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The embedding problem

Given m > 0 and infinite 0-1 sequences x, y we say y is m-embeddable
in x, if there exists an increasing sequence (ni : i > 1) of positive
integers such that y(i) = x(ni), and 1 6 ni − ni−1 6 m for all i > 1
(n0 = 0).
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Let X(1), X(2), . . . and Y(1),Y(2), . . . be independent Bernoulli(1/2)
sequences.

Theorem There is an m with the property that Y is m-embeddable
into X with positive probability.

Why clairvoyant? Because choosing the embedding without seeing
the future is not going to work.

What is it good for? I do not know.

Why interesting?
Simple question with (so far only) complex solution.
Built-in power-law behavior, like other Winkler-type
problems (see below).
A nail to which I had a hammer.

Attracted some attention after Grimmett posed the question. By
now three simultaneous, independent proofs: the others by
Bashu-Sly, and Sidoravicius.



The compatible sequences problem

In two infinite 0-1 sequences x, y, we have collision at i if x(i) = y(i).
We call x, y compatible if we can delete some 0’s (or, equivalently,
insert 1’s), so that the resulting sequences x′, y′, have no collision.

Example The following two sequences are not compatible:

x = 0001100100001111 . . .,

y = 1101010001011001 . . ..

The x, y below are.

x = 0000100100001111001001001001001 . . .,

y = 0101010001011000000010101101010 . . .,

x′ = 000010011000011110010101001001001 . . .,

y′ = 01010100010110000000101011011010 . . ..



Theorem For two independent, Bernoulli(p) sequences X,Y , if p is
sufficiently small then X,Y are compatible with positive probability.

So, there is some critical value pc. Computer simulations suggest
pc ≈ 0.3. My lower bound is about 10−300.



The clairvoyant demon problem
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Y : WAIT

X : GO

X,Y are walks on the same graph:
say, the complete graph Km on m
nodes. In each instant, either X or
Y will move. A demon knows both
(infinite) walks completely in
advance. She decides every time,
whose turn it is and wants to
prevent collision. Say:

X = 233334002 . . .,

Y = 0012111443 . . ..

The repetitions are the demon’s
insertions.



The walks are called compatible if the demon can succeed.

Theorem If m is sufficiently large then in the complete graph Km,
two independent random walks X,Y are compatible with positive
probability.

Computer simulations suggest m = 5 suffices, maybe even m = 4. The
bound coming from the proof is > 10500.



Dependent percolation

The three problems are similar: in each of them, we want to fit one
random sequence to another, by some non-sequential algorithm. Each
of them benefit from a 2-dimensional picture.
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Variation

The two other problems also have a formulation involving directed,
dependent percolation. They also allow a variation: undirected
percolation.

For the clairvoyant demon (scheduling of random walks), the
undirected version was solved by Winkler and, independently, by
Balister, Bollobás, Stacey.

The above undirected percolations have exponential convergence;
the three presented models have power-law convergence (see
next), so they need new methods.



Power-law behavior

Theorem

P [ (0, 0) is blocked at distance n but not closer ] > n−c

for some constant c > 0 depending on m.

In typical percolation theory, this probability decreases exponentially
in n.



A situation that occurs with at least n−const probability:
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Method: multiscale

Messy, laborious, crude, but robust.
Contrary to undirected percolation, the obstacles to percolation do not
not form a contour of closed point. We will classify them.

Example When 0k occurs in the Y sequence, this forms a kind of
horizontal wall of thickness k. You can only penetrate it at a place of X
with at least k 0’s placed closer than m to each other (a fitting vertical
hole).
If the probability of a wall is p
the probability of a fitting hole is pc, c < 1 constant.

We will find other obstacles: traps, and dirty points (something like
closedness).



First-order approximation, using scapegoats

Holes through walls normally dense
(where not, a higher-order trap).

Walls normally well separated from each other
(where not, higher-order wall).

Normally, no walls near the endpoints
(where not, the endpoint is higher-order dirty).



Mazery

An abstract random process (generating mazes. . .) that models the
obstacles on top of the random graph.

Bad event

wall (stripe),

trap (rectangle),

dirty point both in the plane
and its two projections.

Good event To each wall, fitting holes where it can be passed.



Conditions of a mazery

Combinatorial conditions, independences, probability bounds.
Some parameters, among them ∆, σx, σy, with 1/σy > 1.5σx.

Upper bound on the size of walls and traps ∆

Density of clean points Every trap- and wall-free square of size 3∆

contains a clean point in its middle part.

Reachability
A clean point is reachable
from another clean point if
there is no trap or wall
between, and the slope
between them is bounded
below and above:

(x1, y1)

clean

No walls
(x2, y2)

clean

σx ≤ y2−y1

x2−x1
≤ 1/σy

Upper bounds on the probability of walls, traps, dirt.

Lower bound on the probability of holes.



Main lemma

We will prove

Lemma If m is sufficiently large then a sequence of mazeries Mk,
k > 1 can be constructed on a common probability space, sharing the
original random graph, and satisfying

∞∑
k=1

P
(

trap or wall of Mk in [0,∆k+1]2 )
6 1/8,

∞∑
k=1

P
(

(0, 0) is clean in Mk, dirty in Mk+1 )
< 1/8,

8∆k/∆k+1 < σx,k, σy,k.



Walls in higher-order mazeries are much farther apart.

M1

↑

M2

↑

M3



Application

Proof of the embedding theorem
Using the lemma show that with positive probability, arbitrarily far
points are reachable from the origin.

We can assume that for all k, the origin is clean, and the square
[0,∆k+1]2 is trap- and wall-free.

The density condition gives a clean point (xk, yk) with xk > ∆k+1/2
that satisfies the slope bounds in Mk with respect to (0, 0).

The reachability condition of Mk implies that (xk, yk) is reachable
from (0, 0).
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Scaling up

We outline the operation Mk 7→Mk+1.
The obstacles of Mk+1 are scapegoats for the violation of reachability
at the scale ∆k+1. These are

New dirt is caused by traps or walls of Mk nearby a point.

Emerging traps due to lack of holes on a too long stretch of a wall of
Mk.

Compound traps: pairs of traps that are too close (uncorrelated and
correlated).

Emerging walls (2 kinds) caused by high conditional probability of
some new traps.

Compound walls: too close pairs of certain walls.



New traps

Emerging trap of the missing-hole type: a large wall segment not
penetrated by any hole.

Compound trap uncorrelated and horizontal correlated:



New walls

Emerging wall where the conditional probability of a missing-hole
trap or a correlated compound trap is not small.

Compound wall penetrable only at a fitting pair of holes.



More on mazeries
Some complications

The actual mazery concept comes with a number of finer distinctions.

Examples
1 We distinguish barriers and walls.

Barriers have good independence properties (are determined by the
X or Y sequence contained in them).
Walls have good combinatorial properties (can be cleanly separated
from each other).

All walls are barriers, so we will be able to benefit from the
useful properties of both.

2 Each wall has a positive rank. Higher rank implies lower
probability. At Mk 7→Mk+1 we delete only the walls of low
rank, and use only low-rank walls for compounding.



Separating the walls

The following combinatorial conditions on a mazery always allow
separating the walls:

A maximal wall-free interval is inner clean.

The area between two maximal wall-free intervals of size > ∆ is
spanned by a sequence of walls with inner-clean wall-free intervals
between them.



More on scale-up
Compound walls

Exact definition of compound wall achieves two things:

upperbound its probability,

lowerbound the probability of a hole through it.

Solution: A horizontal compound barrier W1 + W2 occurs wherever
barriers W1,W2 occur (in this order) at some small distance d, and W1
has small rank. Its rank is defined as

r1 + r2 − dlog de.

Call this barrier a wall if W1,W2 are walls separated by an inner-clean
wall-free interval.



Some hard parts

The lower bound condition on holes, and its proof on a compound
holes.

Proving the reachability condition in Mk+1.



Recall the reachability condition:

A clean point is reachable
from another clean point if
there is no trap or wall
between, and the slope
between them is bounded
below and above:

(x1, y1)

clean

No walls
(x2, y2)

clean

σx ≤ y2−y1

x2−x1
≤ 1/σy



To prove the same condition in Mk+1, we can use the same condition
in Mk, plus:

Enough holes through
walls.

No walls or traps near
endpoints.

Walls well separated
from each other.

The remaining traps of Mk are controlled by absence of
compound traps (messy).
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