n where u ∈ D, r ∈ Q, n = 1, 2, . . . , and

gu,r,ε(x) = |1− |d(x, u)− r|+/ε|+

is a continuous function that is 1 in the ball B(u, r), it is 0 outside B(u, r+ ε), and
takes intermediate values in between. Let

F1 (5.1)

be the smallest set of functions containing F0 and the constant 1, and closed under
the Boolean operations: ∨, ∧, and the complementation f 7→ 1−f . Each element of
the set F1 is a continuous (actually, Lipschitz) function with values between 0 and
1. We could also call the set F1 the set of fuzzy cells: (cells whose boundaries are
somewhat fuzzy . . . ). Let E be the smallest set of functions containing F1 and closed
under the Boolean operations and also rational linear combinations. The following
completeness property holds:

Proposition 5.1. All bounded continuous functions can be obtained as the limit of
an increasing sequence of functions from the enumerated countable set E of bounded
computable Lipschitz functions introduced in (5.1).

The proof is routine.
Under some special conditions, we will still get “sharp” cells. Let f be a bounded

computable function over Ω, let α1 < · · · < αk be rational numbers, and let µ be a
computable measure with the property that µf−1(αj) = 0 for all j. In this case, we
will say that αj are regular points of f with respect to µ. Let α0 = −∞, αk+1 = ∞,
and for j = 0, . . . , k, let Let Uj = f−1((j, j + 1)). The sequence of disjoint r.e. open
sets (U0, . . . , Uk) will be called the partition generated by f, α1, . . . , αk. If we have
several partitions (Ui0, . . . , Ui,k), generated by different functions fi (i = 1, . . . ,m)
and different regular cutoff sequences (αij : j = 1, . . . , ki), then we can form a new
partition generated by all possible intersections

Vj1,...,jn = U1,j1 ∩ · · · ∩ Um,jm .

A partition of this kind will be called a regular partition. The sets Vj1,...,jn will
be called the cells of this partition. It is easy to see that the values µVj1,...,jn are
computable from the names of the functions fi and the cutoff points αij .

From now on, we will assume that a computable sequence of functions
b1(ω), b2(ω), . . . over Ω is given, with the property that for every ω1, ω2 ∈ Ω there
is a j with bj(ω1) < 0, bj(ω2) > 0. Let us give the correspondence between the set
Bω of infinite binary sequences and elements of the set

Ω0 = {ω ∈ Ω : bj(ω) ̸= 0, j = 1, 2, . . . }.
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For a binary string s1 · · · sn = s ∈ B∗, let

Γs

be the set of elements of Ω with the property that for j = 1, . . . , n, if sj = 0 then
bj(ω) < 0, otherwise bj(ω) > 0. This correspondence has the following properties.

(a) ΓΛ = Ω.
(b) For each s ∈ B, the sets Γs0 and Γs1 are disjoint and their union is contained in

Γs.
(c) For ω ∈ Ω0, the set {Γs : ω ∈ Γs } forms a basis of its neighborhoods.

If s has length n then Γs will be called a canonical n-cell, or simply canonical cell,
or n-cell. From now on, whenever Γ denotes a subset of Ω, it means a canonical cell.
We will also use the notation

l(Γs) = l(s).

The three properties above say that if we restrict ourselves to the set Ω0 then the
canonical cells behave just like binary subintervals: they divide Ω0 in half, then each
half again in half, etc. Moreover, around each point, these canonical cells become
“arbitrarily small”. It is easy to see that if Γs1 ,Γs2 are two canonical cells then they
either are disjoint or one of them contains the other. If Γs1 ⊂ Γs2 then s2 is a prefix
of s1. If, for a moment, we write Γ0

s = Γs ∩ Ω0 then we have the disjoint union
Γ0
s = Γ0

s0 ∪ Γ0
s1. For ω ∈ Γs, we will write

s = ω1 · · ·ωn, ωn = ω1 · · ·ωn.

Thus, for elements of Ω0, we can talk about the n-th bit ωn of the description of ω:
it is uniquely determined. The 2n cells (some of them possibly empty) of the form
Γs for l(s) = n form a partition

Pn

of Ω0. Let M(Ω) be the set of nonnegative measures µ over Ω with the property
that µ(B(x, r)) < ∞ for all x, r. Let M0(Ω) be the set of measures µ ∈ M(Ω) with
the property that for each n, µb−1

n (0) = 0. For these measures µ, the functions bj
(j ≤ n) and the cutoff point 0 form a regular partition of Ω as defined above.

Examples 5.2.

1. If Ω is the set of infinite binary sequences with its usual topology, the functions
bn(ω) = ωn − 1/2 generate the usual cells, and Ω0 = Ω.

2. If Ω is the interval [0, 1], let bn(ω) = − sin(2nπω). Then cells are open intervals of
the form (k · 2−n, (k+1) · 2n), the correspondence between infinite binary strings
and elements of Ω0 is just the usual representation of ω as the binary decimal
string 0.ω1ω2 . . . .

⌟

When we fix canonical cells, we will generally assume that the partition chosen is
also “natural”. The bits ω1, ω2, . . . could contain information about the point ω in
decreasing order of importance from a macroscopic point of view. For example, for a
container of gas, the first few bits may describe, to a reasonable degree of precision,
the amount of gas in the left half of the container, the next few bits may describe
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the amounts in each quarter, the next few bits may describe the temperature in each
half, the next few bits may describe again the amount of gas in each half, but now
to more precision, etc. From now on, whenever Γ denotes a subset of Ω, it means a
canonical cell. From now on, for elements of Ω0, we can talk about the n-th bit ωn

of the description of ω: it is uniquely determined.

5.2. Characterizing tests via complexity. In this section, we restrict ourselves
to finite measures. Let MR(Ω) be the set of measures µ with µ(Ω) = R.

Theorem 1 (the Coding Theorem) implies that if x runs over a discrete space then

H#(x)
+
= H(x). More generally, it is shown in [5] that

Hµ(x)
+
= H(x | µ) + log µ(x).

Here, the function H(x | µ) must be defined appropriately, as a lower semicom-
putable function of the pair (x, µ). There is a similar characterization of tests over
arbitrary spaces. Let us denote

Hµ(Γ) = H(Γ | µ) + log µ(Γ)

for canonical cells Γ. The following theorem is proved in [5]:

Theorem 4. Suppose that the space X is compact. Then for all computable mea-
sures µ ∈ M0

R(X), we have

Hµ(ω)
+
= inf

n

(
logµ(ω≤n) +H(ω≤n | µ)

)
. (5.2)

Here, the constant in
+
= depends on the computable measure µ.

The
+

< part of the statement is valid in a more general space, and without assuming
computability or compactness. Assume that a separating sequence b1, b2, . . . is given
as defined in Subsection 5.1, along with the set Ω0. For each x ∈ X0, the binary
sequence ω1, ω2, . . . has been defined. Let M0

R(Ω) be again the set of those measures
µ with µ(Ω∖ Ω0) = 0. The following statement has also been proved in [5]:

Proposition 5.3. For all measures µ ∈ M0
R(Ω), we have

Hµ(ω)
+

< inf
n

(
logµ(ω≤n) +H(ω≤n | µ)

)
. (5.3)

Remarks 5.4.

1. Since we assumed µ computable, we can actually delete it from the condition in
the complexity in (5.2). We left it there only since we would really like to prove
that this equation holds uniformly over M(Ω0) and not only for computable
measures.

2. An interesting application where a related formula is used is the “minimum de-
scription length” principle (MDL) theory of statistics. There, instead of the
description complexity H(x), often the codeword length C(x) of some other
coding (universal over some class of measures) is considered, and the quantity
C(Γ) + logµ(Γ) is called the redundancy. In these statistical applications, the
presence or absence of µ in the condition makes a difference.
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⌟

The Test Characterization Theorem, in the form

HL(ω)
+
= inf

n
(H(ωn) + logL(Γωn)) (5.4)

says that the fine-grained algorithmic entropy H(ω) = HL(ω) with respect to the
invariant volume measure L can be essentially expressed as H(ωn) + logL(Γωn) for
a certain n: so, it is the sum of the Boltzmann entropy for the partition Pn plus
the description complexity of the macroscopic description ωn. For the systems and

partitions of interest in physics, the additive term H(ωn)
+

< 2n is typically negligible
compared to the other one since the total number of macroscopic cells is typically
small compared to the volume of the large cells.

In “practice”, to find the “right” n we should keep increasing it, include (the
program for) more and more bits of ω into the macroscopic description as long as
the complexity increase buys greater decrease in the Boltzmann entropy logL(Γωn)
(our a priori uncertainty about ω).

The following theorem says that, for most elements ω of a cell Γ, the value of
Hµ(ω) cannot be much higher than Hµ(Γ).

Theorem 5 (Stability).

µ{ω ∈ Γ : Hµ(ω) < Hµ(Γ)−H(l(Γ))−m } ∗
< 2−mµ(Γ).

We can also interpret this theorem as saying that if some elements of the cell are
(sufficiently) random then most of them are (sufficiently) random. Note that the
difference H(l(Γ)) is less than 2 log n for Γωn .

Proof. Let f(Γ) = 2−H(l(Γ))
∫
Γ 2

−H(ω)µ(dω). This function is semicomputable and∑
Γ f(Γ) ≤ 1. Therefore f(Γ)

∗
< 2−H(Γ). Rearranged, this gives:

µ(Γ)−1

∫
Γ
2−H(ω)µ(dω)

∗
< 2−H(Γ)+H(l(Γ)).

From here, we conclude with Markov’s inequality. □

Let us define
Hn(ω) = min

i≤n
S(Γωi). (5.5)

Let in(ω) be the i where the minimum is achieved. As a function of n, for certain ω,
this may make a sudden jump from a much smaller value to n, suggesting instability
in the coarse-grained quantity. However, there is another interpretation. In general,
what is given is a canonical cell Γ. Theorem 5 (the Stability Theorem) implies

L{ω ∈ Γ : H(ω) < S(Γ)−m−H(l(Γ)) } ∗
< 2−mL(Γ).

In other words, for most elements ω of the canonical cell Γ, the value H(ω) is not
much less than S(Γ). In a sense, a string ωn describing a canonical cell never has
too few bits since it is always a nearly optimal description for most states in it. But
it may have too many bits in the sense that deleting some of the last ones results
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in a significant decrease of the entropy of the canonical cell: the deletion decreases
the complexity with only a smaller increase in logL.

6. Entropy increase properties

6.1. Fine-grain nondecrease. As stated in the Introduction, we are considering
an isolated physical system with state space Ω whose development is described by
a transformation group U t. We also assume that U tω is computable as a function
of the pair ω and t. We assume the existence of a computable invariant measure
L (the “Liouville measure”): it has the property that L(U tA) = L(A) for all t and
all measurable sets A. Under suitable conditions, the existence, computability and
even uniqueness of L can be proven.

Since U t is measure-preserving, the function 2−H(Utω) is a parametrized random-
ness test. From Proposition 3.1, we obtain therefore

H(U tω)
+

> H(ω | t) = H(ω)− I(t : ω).

This is, in essence, our entropy nondecrease formula since we will see that the
term I(t : ω) is generally very small. It can also be regarded as a special case of a
more general randomness-conservation property formulated by L.A. Levin in several
ways, see its latest form in [9]. (Other forms can be found in [4], [5].) Alas, it is
also an entropy nonincrease formula. Indeed, the same inequality between H(ω)
and H(U tω), can also be used between H(U tω) and H(ω). We get therefore

−I(t : ω)
+

< H(U tω)−H(ω)
+

< I(t : U tω). (6.1)

According to this, the only amount of decrease we will ever see in H(U tω) is due
to the information that the value of the time t may have on ω, which is very small
for all simple moments of time. But the amount of increase is also only due to the
information that t may have on U tω. Let us explore the nondecrease property.

Theorem 6 (Entropy Nondecrease). Let λ be the length (Lebesgue) measure, and
let T be a rational value of time. We have

λ{ t ∈ [0, T ] : H(U tω) < H(ω)−H(T )−m } ∗
< 2−mT.

This theorem follows, by an application of Markov’s Inequality, from the following
lemma.

Lemma 6.1.

T−1

∫ T

0
2I(t:ω)dt

∗
< 2H(T ).

Proof. The function f(ω) = T−1
∫ T
0 2−H(t,ω)dt is a randomness test and therefore

− log f(ω)
+

> H(ω | T )
+

> H(ω)−H(T )

(using Lemma 4.1). Hence

T−1

∫ T

0
2H(ω|t)dt

∗
< 2−H(ω)+H(T )

which by rearrangement gives just what we want. □
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6.2. Gibbs ensembles. Another accepted model of a macrostate is a certain dis-
tribution ν over microscopic states given by a density function (ensemble) p(ω) with
respect to the volume measure L. Let us require

∫
p(ω)L(dω) = 1. We can ask what

is the probability density to find it in state ω at time t + t0? Let us call this new
ensemble pt.

The classical definition of Gibbs entropy of a probability distribution with density
function p(ω) over L is

G(p) = −
∫

p(ω) log p(ω)L(dω).

In the special case when p is the macrostate-ensemble we have G(pΓ) = logL(Γ), the
Gibbs entropy is the same as the Boltzmann entropy. Liouville’s Theorem implies
G(pt) = G(p), that is the Gibbs entropy of an ensemble does not change at all
in an isolated system during evolution. This shows that in case of the evolution of
isolated nonequilibrium systems, the evolution of a Gibbs ensemble does not express
adequately what we consider thermodynamic behavior. The problem is that even
if at the starting time t0 the Gibbs ensemble was something simple, it can develop
in time t into a very complicated density function that does not correspond to any
reasonable macroscopic description. Ensembles that are invariant in time retain
their usefulness, however, for equilibrium systems.

Let us relate Gibbs entropy to the average of algorithmic entropy. Let µ be a
measure and p(ω) ∈ CB(Ω) a computable (hence continuous) nonnegative function
(this condition could be relaxed somewhat but the result given here is sufficient to
see the ideas). Then

ν(f) =

∫
f(ω)p(ω)µ(dω)

defines a finite measure. The following theorem expresses the randomness test for
ν by the randomness test for µ.

Theorem 7.

Hν(ω)
+
= Hµ(ω) + log p(ω)

where the constant in
+
= depends on the definition of the function p(ω).

Proof. For an arbitrary lower semicomputable function f(ω, ν) we have∫
f(ω, ν)ν(dω) =

∫
f(ω, ν)p(ω)µ(dω).

Therefore f is a test for ν if and only if fp is a test for µ. The maximal f will
therefore be ∗= 2−Hµ(ω)+log p(ω). □

Notice that the theorem does not allow to compute Hµ(ω) from Hν(ω) in the
places where p(ω) = 0.

The uniform bound (4.2) on Hν(ω) implies

Hν(ω)
+

< log ν(Ω) +H(⌊log ν(Ω)⌋).
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Combining these, we see that log ν(Ω)− log p(ω) is nearly an upper bound to Hµ(ω):
more exactly,

Hµ(ω)
+

< − log p(ω) + log ν(Ω) +H(⌊log ν(Ω)⌋).
The last terms disappear, of course, if ν is a probability measure. On the other
hand, Markov’s inequality implies that Hµ(ω) is, with overwhelming ν-probability,
close to this upper bound. From this, it is easy to see the following relation to Gibbs
entropy: ∫

Hµ(ω)ν(dω)
+

< −
∫

−p(ω) log p(ω)µ(dω)

+

<

∫
Hµ(ω)ν(dω) +H(⌊log ν(Ω)⌋).

This is what we mean by saying that the Gibbs entropy is close to the average of
algorithmic entropy.

6.3. The increase of coarse-grained entropy. Let us now consider the much
more speculative problem of approach to equilibrium, the argument that the algo-
rithmic Boltzmann entropy Hn(U tω) must indeed increase fast if it is far from its
upper bound logL(Ω).

There is a classical argument to show that in a nonequilibrium system, Boltzmann
entropy can be expected to increase fast until it almost reaches its upper bound
logL(Ω). The argument relies on two properties that I will try to formulate now.
Let us look at systems in which

M = logL(Ω)

is a parameter, the maximal value of the entropy. We will not try to require conver-
gence of the entropy exactly to M , only to M −α(M) where α(M) is some function
with

lim
M→∞

α(M)/M = 0.

The function α(M) is typically of the order of logM and it gives us a little freedom
to simplify expressions by ignoring logarithmic terms. Let C(d,M) be the union of
all cells Γ with

B(Γ) < M − d.

We are looking for an entropy increase property saying the following. If we start from
any cell Γ then as time passes, the proportion of those of its elements that do not
end up in a cell with entropy M − d becomes smaller than εd where limd→∞ εd = 0.
In the formulation, we write εd as 2−f1(d).

Condition 6.2 (Boltzmann Entropy Increase Property). There is a constant a1 >
0, a function f1(d) with limd→∞ f1(d) = ∞ and a function f2(t, d, e) with
limt→∞ f2(t, d, e) = f1(d) such that for all d, e with a1α(M) < d < e and
Γ ̸⊂ C(e,M) we have

L(U tΓ ∩ C(d,M))/L(Γ) < 2−f2(t,d,e).

⌟



THE BOLTZMANN ENTROPY AND RANDOMNESS TESTS 17

Two properties will provide a satisfactory condition. The first one says the union
C(d,M) of all “small” cells taken together is small. We call it the Noncompensation
Condition to suggest that the smallness of small cells is not compensated by their
quantity. The condition holds for typical systems simply because the total number
of cells is small.

Condition 6.3 (Noncompensation Condition). There are constants b1, b2 such that
for b1α(M) < d we have

L(C(d,M))/L(Ω) ≤ 2−b2d.

⌟

In Example 8.2, the total number of cells is the total number of partitions of
n into

∑m
i=1 ni, which is less than nm, therefore L(C(d,M))/L(Ω) ≤ 2−(d−m logn).

Typically, we will have M > n and we agreed that m < n1/2. So if we choose
α(M) = M1/2 logM then if d > 2α(M) we have d − m log n > d − n1/2 log n =
d− α(M) > d/2, so the condition holds with b1 = 2, b2 = 1/2.

Example 6.4. The enormous differences in cell sizes seem to be typical for statistical
mechanical systems even without reference to the small number of cells. Let for
example, in a container of a mole of gas, our macroscopic variable be the binary
number 0.0ω1ω2 giving approximately the relative quantity of gas in the left half of
the container. Then the cells Γ0.000 and Γ0.011 are absolutely negligible in volume
compared to the cells Γ0.001 and Γ0.010. ⌟

Algorithmic coarse-grained entropy satisfies the Noncompensation Condition au-
tomatically, with b2 = 1. Indeed, the set {ω : Hn(ω) < m } is contained in
Em = {ω : H(ω) < m }, which, according to (3.3), has volume at most 2−mL(Ω).

The second condition says that if the system starts from a state in a not very
small cell then after a time t, it is unlikely to end up in any small union of cells.

Condition 6.5 (Weak Mixing Condition). There is a constant c1 > 0, a function h1(d)
with limd→∞ h1(d) = ∞ and a function h2(t, d, e) with limt→∞ h2(t, d, e) = h1(d)
such that for all d, e with c1α(M) < d < e, if Γ ̸⊂ C(e,M) and D is a union of cells
with L(D)/L(Ω) ≤ 2−d then

L(U tΓ ∩D)/L(Γ) < 2−h2(t,d,e).

⌟

This property says that as t grows the transformation U t, while preserving the
volume of the cell Γ, will distribute its content thinly over a large area, so that only
a small fraction of it can intersect the small union of cells D. In other words, after
a while, the cells will be “mixed”. The property is in general difficult to prove but
is plausible in typical physical systems. The following theorem only serves to check
out the consistency of the above concepts.

Theorem 8. Theorem The Weak Mixing Condition and the Noncompensation Con-
dition imply the Boltzmann Entropy Increase Property.
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Proof. Assume that the Weak Mixing Condition and the Noncompensation Con-
dition with the appropriate constants and functions a1, b1, b2, h1, h2, and let Γ ̸⊂
C(e,M). Let D = C(d,M) and d > b1α(M), then the Noncompensation Condition
implies L(D)/L(Ω) ≤ 2−b2d. The Weak Mixing condition implies

L(U tΓ ∩D)/L(Γ) < 2−h2(t,b2d,e)

for d such that c1α(M) < b1d. Thus, the Boltzmann Entropy Increase Condition
holds with a1 = c1/b1 and f2(t, d, e) = h2(t, b2d, e). □

The following examples illustrate the insufficiency of the traditional Boltzmann
entropy logL(Γ).

Example 6.6. Take a large container filled with ideal gas and a few large balloons.
At start, the balloons are fixed. Then we release them. They gain energy from
collisions with the gas molecules until they achieve the average energy appropriate
to their number of degrees of freedom. It is reasonable to count the positions of the
balloons to the macrostate of the system. The volume of the cell will be essentially
determined by the energy of the system consisting of the gas alone. This energy,
and hence the Boltzmann entropy, becomes smaller by the amount transferred to
the balls. ⌟

This example becomes less ridiculous if we replace balloons by the memory of a
computer. For a while, it will still be reasonable to count the content of the memory
as part of the macroscopic description: it is given by specifying the “global” charges
and magnetizations of all the tiny areas on the disks and the silicon memories. How-
ever, as the size of a site storing an individual bit decreases, there will come a point
where it is not reasonable to consider the memory state as part of the macroscopical
description. The communication of two computers, one with “macroscopic” memory
and the one with “microscopic” memory, leads to the Maxwell demon paradox. This
shows the necessity of the smooth transition between macroscopic and microscopic
transitions exhibited by algorithmic entropy.

In terms of our scheme, we are talking about increasing n (refining the partition).
The additive term H(ωn) which is so insignificant for small values of n, gains in
significance in this process and makes the transition continuous. Ignoring it, by
defining entropy just as logL(ωn), is bound to lead to paradoxes.

The following system also defies Boltzmann entropy but submits to algorithmic
coarse-grain entropy.

Example 6.7 (The baker’s map). Let Ω be the set of doubly infinite binary sequences
ω = . . . ω−1ω0ω1ω2 . . . with the shift transformation (U tω)i = ωi+t over discrete
time. Let us write ωn = ω−⌊n/2⌋ · · ·ω⌈n/2⌉−1. The n-cells are, of course, cells of the

form Γωn . Let the volume L be such that all n-cells have the same volume 2−n.
Since all n-cells have the same measure no matter what fixed precision we choose,
the Boltzmann entropy of U tz does not increase with t. The quantity Hn(U tz),
however, will be shown below to increase fast for all typical sequences, between
times time 0 and n, linearly from −n to 0.
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Consider a typical example of an infinite sequence z which has zn = 0 · · · 0 and
whose other bits are random (this has now a precise meaning but let us just use the
informal understanding). Then H(zn) ≤ 2 log n, log Γzn = −n, therefore

Hn(z) ≤ 2 log n− n.

Now, for t > n, the string (U tz)n consists of random bits, so essentially, Hn(U tz) ≥
0. Between time 0 and n, this algorithmic coarse-grained entropy increases linearly
from −n to 0. The fine-grained algorithmic entropy H(U tz) will, on the other hand,
only increase slowly since in our choice of the precision n, we can follow the increase
of t. We have

H(U tz)
+

< Ht+n(U tz) ≤ 2 log n+ 2 log t+ t− (t+ n)

= 2 log n+ 2 log t− n.

On the right-hand side of the first equation, the first two terms upper-bound the
complexity of n and t, the second term is the length of the nonzero part of the
string (U tz)t+n. Therefore H((U tz)n+t) is bounded by the sum of the first three
terms, while the last term gives the logvolume of the cell. This inequality shows
that H(U tz) can only grow as slowly as log t. The general inequality (6.1) gives

H(U tω) −H(ω)
+

< I(t : (U tω)). For rational values of t, the inequality (4.3) gives

I(t : (U tω))
+

< H(t). Hence

H(U tω)−H(ω)
+

< H(t).

This means that for some simple rational values of t, the algorithmic entropy hardly
increases at all. For example, if t is an integer of the form 2n then the increase is at
most 2 log log t.

We can also use independent biased coin tossings for the measure, where the prob-
ability of 1 is p = 0.3. If ωn = 0 · · · 0 then B(ωn) = n log 0.7. But for a random ωn,
this value will be ≈ n(0.3 log 0.3+ 0.7 log 0.7) which is considerably smaller. There-
fore Boltzmann entropy decreases strongly. The algorithmic Boltzmann entropy is,
on the other hand, negative for the all 0 starting cell and grows to ≈ 0 as expected.

We can even use any ergodic stationary process for the measure, and obtain sim-
ilar results. For such processes, there is an “asymptotic equidistribution property”
guaranteeing that most volume will be taken up by n-cells of about the same size
2−hn (where h is the so-called “entropy rate”). ⌟

In typical physical systems, the partitions given by the canonical cells have no
simple connection with the computable transformation group U t of our dynamical
system. In particular, they are not “generated” from the first partition into Γ0 and
Γ1 by U t the way they are in the baker’s map.

Remark 6.8 (Kolmogorov-Sinai entropy). An arbitrary ergodic computable station-
ary measure could be considered in place of the coin tossing as well. Let us point
out the connection of our quantities to the Kolmogorov-Sinai entropy of such a
measure. For a random sequence (and hence for almost all sequences) ω, the al-
gorithmic Boltzmann entropy H(ωn) + logµ(Γωn) remains bounded. This quantity
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is the difference of two quantities that increase therefore equally fast: H(ωn) and
− logµ(Γωn). According to the Shannon-McMillan-Breiman Theorem, with prob-
ability 1, we have limn→∞− logµ(Γωn)/n = h where h is the Kolmogorov-Sinai
entropy of the process µ. Thus, the Kolmogorov-Sinai entropy shows the rate of
increase of the Boltzmann entropy of a stationary process as the partition is being
refined. Due to the boundedness of the quantity H(ωn) + log µ(Γωn), we arrive to
(a version of) Levin’s theorem from [14], saying that this is also the rate of increase
of H(ωn). ⌟

The reason that Boltzmann entropy does not increase to logL(Ω) in the baker’s
map with any stationary measure is just that, in case of the uniform distribution,
the n-cells have the same volume, and in the more general case still, there is an
“asymptotic equidistribution property” guaranteeing that most volume will be taken
up by n-cells of about the same size 2−hn (where h is the so-called “entropy rate”).
Therefore the Noncompensation Condition (the more trivial of the two conditions)
is not satisfied. If for this same map we use n-cells of different enough volumes to
satisfy this condition then Boltzmann entropy will increase. In fact, when Hn(ω) is
high this can be treated as a concise expression of the fact that in every “simple”
partition with extremely different cell sizes, the point ω would end up in a large cell.

The example of the shift transformation suggests that actually, in typical chaotic
systems, the parameter n can be made a function of t as long as it grows slower
than linearly with t. Thus, if limt→∞ n(t)/t = 0 then in the baker’s map with the
uniform distribution,

Hn(t)(U tω)

will approach logµ(Ω) almost as fast as if we held n constant. The growth of n(t)
seems a good measure of the mixing of U t.

In conclusion, we suggest that the new quantityHn
L(ω) extends the idea of entropy

increase to a wider class of chaotic systems than the one in which it has originally
worked, and can also serve as a useful tool for formulating conjectures concerning
the nature of chaoticity and its extent.

6.4. The paradox of typicality. The notion of a typical object is an informal one,
and the present remark calls attention to the fact that our intuition concerning the
properties of typical objects may be misleading. Consider the space of infinite 0-1
sequences obtained by tossing a biased coin, with probabilities 1/3, 2/3. We would
consider typical those sequences in which the relative frequency of 0’s tends to 1/3.
On more reflection, we would consider those sequences ω typical that also satisfy all
other criteria or randomness, and are random according to Martin-Löf’s definition,
or, equivalently, which have Hp(ω) > −∞ where p is the appropriate coin-tossing
measure.

Consider now a dynamical system with the volume measure L. The (fine-
grained) entropy nondecrease property, which can also be considered a randomness-
conservation property, guarantees that the above defined typicality is “conserved”:
the evolution of a system takes typical states into typical ones.
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There is, however, another, similarly attractive idea of typicality, which we will
call “local typicality”, which is not conserved. Consider a given partition Pn and a
given cell Γ in this partition. Let us call those states ω of the cell Γ “locally typical”
whose fine-grained entropy H(ω) = HL(ω) is close to the coarse-grained entropy
Hn(ω) = logL(Γ)+H(Γ). We know from the Stability Theorem 5, that most points
of each cell (in terms of the measure L) are typical in this sense. However, local
typicality is not conserved. Indeed, assume that coarse-grained entropy increases for
most points, and that the coarse-grained entropy of Γ is low. Then for most points
ω in Γ (and hence for most locally typical points), their coarse-grained entropy
increases, so U tω belongs to a cell Γ′ with much higher coarse-grained entropy. At
the same time, the fine-grained entropy H(U tω) does not change too much with
respect to H(ω). So, the locally typical state ω turns into a locally nontypical state
U tω. The reason is that ω was a locally typical point of a “nontypical” cell, and it
is still carrying this history. However, as long as only the macroscopic information
embodied in the cell Γ′ is available for inspection and manipulation, this history is
inaccessible to later observers.

The non-conservation of local typicality eliminates a potentially attractive “prin-
ciple”: namely that the state we have at present is locally typical. Consider the
present state of a container of gas after a wall was removed that had confined the
gas to one half. In a usual macroscopic description (partition), the coarse-grained
entropy of the present state will be much larger than what it was before the wall
removal. Since the fine-grained entropy is approximately the same (since it did not
change much), the present state is actually highly nontypical.

The refuted principle is attractive since, together with the Boltzmann Entropy
Increase Property (or its counterpart using algorithmic coarse-grained entropy) it
could be used to prove that entropy increase is not only likely to occur but will
occur. One possible substitute of the principle is the introduction of probabilistic
perturbations, see e.g. [3]. We prefer to say the following:

The entropy increase property relates strictly only to the present
macroscopic state of our system, and does not assert directly any-
thing about the present microscopic state.

7. Maxwell’s demon

7.1. Entropy balance. Let X and Y be two systems where Y is considered to be
the environment from which X is temporarily isolated. In order to to “do some-
thing” to X , we couple it with Y, giving rise to a joint Hamiltonian, and a joint
transformation U t(ξ, η). Let us assume that, being in classical mechanics, the im-
pulses and momenta of the joint system are simply the impulses and momenta of the
two subsystems, therefore the Liouville measure on X × Y is, even in the coupled
system, the product of the original Liouville measures LX , LY in the subsystems.
Let (ξt, ηt) = U t(ξ, η), and

∆H(ξ) = H(ξt)−H(ξ).
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Notice now that for our measure,

H(ξ) +H(η) = H(ξ, η) + I(ξ, η).

Theorem 9 (Entropy Balance).

∆H(ξ) + ∆H(η)
+

> I(ξt, ηt)− I(ξ, η)− I(t : ξ, η).

Proof. According to (6.1) applied to the joint system we have ∆H(ξ, η)
+

> −I(t :
ξ, η). Note that this formula cannot be applied now to the parts of the system since
they do not have their own transformations now. Using this, we have

H(ξt) +H(ηt) = H(ξt, ηt) + I(ξt, ηt)
+

> H(ξ, η)− I(t : ξ, η) + I(ξt, ηt)

= H(ξ) +H(η) + I(ξt, ηt)− I(ξ, η)− I(t : ξ, η),

which gives the statement by rearrangement. □

Since the last term is generally negligible this theorem says that if the two systems
were originally independent (I(ξ, η) ≈ 0) then a decrease in the entropy of ξ must
be accompanied by an increase in the entropy of η. The entropy balance theorem is
not new, of course, for Boltzmann entropy. But its present form makes it useful for
the treatment of Maxwell’s demon.

7.2. Maxwell’s demon and Landauer’s thesis. Maxwell’s demon is a being
sitting at a tiny door between two compartments of gas and letting the molecules
through selectively with the goal of entropy decrease in the container. Principles
of thermodynamics seem to contradict to the possibility of such a demon, so it
seems paradoxical, and demanding explanation. The typical explanations assume
either that the door will heat up and begin to work randomly after a while, or that
in order to make its observations, the demon must descend into this world more
than she cares to and interact energetically with the molecules; this heats her up,
making it harder and harder for her to concentrate. These explanations introduce
additional physical assumptions which are alien to the general mathematical nature
of the second law (increase of disorder). Several such explanations are refuted by
more refined models (see [1]).

A convincing modern solution emerged in a principle announced by Landauer (see
[1]). Let us model the demon as some computer-controlled device interacting with
the gas. She seems to be able to decrease the Boltzmann entropy of the gas only at
the expense of the increase of her own information content. Landauer introduced a
principle saying that in order to erase a bit of information, a certain minimal amount
(kT log 2) of heat dissipation into the environment (and, of course, investment of
the corresponding amount of work into the system) is necessary.

Remark 7.1. In order to prove that the erasure results in heat dissipation, Landauer
argues that the erasure must be a general operation that decreases the phase space of
the computer memory. I find it difficult to interpret the increase of H(η) universally
as heat dissipation. Consider a memory ξ consisting of a row of pendulums swinging
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transversally. The bit 1 means that the pendulum swings while the bit 0 means it
does not. Let the “environment” η be an identical row of pendulums, each of which
hangs motionless originally. Now we can use η to erase the memory by moving it
next to ξ in the right moment. The change in η is obviously reversible, so there is
no heat dissipation. ⌟

Using our framework, the demon paradox occurs since the state of demon’s mem-
ory was implicitly considered part of the macroscopic description of the joint system
gas-demon: the quantity of information in it failed to contribute to the classical
Boltzmann entropy. Since this device is able to decrease the Boltzmann entropy
of the gas at the expense of the increase of the information content of its memory
(without increasing its own Boltzmann entropy), it is able to decrease the Boltzmann
entropy of the total system. Our solution eliminates the paradox by including the
information content (complexity) of the macroscopic description into the expression
for entropy. It should be considered as the rigorous formulation of the more special
and informal principles of Landauer and Zurek.

Zurek [13] saw that the Maxwell’s demon paradox and Landauer’s thesis are
two sides of the same interaction between an information-processing machine (the
demon) and a classical thermodynamic system. The demon turns entropy into in-
formation, the information-erasure operation turns information into entropy. Zurek
constructed an entropy-like quantity specifically for this situation and argued that
it is non-increasing. He created a special macroscopic variable d (without actually
distinguishing macroscopic and microscopic), whose value is equal to the demon’s
memory state. He defined then a quantity called “physical entropy” associated
with such a system that is essentially Z(a, d) = B(a) + H(d) where B(a) is the
Boltzmann entropy of the classical part. This can be seen as essentially the same
as B(a, d) + H(a, d). Indeed, B(a, d) = B(a) since the demon’s macroscopic and
microscopic states are the same. Also, we can delete a from H(a, d) since we are
interested in situations in which d contains much more information than a.

Zurek argues that if, at constant temperature T , the system is brought from state
(a1, d1) to state (a1, d2) then the amount of work obtained is at most Z(a2, d2) −
Z(a1, d1). For this, he tacitly assumes that the work gained from the operation of the
system can be separated into the work obtained from bringing the classical machine
from a1 to a2 and into the work bringing the memory from d1 to d2. With this
assumption, the second law indeed implies the upper bound T (B(a2) − B(a1)) on
the first kind of work and Landauer’s principle implies the bound T (H(d2)−H(d1))
for the second kind of work.

Formally, our coarse-grained algorithmic entropy looks similar to Zurek’s but is
defined more generally, and has many connections to various different definitions of
entropy (for ensembles as well as cells) and also to the theory of randomness. In
particular, the above bound can be proven without the tacit assumptions.

Let ξ be the gas whose entropy the demon is trying to decrease. We also count
the whole state η of the demon into her macroscopic description. As it is usual with
classical machines, we can assume that there is an n such that Hn(ξ) is close to
H(ξ) but n (and therefore H(ξn)) is still negligibly small with respect to H(ξ), and
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therefore

H(ξ) ≈ logL(Γξn).

The Entropy Balance Theorem guarantees that going from (ξ, η) to (ξt, ηt), the de-

crease in the sum H(ξ) + H(η) will be small. Since Hn(ξt)
+

> H(ξt) this implies
that any decrease in Hn(ξ), the Boltzmann entropy of the machine, must be com-
pensated by an increase in H(η) ≈ H(η), the information content of the demon’s
memory (this is the Maxwell’s demon direction) and vice versa (this is the Landauer
thesis direction).

8. Ten minutes on classical thermodynamics

8.1. Thermodynamical systems. Entropy was first introduced in classical, “phe-
nomenological” thermodynamics. This theory, which is also the form of thermody-
namics most widely used in engineering, is concerned with a physical system when
the latter is in a state called “equilibrium”.

An equilibrium state of the system is characterized by the fact that for all practical
purposes, its properties relevant for interaction with the rest of the world are de-
termined by a relatively small number of parameters (functions of the state) called
macroscopic parameters u1, . . . , um. The simplest system to consider is a certain
quantity of gas in a container, with just a few macroscopic parameters: volume,
temperature energy and pressure. Two of these can actually be deleted, since they
are a function of the other two, but it is not necessary for our purposes to minimize
the number of parameters.

Let us agree that energy will always be included among the parameters. The
first law of thermodynamics is a consequence of a more general law of physics: it
says that the energy of an isolated system does not change. The interaction of the
system with the outside world involves some exchange of energy.

8.2. Dynamics and volume. According to the laws of classical mechanics, an
isolated system undergoes an evolution described by a transformation group U t. If
at time t0, the system was in state ω then at time t + t0 it will be in state U tω.
The group U t is generally given by a system of differential equations which, at
least in the example of ideal gas given with coordinates and impulses, are called
the Hamiltonian equations. For this case, Liouville’s Theorem holds saying that
the volume of a domain remains invariant under transformation under U t. In most
other cases also, a natural measure is found on Ω that remains invariant under U t;
we will call this measure the volume, and denote the volume of a set A by L(A).

The law of energy conservation says that during the evolution of an isolated
system, it is confined to a surface of the state space determined by the requirement
that the energy is equal to a certain value. Therefore the volume measure to use
will be actually obtained by restricting the original volume measure to a thin layer
determined by the requirement that the value of energy is in a certain small interval,
and normalizing. This measure, in the limit, is called the microcanonical ensemble.

If the present state is φ then the state at time t is U tφ where the unitary operator

U t has the form e
Ht
iℏ , and H is the Hamilton (energy) operator.
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8.3. The paradox of irreversibility. If a mechanical system has a certain tra-
jectory t 7→ U tω of its evolution from state ω = a to state U t1ω = b then there
is also a trajectory of evolution from state b to state a. It is sufficient to reverse
all the final velocities of all particles and the system will trace its trajectory back-
ward. Therefore any evolution seems just as possible as the corresponding reverse
evolution.

At the same time, the world seems to be full of irreversible phenomena. Imagine
a container A of gas separated from an empty container B by a wall. After the
removal of the wall much of the gas will occupy container B and the reverse physical
process, when the gas collects itself spontaneously in part A, will never be seen. The
reversibility of the equations seems to be in contradiction to irreversibilities of this
kind.

In the main part of the paper, we explain how coarse-graining resolves the para-
dox.

8.4. Equilibrium. For an isolated system, we may want to call equilibrium states
those macrostates that are relatively stable: the values of the macroscopic variables
will undergo only small fluctuations in time. On reflection, however, this requirement
must be weakened to hold only for most microstates within the macrostate (as
measured by volume).

How can an equilibrium state be transformed into a different equilibrium state at
all? Suppose that our system is a container of gas. The system can be combined
with some other systems like a heat reservoir or a piston connected to a lever. Then
some constraint is removed (e.g. an insulation is removed or a piston is allowed to
move) changing the nature (the equations of motion) of the joint system by making
its parts interdependent. When a new equilibrium is reached the constraints can be
restored.

A useful formal way to describe a non-isolated equilibrium system is via an en-
semble (probability distribution) invariant in time. Such a system does not have
a deterministic evolution describable by a transformation U t since the evolution of
the system ω is only the projection of the (possibly deterministic) evolution of a
larger system (ω, ξ). The most popular ensemble for such cases is the Gibbs canon-
ical ensemble (a generalization of the so-called Boltzmann distribution) defined by

a density proportional to e−E(ω)/kT , with the energy E(ω), the Boltzmann constant
k and the temperature T . It can be shown to be invariant if the system ω is part of
a large system (ω, ξ) where ξ is a heat reservoir of temperature T .

8.5. Boltzmann entropy. Boltzmann defined the entropy of a macroscopic state
a as the logarithm of the volume of Γa:

B(a) = logL(Γa). (8.1)

The most obvious problem with this definition seems to be its dependence on the
particular choice and number of macroscopic variables and the precision with which
we want to determine them. Indeed, another digit of precision will decrease the
Boltzmann entropy of most states by about log 10. The volumes in question are,
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however, in the typical classical examples, so large, that such a small difference is
negligible (especially, if we take into consideration that the actual definition also
multiplies B(a) by the very small Boltzmann constant k). We will also use the
notation

B(Γa) = B(a)

since it is harmless here to identify a cell with its description.

Example 8.1. Let us consider n identical, indistinguishable molecules of gas in a
container with rigid walls, and the following cell of phase space. The positions of
the molecules are restricted to the container, of volume V . The total kinetic energy
of the molecules is confined between the values K and K−∆K. The kinetic energy
is 1

2m

∑3n
i=1 p

2
i where pi are the impulses mvi and m is the mass of a molecule.

The entropy for this “cell” consists of two terms. The first term is coming from
the amount of freedom in choosing the positions of the molecules and is n log V .
The second term is the log volume of the set of points p = (p1, . . . , p3n) such that
K −∆K ≤ 1

2m

∑
i p

2
i < K. For “reasonable” values of ∆K this is about the same

as the log volume of the set of impulse points p with total energy < K, because
most of the volume of a high-dimensional ball of p with

∑
i p

2
i < 2mK is near its

surface. This volume is C3n(2mK)3n/2 where Cn is the volume of an n-dimensional
unit ball. This gives for entropy the value

n(log V +
3

2
log(2mK)) + logC3n. (8.2)

It turns out that the correct volume measure to use is n! times smaller due to the
fact that the molecules are not distinguishable. Therefore logn! must be subtracted
from here to get the correct value. This can be best seen when we consider the act of
mixing two quantities of gas, with the same pressure and temperature. Depending
on whether the two gases are of different kind or not the entropy of the mixture
will or will not be greater than the sum of the two original entropies. (This is the
so-called Gibbs paradox.) ⌟

Example 8.2. Consider a container of ideal gas consisting of n molecules of the same
kind which is partitioned, in our mind, into m compartments C1, . . . , Cm where m
is much smaller than n: say,

m <
√
n.

Ignore velocities, for simplicity. Let the macro variable ni give the number of
molecules in compartment Ci. Let n = (n1, . . . , nm). Let us also consider a second
set of variables, the numbers i1, . . . , in telling that molecule j is in compartment ij .

The description i = (i1, . . . , in) is, of course, more detailed than the description
n, which is a function n(i) of i. Therefore Γn =

⋃
n=n(i) Γi.

Since the molecules are all of the same kind, the dynamics, and therefore the
measure L will certainly be invariant with respect to the exchange of molecules.
Therefore if n(i) = n(i′) then L(Γi) = L(Γ′

i). Let us consider first the molecules
distinguishable. Then L(Γn) = N(n)pn where pn is the common volume of all Γi



THE BOLTZMANN ENTROPY AND RANDOMNESS TESTS 27

with n(i) = n, and

N(n) =
n!

n1! · · ·nm!
.

If we also assume that all the compartments have the same shape and size then we
get that pn does not depend on n. Indeed, pn = V n

m, the n-th power of the volume
of a single compartment since after i is given what is left to determine is only the
exact position of each molecule in its compartment. The Boltzmann entropy of state
n is equal to

H(n) = logL(Γn) ≈ n(−
∑
j

fj log fj + log Vm)

where fj = nj/n. Again, if the molecules are indistinguishable it is necessary to
subtract log n!. ⌟

Let us call a system volume-defined (this is the kind of system given preference in
textbooks) if the two macroscopic variables V (volume) and E (energy) determine
the rest. Here, V can be given exactly, and E is given with some precision. The
entropy

S(V,E)

is given as the phase volume of the set of phase points corresponding to coordinates
in volume V and energy between E −∆E and E. Example 8.1 shows that this is
approximately the volume of the set with the simple limitation that the energy is
< E (the volumes of an n-dimensional ball and a shell of it are close).

Consider a system consisting of two parts 1, 2, such that both parts have separate
descriptions, both microscopic and macroscopic. Then a cell corresponding to the
joint system is the Cartesian product of its projection cells in systems 1 and 2, and
its volume is also the product of the corresponding volumes. This way, the entropy
of the joint system is the sum of the two entropies, so entropy is an additive function
of the state.

Entropy was first defined in a so-called “phenomenological” model, using only the
notions of temperature, heat and reversibility, without reference to atoms. We will
point out the connection more closely a little later, but the last example already
gives some indication.

8.6. The growth of entropy. Since entropy measures the amount of phase space
occupied by a macrostate it sounds plausible that a system tends to be in states
with high entropy but not obvious without further discussion. Anyway, this is
exactly how classical thermodynamical systems are known to behave: according to
one formulation of the second law of thermodynamics, entropy in isolated systems
cannot decrease. There is also a “phenomenological” formulation, saying that heat
cannot be transformed into work (leaving everything else unchanged). There are
some other related entropy increase properties, so let us list all of those interesting
us:

• in an isolated system, entropy cannot decrease;
• an isolated system undergoes an irreversible transformation exactly when its
entropy actually increases;
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• an equilibrium state of an isolated system is a maximum (or at least a local
maximum) of entropy.

Just as the precise notion of reversibility had to be formulated statistically, the
same can be expected for these entropy increase properties for Boltzmann entropy.

Formulation and proof are, of course, different and rigorous proof is unavailable
for most realistic systems. The paper analyzes the heuristic arguments for the
increase of Boltzmann entropy; here, we want to understand the ordinary physical
consequences.

8.7. Temperature and pressure. Suppose that two volume-defined systems are
brought into contact and are allowed to come into thermodynamic equilibrium with-
out a change to their volume. Then according to the maximum entropy principle,
the joint entropy is maximal, so a small reversible energy exchange between the
two containers should not change it. If at this time therefore the amount of energy
dE = dE1 = −dE2 was transmitted reversibly from system 2 to system 1 and the
entropy of system Si increased by dSi then dS1 + dS2 = 0; it follows that

dS1

dE1
=

dS2

dE2
.

We know from experience that two systems are in equilibrium only if their temper-
atures are the same, so we conclude that dS

dE depends only on the temperature. In
Example 8.1 of an ideal gas, all its energy is kinetic and therefore, using (8.2), we
have dS/dE = dS/dK = 3n/2K. The quantity K/n is the average kinetic energy
of a molecule, and 2

3
K
n is sometimes used to define the temperature T of the (ideal,

monatomic) gas. More generally, one can define temperature for volume-defined
systems as follows. First we express energy via entropy and volume as E(S, V ).
Then we define

T =
∂E(V, S)

∂S
.

We can also introduce pressure for a volume-defined system by

p =
−∂E(V, S)

∂V

getting the equation

dE = TdS − pdV

for reversible changes in volume-defined systems. Here, the first term is the heat
part dQ of the energy received by the system, and the second one is the work part.
The equation turns into inequality for irreversible changes.
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