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The embedding problem

Given m > 0 and infinite 0-1 sequences x,y we say y is m-cmbeddable
in x, if there exists an increasing sequence (n; : i > 1) of positive
integers such that y(i) = x(n;), and 1 < n; —n;_; <mforalli> 1

(ng = 0).
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Let X(1),X(2),...and Y(1), Y(2), ... be independent Bernoulli(1/2)
sequences.

There is an m with the property that Y is m-embeddable
into X with positive probability.

Why clairvoyant? Because choosing the embedding without seeing
the future is not going to work.
What is it good for? I do not know.
Why interesting?
e Simple question with (so far only) complex solution.
@ Built-in power-law behavior, like other Winkler-type
problems (see below).
@ A nail to which I had a hammer.
Attracted some attention after Grimmett posed the question. By

now three simultaneous, independent proofs: the others by
Bashu-Sly, and Sidoravicius.



The compatible sequences problem

In two infinite 0-1 sequences x, y, we have collision at i if x(7) = y(i).
We call x,y compatible if we can delete some 0’s (or, equivalently,
insert 1’s), so that the resulting sequences x’, y’, have no collision.

The following two sequences are not compatible:

x =0001100100001111...,
y =1101010001011001....

The x, y below are.

x =0000100100001111001001001001001 .. .,
y =0101010001011000000010101101010.. .,
X = 000010011000011110010101001001001 ..,
y' =01010100010110000000101011011010.. ..



For two independent, Bernoulli(p) sequences X, Y, if p is
sufficiently small then X, Y are compatible with positive probability.

So, there is some critical value p.. Computer simulations suggest
pe =~ 0.3. My lower bound is about 1073%.



The clairvoyant demon problem

X, Y are walks on the same graph:
say, the complete graph K, on m
nodes. In each instant, either X or
Y will move. A demon knows both
(infinite) walks completely in
advance. She decides every time,
whose turn it is and wants to
prevent collision. Say:

X =233334002.. .,
Y =0012111443....

The repetitions are the demon’s
insertions.



The walks are called if the demon can succeed.

If m is sufficiently large then in the complete graph K,,,,
two walks X, Y are compatible with positive
probability.

Computer simulations suggest m = 5 suffices, maybe even m = 4. The
bound coming from the proof is > 10°%.



Dependent percolation

The three problems are similar: in each of them, we want to fit one
random sequence to another, by some non-sequential algorithm. Each
of them benefit from a 2-dimensional picture.
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Variation

The two other problems also have a formulation involving directed,
dependent percolation. They also allow a variation: undirected
percolation.

@ For the clairvoyant demon (scheduling of random walks), the
undirected version was solved by Winkler and, independently, by
Balister, Bollobds, Stacey.

@ The above undirected percolations have exponential convergence;
the three presented models have power-law convergence (see
next), so they need new methods.



Power-law behavior

Theorem

P[(0,0) is blocked at distance n but not closer | > n™ ¢
for some constant ¢ > 0 depending on m.

In typical percolation theory, this probability decreases exponentially
in n.



A situation that occurs with at least n~°"! probability:




Method: multiscale

Messy, laborious, crude, but robust.
Contrary to undirected percolation, the obstacles to percolation do not
not form a contour of closed point. We will classify them.

When 0F occurs in the Y sequence, this forms a kind of
horizontal wall of thickness k. You can only penetrate it at a place of X
with at least k£ 0’s placed closer than m to each other (a fitting vertical
hole).

If the probability of a wall is p

the probability of a fitting hole is p€, ¢ < 1 constant.

We will find other obstacles: traps, and dirty points (something like
closedness).



First-order approximation, using scapegoats

_-—'?.

@ Holes through walls normally dense
(where not, a higher-order trap).

@ Walls normally well separated from each other
(where not, higher-order wall).

@ Normally, no walls near the endpoints
(where not, the endpoint is higher-order dirty).



An abstract random process (generating mazes. . .) that models the
obstacles on top of the random graph.

Bad event

o wall (stripe),
@ irap (rectangle),

@ dirty point both in the plane
and its two projections.

Good event To each wall, fitting holes where it can be passed.



Conditions of a mazery

Combinatorial conditions, independences, probability bounds.
Some parameters, among them A, oy, oy, with 1/0, > 1.507,.

Upper bound on the size of walls and traps A

Density of clean points Every trap- and wall-free square of size 3A
contains a clean point in its middle part.

Reachability
o n o (z2,92)
A clean point is reachable No walls =
from another clean point if _ -~ clean
there is no trap or wall e
between, and the slope (21 ;y;)/ " o< 2 <1/oy
between them is bounded clean

below and above:
Upper bounds on the probability of walls, traps, dirt.
Lower bound on the probability of holes.



Main lemma

We will prove

If m is sufficiently large then a sequence of mazeries MK,
k > 1 can be constructed on a common probability space, sharing the
original random graph, and satisfying

Z P (trap or wall of M¥in [0, A1) < 1/8,
k=1

D P((0,0) is clean in M, dirty in M**!) < 178,
k=1
BAk/Ar+1 < Txfer Ty k-



Walls in higher-order mazeries are much farther apart.

MS

M2




Application

Proof of the embedding theorem
Using the lemma show that with positive probability, arbitrarily far
points are reachable from the origin.

@ We can assume that for all £, the origin is clean, and the square
[0, Ags1]? is trap- and wall-free.

o The density condition gives a clean point (xg, yx) With x; > Agy1/2
that satisfies the slope bounds in M¥* with respect to (0, 0).

@ The reachability condition of Mk implies that (x, yx) is reachable
from (0, 0).






Scaling up

We outline the operation M* > MK+,
The obstacles of M**! are scapegoats for the violation of reachability
at the scale Agy1. These are

New dirt is caused by traps or walls of M nearby a point.

Emerging traps due to lack of holes on a too long stretch of a wall of
M,

Compound traps: pairs of traps that are too close (uncorrelated and
correlated).

Emerging walls (2 kinds) caused by high conditional probability of
some new traps.

Compound walls: too close pairs of certain walls.



Emerging trap of the missing-hole type: a large wall segment not
penetrated by any hole.

Compound trap uncorrelated and horizontal correlated:



Emerging wall where the conditional probability of a missing-hole
trap or a correlated compound trap is not small.

Compound wall penetrable only at a fitting pair of holes.




More on mazeries

Some complications

The actual mazery concept comes with a number of finer distinctions.

@ We distinguish barriers and walls.,
o Barriers have good independence properties (are determined by the
X or Y sequence contained in them).
e Walls have good combinatorial properties (can be cleanly separated
from each other).
All walls are barriers, so we will be able to benefit from the
useful properties of both.

@ Each wall has a positive rank. Higher rank implies lower
probability. At M* s M*1 we delete only the walls of low
rank, and use only low-rank walls for compounding.



Separating the walls

The following combinatorial conditions on a mazery always allow
separating the walls:

@ A maximal wall-free interval is inner clean.

@ The area between two maximal wall-free intervals of size > A is
spanned by a sequence of walls with inner-clean wall-free intervals
between them.



More on scale-up

Compound walls

Exact definition of compound wall achieves two things:
@ upperbound its probability,
@ lowerbound the probability of a hole through it.

Solution: A horizontal compound barrier Wi + W, occurs wherever
barriers W1, W, occur (in this order) at some small distance d, and W,
has small rank. Its rank is defined as

ry +rp —[logd].

Call this barrier a wall if Wy, W, are walls separated by an inner-clean
wall-free interval.



Some hard parts

@ The lower bound condition on holes, and its proof on a compound
holes.

@ Proving the reachability condition in M**!,



Recall the reachability condition:

A clean point is reachable
from another clean point if
there is no trap or wall
between, and the slope
between them is bounded
below and above:

No walls



To prove the same condition in M**!, we can use the same condition
in M¥, plus:

@ Enough holes through
walls.

@ No walls or traps near
endpoints.

o Walls well separated
from each other.

@ The remaining traps of M¥ are controlled by absence of
compound traps (messy).
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