
Probability in computing

Péter Gács

Computer Science Department
Boston University

Fall 17

Introduction

Course structure: see the syllabus on
www.cs.bu.edu/˜gacs/courses/cs537.

Event space, probability space

Event space: a pair (Ω,A) where Ω is a set. Elements ω ∈ Ω are
called outcomes. Further, A is a set of subsets of Ω called events.

Example 1.1 If Ω is a countable set then we will always assume

that A= 2Ω, that is every subset of Ω is an event.

In general, we assume that A is an algebra: ;,Ω are in A and if E, F
are in A then so is E \ F (and then of course E∪ F and E∩ F).

Example 1.2 Ω= R and A is the set of all unions of a finite set

of intervals (closed, open, half-closed).

Remark: normally it is also required that A is closed with respect to
countable union, but we do not need this in the course.

Given an event space (Ω,A) and a function P : A→ [0,1], we call
P a probability measure if P(Ω) = 1 and for disjoint events E, F we
have P(E∪ F) = P(E) + P(F). In this case, the triple

(Ω,A,P)

is called a probability space.

Examples 1.3

• Ω is a finite set, A= 2Ω and and P(E) = |E|/|Ω|.
• Ω= R2, (plane). Let A be the smallest algebra containing all

the rectangles. Let f : R2→ R be an integrable function with
∫

R2 f(x)dx = 1. For all elements E ∈A we defined
P(E) =

∫

E f(x)dx. In this case we say that f(x) is the density
function of the probability measure P.

Conditional probability

Let (Ω,A,P) be a probability space and E, F events. If P(E)> 0 then
P(F | E) = P(E∩ F)/P(E) is called the conditional probability of
event F with respect to E.
If E1, . . . , En are disjoint events with

⋃

i Ei = Ω then we will call the
set {E1, . . . , En} a partition. If {E1, . . . , En} is a partition and F is an
event then the following relations will be often used. The last one
is called the law of total probability.

F = (F ∩ E1)∪ · · · ∪ (F ∩ En),

P(F) = P(F ∩ E1) + · · ·+ P(F ∩ En),

= P(F | E1)P(E1) + · · ·+ P(F | En)P(En).

Example 1.4 Let X be a number that is prime with probability
0.1, pseudo-prime with probability 0.2 and other with probability
0.7. We perform a prime test which is always correct when the
number is prime, gives wrong answer with probability 0.02 if the
number is pseuodprime and with probability 0.01 if the number is
other. What is the probability of wrong answer?

P(wrong)

= P(wrong | prime)P(prime)

+ P(wrong | ps-prime)P(ps-prime)

+ P(wrong | other)P(other)

= 0.1 · 0+ 0.2 · 0.02+ 0.7 · 0.01.

Independence

Events A1, . . . , An are independent when for every possible
subsequence 1≤ i1 < · · ·< ik ≤ n we have

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

In particular, A, B are independent if P(A∩ B) = P(A)P(B). If
P(B)> 0 this can be written as

P(A | B) = P(A).

Note that pairwise independence is weaker.

Example 1.5 Toss an unbiased coin twice, let A say that the first
toss is head, B that the second toss is head and C that both are
heads or both are tails. These three events are only pairwise
independent.

Random variables

For a probability space (Ω,A,P), a random variable is a function
X : Ω→ R with the property that each set of the form
{ω : X(ω)< a } and {ω : X(ω)> a } is an event. We will write

P {X < a }= P{ω : X(ω)< a }.

If X is a random variable then the function

F(a) = P {X < a }

is called the distribution function of X.

Example 1.6 Let A be an event, then we define the random

variable 1A called the indicator variable of the event A:

1A(ω) =

¨

1 if ω ∈ A,

0 otherwise.

So 1A = 1 if the event A occurs and 0 otherwise. Distribution
function: FA = F1A

:

FA(x)











0 if x ≤ 0,

1− P(A) if x ≤ 1,

1 otherwise.

.

If two random variables X, Y are on the same probability space then
they have a joint distribution: for any nice subset E of the plane R2,
the set

{ω : (X(ω), Y(ω)) ∈ E }

is an event, so we may ask the probability P { (X, Y) ∈ E }.

Example 1.7 X is my arrival time to class, Y is the last arrival

time of the a student. What is P {X − Y < 10 minutes }?

Let X1, . . . , Xn be random variables on the same probability space.
We say that they are independent if for all sequences a1, . . . , an ∈ R
the events

{ω : X1(ω)< a1 }, . . . , {ω : Xn(ω)< an }

are independent.

Example 1.8 We toss a die twice. The outcomes ω are

(1,1), (1,2), . . . , (6,6) with probabilities 1/36 for each. Let X1 be
value of the outcome of the first toss, and X2 the value of the
second toss. Then X1, X2 are independent. On the other hand, X1 is
not independent of X1 + X2.

Note: if X1, . . . , Xn are independent and fi are any functions then
f1(X1), . . . , fn(Xn) are also independent. Also, if X, Y, Z are
independent and f(x), g(y, z) are functions then f(X), g(Y, Z) are
independent.

Binomial random variable

We repeat some experiment n times. Each time it succeeds with
probability p and fails with probability 1− p. Let Xn,p be the
random variable counting the number of successes. We have

P
�

Xn,p = k
	

=
�

n
k

�

pk(1− p)n−k.

This is called the binomial random variable.
If we make p= λ/n and and n→∞ then this converges to

e−λ
λk

k!
,

which is P {Yλ = k } for the so-called Poisson random variable.

Expected value

Suppose that X is a random variable that takes on a discrete set of
values a1, a2, . . . with probabilities p1, p2, Then its expected
value is defined as

EX = p1a1 + p2a2 + · · · .

Does not always exist.

Examples 1.9

1 Let P {X = 1 }= p, P {X = 0 }= 1− p. Then EX = p.

2 Toss a die a single time: the expected value is

1 · (1/6) + · · ·+ 6 · (1/6).

For a probability space Ω= Rd with a density function p(x) and a
random variable X(ω) we define EX =

∫

X(ω)p(ω)dω.

The expected value is additive:

E(αX + βY) = αEX + β EY,

even if X, Y are not independent.

Example 1.10 We toss a die twice, and win the sum of the

points if the two tosses are equal. Let Xi = 2i if both tosses are
equal to i. Then EXi = (1/36)(2i). Our expected win is

E(X1 + · · ·+ X6) = EX1 + · · ·+ EX6 = (1/36) · 2 · (1+ · · ·+ 6).

Examples 1.11

1 The binomial variable with parameters n, p has expected value
np, since it is the sum of n variables with expectation p.

2 Correspondingly, the Poisson variable with parameter λ has
expected value λ.

3 Consider a fair game of tossing a coin repeatedly and betting
on head each time. Play until you win, doubling your bet in
every step: in step n it is 2n.
Expected win is 1.
Expected maximum loss before winning is∞.

Conditional expectation, multiplication

• The conditional expectation E{X | A} of a random variable X
with respect to some event A is defined using the conditional
probabilities with respect to A. There is a law of total
expectation—derive it from the law of total probability above!
See the example of geometric variable below.

• If X1, . . . , Xn are independent random variables then the
expected value is also multiplicative:

EX1 · · ·Xn = EX1 · · ·EXn.

Example: for independent events A, B,

E1A1B = P(A∩ B) = P(A)P(B) = E1A E1B.

• Converse: if E f1(X1) · · · fn(Xn) = E f1(X1) · · ·E fn(Xn) for all
functions f1, . . . , fn then X1, . . . , Xn is independent.

Markov inequality

An important tool for estimating probabilities with the help of
expectations.

Theorem 1.12 Let X be a nonnegative random variable, λ > 0,
with EX = µ, then

P {X > λµ }< 1
λ

.

The proof is simple. Another form of the inequality:
P {X > λ }< µ/λ.

Corollary 1.13 If X has finite expected value then its tail

probability P {X > λ } decreases as O(λ−1).

In other words, if the tail decreases slower, say as λ−1/2 (“heavy
tail”), then it has no finite expected value

Geometric distribution, restart

Suppose that some attempt has probability α of succeeding. You
keep repeating the attempts until the first success. The number of
necessary repetitions is a random variable X, with

P {X = n }= α(1−α)n−1.

Let Yk be the variable that counts which experiment succeeds first,
but starting only from the kth one, so its distribution is defined by

P {Yk > n }= P {X > k+ n | X > k }=
(1−α)n+k

(1−α)k
= (1−α)n.

So Yk is also a geometric random variable with the same parameter
α. We call this the memoryless property, of geometric random
variables.

Expectation of the geometric

Let X be a geometric random variable with parameter α.

µ= EX =
∞
∑

k=1

k ·α(1−α)k−1 = 1 ·α+ 2 ·α(1−α) + · · · .

Let Y1 be the variable introduced above, then by the memoryless
property EY1 = EX = µ. Let S be the event X ≤ 1, then
E{X | ¬S}= 1+ EY1 = 1+µ. By the law of total expectation
(similar to the law of total probability):

µ= P(S)E{X | S}+ (1− P(S))E{X | ¬S}= α+ (1−α)(1+µ).

Solving the equation gives µ= 1/α. So, if the success probability of
each attempt is 1/10, we can expect to succeed on the tenth
attempt (on average).

Sum formula for expectation

Another expression for expected value, useful and easy to check:
Let X be a random variable taking positive integer values. Then

EX = P {X ≥ 1 }+ P {X ≥ 2 }+ P {X ≥ 3 }+ · · · .

We could have used this also to compute the expectation of the
geometric variable. The corresponding formula for the continuous
case (works also in the discrete case):

EX =

∫ ∞

0

P {X ≥ z }dz.

Inner product

• If u= (u1, . . . , un) and v= (v1, . . . , vn) are vectors then their
inner product is u1v1 + · · ·+ unvn. It is symmetric, bilinear, and
has the property that 〈u,u〉= 0 implies u= 0.

• Random variables over a probability space can be viewed as
vectors: there is an operation of linear combination λX +µY.
Example subspace: those random variables X with EX = 0. We
introduce an inner product:

〈X, Y〉= EXY.

it is bilinear, and 〈X, X〉 ≥ 0 with 〈X, X〉= 0 iff P {X = 0 }= 1.

Example 1.14 Let 1A, 1B be the indicator variables of events
A, B.

E1A1B = P(A∩ B).

• If u= (u1, . . . , un) is a vector then its length is defined as
|u|=

p

〈u,u〉= (u2
1 + · · ·+ u2

n)
1/2 (Pythagorean Theorem). The

inner product can then be expessed as

〈u,v〉= |u| · |v| · cosθ (1.1)

where θ is the angle between u and v.
• Two vectors u,v are called orthogonal (perpendicular) if
〈u,v〉= 0.

The cosine of an angle is ≤ 1, so (1.1) implies

(〈u,v〉)2 ≤ 〈u,u〉〈v,v〉.

This is called the Cauchy-Schwartz inequality. For random
variables, it says:

Theorem 1.15 (Cauchy-Schwartz)

(EXY)2 ≤ EX2 EY2.

Covariance

For X, Y with EX = µ, EY = ν we define the covariance

Cov(X, Y) = 〈X −µ, Y − ν〉= E(X −µ)(Y − ν).

X, Y are uncorrelated if their covariance is 0, in other words if X −µ
and Y − ν are orthogonal.
• If X, Y are independent then they are uncorrelated. Indeed, let

X′ = X −µ, Y ′ = Y − ν. Then EX′ = EY ′ = 0, and X′, Y ′ are
independent. therefore E(X′Y ′) = EX′ EY ′ = 0.

• The converse does not hold in general: uncorrelatedness is just
one equation, independence is many equations. But if f(X), g(Y)
are uncorrelated for all f , g then X, Y are independent.

Example 1.16

P(X = Y = 0) = 1/3,

P(X = Y = −1) = P(X = Y = 1) = P(X = −1, Y = 1)

= P(X = 1, Y = −1) = 1/6.

These variables are uncorrelated but not independent.

On the other hand, if X, Y only take 2 values and are uncorrelated,
then they are independent.
Let X = 1 with probability p and 0 with probability (1− p). Let
Y = 1 with probability q and 0 with probability (1− q). Indeed,

E(X − p)(Y − q) = EXY − pEY − qEX + pq= EXY − pq.

If this is 0 then pq= EXY = P {X = 1∧ Y = 1 }, showing that X, Y
are independent.

Variance

If X is a random variable µ= EX, with X′ = X −µ then we define

VarX = Cov(X, X) = E(X −µ)2.

Equivalent expression: VarX = EX2 −µ2.
Since Var(λX) = λ2Var(X), we introduce the quantity

p
VarX and

call it the standard deviation σX .

Theorem 1.17 Var(X + Y) = VarX +VarY + 2Cov(X, Y).

Thus if Cov(X, Y) = 0 then Var(X + Y) = VarX +VarY. In particular,
this is true if X, Y are independent.
More generally, if X1, . . . , Xn are pairwise uncorrelated then

Var(X1 + · · ·+ Xn) = VarX1 + · · ·+VarXn.

Application: let X1, . . . , Xn be uncorrelated, identically distributed,
with σ2 = VarXi, Sn = X1 + · · ·+ Xn. Then

VarSn = nσ2.

Note that VarX is not a linear function of X, it is not even
homogenous: the standard deviation is homogenous. But, the
standard deviation of Sn grows only as

p
n.

Chebyshev inequality

Let µ= EX, σ2 = VarX. The new inequality comes from the
Markov inequality applied to the variable (X −µ)2. It says, for
λ > 0:

P { |X −µ|> λσ }< 1
λ2

.

• Another form of the inequality: P { |X −µ|> λ }< σ2/λ2.
• Markov’s inequality implies that if X has a finite expected value

then by its tail P {X > λ } decreases at least as O(1/λ).
• Chebyshev’s inequality says that if X also has a finite variance

then we can say more: the tail decreases at least as fast as
O(1/λ2).

Variance of the geometric

For a geometric variable with parameter α, a trick similar to the
one used for the expectation computes

VarX = 1/α2 − 1/α

Law of large numbers

Let Sn = X1 + · · ·+ Xn.

Theorem 1.18 (Law of large numbers) For each n, let

X1, . . . , Xn be pairwise uncorrelated, with EXi = µ,VarXi = σ2. Then
for all ε > 0 we have

lim
n→∞

P { |Sn/n−µ|> ε }= 0.

Indeed, by Chebyshev’s inequality for λ > 0:

P
�

|Sn − nµ|> λσ
p

n
	

< 1/λ2,

P
�

|Sn/n−µ|> λσ/
p

n
	

< 1/λ2,

P { |Sn/n−µ|> ε }<
σ2

nε2

where we chose λ= ε
p

n/σ.

Thus, for large λ the value Sn is mostly in the interval nµ±λσ
p

n.

Example 1.19 Let Xi = 1 with probability p and 0 otherwise:

when a biased coin falls head up. Then EXi = p, VarXi = p(1− p).
Further Sn is the number of heads in n tosses. The inequality says
that with large probability this number is within

np±λ
Æ

np(1− p).

This interprets probability in terms of relative frequency.

Central limit theorem

Can we make the interval tighter then ±c
p

n in the law of large
numbers? No, this is shown by the theorem below. A random
variable X is called standard if EX = 0, VarX = 1. If EX = µ and
VarX = σ2 then X′ = (X −µ)/σ is standard, it is called the
standardized version of X.
Let X1, . . . , Xn be independent, identically distributed with EXi = µ,
VarXi = σ2, Sn = X1 + · · ·+ Xn. We are interested in the distribution
of the standardized version (Sn −µn)/σn of Sn.

Let φ(x) = (2π)−1/2e−x2/2 be the density function of the so-called
standard Gaussian distribution, and let Φ(x) =

∫ x
−∞φ(y)dy.

Theorem 1.20 (Central limit theorem) We have

lim
n→∞

P
§

Sn −µn
σ
p

n
< a

ª

= Φ(a).

It is remarkable that this limit distribution, the Gaussian
distribution, does not depend on the distribution of Xi. The proof of
this theorem (under the condition that E |Xi|3 <∞) is given in
separate notes.

Note 1 The theorem shows that just as it is unlikely for |Sn −µn|
to be much larger than

p
n, it is also unlikely for it to be much

smaller! If somebody shows us a 0-1 sequence X1, . . . , Xn where the
number of 0’s and 1’s is much closer to each other than

p
n, then

we should doubt that it came from coin-tossing.

Exponential convergence

Can we improve the O(1/n) bound on the tail probability in the law
of large numbers? Yes, there are theorems of the sort

P { |Sn/n−µ|> ε }< e−nf(ε),

that is the probablity of Sn/n to be outside some constant-size
interval around µ should be exponentiall small. Such theorems are
sometimes so-called “Chernoff bound”, “Hoeffding bound”, or
“large deviation theorem”. For these theorems, mutual
independence is essential (identical distribution of the Xi id not).
For one such theorem, assume 0≤ Xi ≤ 1 (if this is not the case,
rescale), µi = EXi, µ=

1
n

∑

iµi.

Theorem 1.21 (“Chernoff” bound)

P {Sn −µn> εn }< e−2ε2n,

P {µn− Sn > εn }< e−2ε2n.

Transformation to another range Suppose we want −1≤ Xi ≤ 1.
Then we can apply the bound to X′i = (Xi + 1)/2. that is
Xi = 2X′i − 1. If Sn > ESn + εn then 2S′n − n> 2ES′n − n+ εn,
that is S′n > ES′n + ε/2. By the Chernoff bound this has
probability bound

e−2(ε/2)2n = e−ε
2n/2. (1.2)

Mutual independence is essential For pairwise independent
variables the O(1/n) tail bound is best possible. Indeed, in a
homework we saw an example of n such variables Xi with
P {Xi = 1 }= P {Xi = 0 }= 1/2, and
P {X1 = · · ·= Xn = 0 }= 1

n+1 . This gives ESn = n/2 but
P {Sn = 0 }= 1

n+1 .

Entropy, relative entropy

The theorem and its proof uses the following functions.

H(λ) = −λ logλ− (1−λ) log(1−λ)≥ 0

is called the entropy of the distribution (λ, 1−λ), and

Hµ(λ) = Hµ(λ)/ ln2= λ log
µ

λ
+ (1−λ) log

1−µ
1−λ

.

is called its relative entropy with respect to (µ, 1−µ).
Note that H1/2(λ) = H(λ)− 1. When log is replaced with ln, we
denote

H(λ) = H(λ) ln2= −λ lnλ− (1−λ) ln(1−λ),

and so on. Concavity of the logarithm function proves

Theorem 1.22 If λ 6= µ then Hµ(λ)< 0.

We will derive the “Chernoff” bound from the following theorem.

Theorem 1.23 Let λ−µ= ε, then

λ > µ⇒ P {Sn/n> λ } ≤ enHµ(λ) ≤ e−2nε2
, (1.3)

λ < µ⇒ P {Sn/n< λ } ≤ enHµ(λ) ≤ e−2nε2
, (1.4)

For the proof, fix a positive number b, and compute, using
independence:

EbSn = EbX1 · · ·EbXn .

For µ < λ < 1, choose b> 1, then Sn > λn⇔ bSn > bλn. For
0< λ < µ, choose b< 1, then Sn < λn⇔ bSn > bλn. In both cases,
by Markov’s inequality,

P
�

bSn > bλn
	

< b−λn EbSn = b−λn
n
∏

i=1

EbXi .

Simplify, using that bx, a convex function of x, is below the chord in
0≤ x ≤ 1:

bx ≤ 1+ x(b− 1).

Taking expectation: EbXi ≤ 1+µi(b− 1).

By the inequality of arithmetic and geometric mean:

∏

i

(1+µi(b− 1))≤

�

1
n

∑

i

(1+µi(b− 1))

�n

= (1+µ(b− 1))n.

Multiplying with b−λ, our bound is (g(b))n where

g(b) = b−λ(1+µ(b− 1)) = (1−µ)b−λ +µb1−λ,

a convex function. Keeping µ fixed, choose b to minimize this by
differentiation:

b∗ =
λ(1−µ)
(1−λ)µ

,

which is indeed < 1 if λ < µ and > 1 if λ > µ.

Substitution gives

g(b∗) =
�µ

λ

�λ
�

1−µ
1−λ

�1−λ
≤ λ

µ

λ
+ (1−λ)

1−µ
1−λ

= 1,

where we used the arithmetic-geometric inequality again. This
inequality is strict unless λ= µ. We can write g(b∗) = eHµ(λ).
To prove Hµ(λ)≤ −2ε2 recall the Taylor formula for f(λ) = Hµ(λ):

f(µ+ ε) = f(µ) + f ′(µ)ε + f ′′(θ)ε2/2

for some θ between µ and µ+ ε. By calculation: f(µ) = f ′(µ) = 0,
f ′′(θ) = −1/θ (1− θ)≤ −4. Hence Hµ(µ+ ε)≤ −4ε2/2= −2ε2.

Simpler forms

For λ > µ we have

Hµ(λ) = λ ln
µ

λ
+ (1−λ) ln

1−µ
1−λ

< λ ln
µ

λ
+λ.

Indeed, ignore the 1−µ and use the inequality (1−λ) ln 1
1−λ ≤ λ

(homework). This results in the upper bound

P {Sn/n> λ }<
�eµ
λ

�λn
, (1.5)

which is useful only if λ > eµ.

Binomial coefficients

Let Xi = 1 with probability 1/2 and 0 otherwise, then µ= 1/2. Let
λ < 1/2. Then (1.4) implies

2−n
∑

k≤λn

�

n
k

�

= P {Sn < λn } ≤ 2nHµ(λ),

∑

k≤λn

�

n
k

�

≤ 2nH(λ),

a very useful inequality. For small λ, we can again simplify using
(1−λ) ln 1

1−λ ≤ λ:

∑

k≤λn

�

n
k

�

≤
� e
λ

�nλ
,

∑

k≤m

�

n
k

�

≤
�ne

m

�m
. (1.6)

A more general version of “Chernoff’s” bound uses a quantity

v(a, b) = (b− a)2/4,

Lemma 1.24 For a random variable X with a≤ X ≤ b we have

Var(X)≤ (b− a)2/4. This bound is achieved for
P(X = a) = P(X = b) = 1/2.

The proof is an exercise. For independent random variables Xi with
ai ≤ Xi ≤ bi, let vn =

∑n
i=1 v(ai, bi). Then Var(Sn)≤ vn (equal when

Xi = ai or bi with probability 1/2 each).

Theorem 1.25 (Hoeffding) For all λ > 0:

P
�

Sn − nµ≥ λ
p

vn

	

≤ e−λ
2/2.

Alternatively, P {Sn − nµ≥ λ } ≤ e−λ
2/2vn .

Let us apply the alternative form to the case ai = 0, bi = 1, then
vn = n/4. Choosing λ= εn:

P {Sn − nµ > εn } ≤ e−
ε2n2

n/2 = e−2ε2n.

Application to the set balancing problem

We have sets A1, . . . , Am ⊆ U = {1, 2, . . . ,n}. We want to paint the
elements of U red or blue in such a way that in each set Ai, the
number of blue and red elements balances out as much as possible.
That is if B is the set of blue elements then we want the
(maximum) discrepancy

m
max
i=1
||Ai ∩ B| − |Ai \ B||

to be minimal. Other language: we are looking for a sequence
b= (b1, . . . , bn), bi = ±1, for which

max
i
|
∑

j∈Ai

bj|

is minimal.

Let us see how good a vector b we can get by random choice. Let
β1, . . . ,βn be independent, with P

�

βj = 1
	

= P
�

βj = −1
	

= 1/2.
Each

∑

j∈Ai
βj is a sum of independent random variables. Let us fix

a parameter t, to be chosen later. Two cases.
• |Ai| ≤ t. Then |

∑

j∈Ai
βj| ≤ t.

• |Ai|> t. By the Chernoff bound (1.2), since Eβj = 0, with
k= |Ai|:

P
§

|
∑

j∈Ai

βj|> t
ª

≤ 2e−
1
2 (t/k)

2k = 2e−
1
2 t2/k ≤ 2e−t2/(2n).

Choose t=
p

4n ln m, then this is 2/m2. So with probability
1− 2/m, all m sets Ai have discrepancy ≤ t.

Can one do better?
Yes, but not by just random choice. Spencer achieves a discrepancy
of

O
�Æ

n ln(m/n)
�

.

(See the Alon-Spencer book.) For m= n this is O(
p

n) while the
random choice gives O(

p
n ln n).

A homework will show that O(
p

n) for m= O(n) cannot be
improved.

Generating a random variable

Suppose some random number generator provides a random
variable U distributed uniformly over the interval [0, 1]. We can
compute from this a random variable X with any given cumulative
distribution function F(a). First, we define the inverse function
G(y) = F−1(y). Some care is needed since F(x) is not strictly
monotonic in general (but is left-continuous):

G(y) = sup{x : F(x)≤ y }.

(Check that G(y) is right-continuous: G(y) = limy′↘y G(y′).)

Claim 2.1 The variable X = G(U) has the distribution F(x).

Indeed, G(U)< x⇔∀x′
�

F(x′)≤ U⇒ x′ < x
�

⇔ F(x)> U.
On the other hand, P {F(x)> U }= F(x).

Examples 2.2

• Let x1 < · · ·< xn be some values, and let X be a random variable
with P {X = xi }= pi where

∑

i pi = 1. For i= 0,1, . . . , n let
qi =

∑

j≤i pj (so q0 = 0, qn = 1). The distribution function is

P {X < a }= FX(a) =
∑

i:xi<a

pi = max
i:xi<a

qi,

GX(u) = sup{a : FX(a)≤ u }=max{xi : qi−1 ≤ u },

so outputting xi if qi−1 ≤ U < qi we get the distribution of X.
• Let Y be an exponential random variable:
P {Y < a }= FY(a) = 1− e−βa. To invert this function, let
u= 1− e−βa, and express a via u: a= −β−1 ln(1− u), so
outputting GY(U) = −β−1 ln(1−U) we get the distribution of Y.

Randomization or average case

Algorithms can be analyzed probabilistically from several points of
view. First distinction:

1 The algorithm is deterministic, but we analyze it on random
inputs. This approach 1 is less frequently used, since we rarely
have reliable information about the distribution of our inputs.
(Levin’s theory of problems that are hard on average adresses
general questions of this type.)

2 We introduce randomness during computation, but the input
is fixed. Most practical uses of randomness belong to
category 2, randomization.

We will see later a connection (Yao’s theorem) between
approaches 1 and 2 from the point of view of worst-case analysis.
(It is, of course, also possible to randomize and analyze on random
inputs.)

Example 3.1 (Quicksort) The deterministic quicksort

algorithm has a quadratic worst-case performance. Its average-case
performance is good, but there is no reason to assume that the
permutation we have to sort is “random”. In practice, getting a
reversely ordered file is more likely than getting a completely
disordered one.
On the other hand, a randomized version provides us the same
benefits as a random input would (see below).

Example 3.2 (Simplex algorithm) It has been known for some

time, that the simplex algorithm of linear programming performs
well on random inputs. But it is much less clear, how to turn this
observation into a well-performing randomized version of the
simplex method.

Quicksort

Given an array A= (a1, . . . , an), we want to sort it using
comparisons. The recursive algorithm

Quicksort(i, k, A).

sorts elements ai, . . . , aj if i≤ k. It uses a subroutine called

Partition(i, j, k, A), i< k, i≤ j≤ k.

This will take pivot element aj and rearrange ai, . . . , ak comparing
them with aj, putting all elements less than aj before it and all
elements greater after it.
Now Quicksort(i, k, A) works as follows. It does nothing if i≥ k, else
it chooses some element i≤ j≤ k and returns
(A′, j′) = Partition(i, j, k, A) where j′ is the new position of aj and A′

is the new order. Then it applies Quicksort(i, j′ − 1, A′) and
Quicksort(j′ + 1, k, A′).

Let the sorted order be z1 < z2 < · · ·< zn. If i< j then let

Zij = {zi, zi+1, . . . , zj}.

Let the random variable Cij be defined to be 1 if zi and zj will be
compared sometime during the sort, and 0 otherwise.
Every comparison happens during some partition, with the pivot
element. Let πij be the first (random) pivot element entering Zij. A
little thinking shows:

Lemma 4.1 We have Cij = 1 if and only if πij ∈ {zi, zj}. Also, for
every x ∈ Zij, we have

P
�

πij = x
	

=
1

j− i+ 1
.

It follows that P
�

Cij = 1
	

= ECij =
2

j−i+1 . The expected number of
comparisons is

∑

1≤i<j≤n

ECij =
∑

1≤i<j≤n

2
j− i+ 1

≤ 2(n− 1)
�

1
2
+

1
3
+ · · ·+

1
n

�

.

From analysis we know that the harmonic function
H(n) = 1+ 1

2 +
1
3 + · · ·+

1
n = ln n+O(1). Hence the average

complexity is ≤ 2n ln n= O(n log n).

Is this all we want to know?

No, an estimate on the expected value may still allow very large
fluctuations. By Markov’s inequality we know only that if N is the
number of comparisons then, say, P {N > 20n ln n }< 1/20. To
know more about the concentration of N around its expected value,
we may need to know more about, say, VarN. We do not have
exponential convergence like in Chernoff bound, but it is better
than polynomial (McDiarmid-Hayward 96).

Polynomial time

• An algorithm A(x) has time complexity t(n) if there is a constant
c such that for all inputs x, A(x), terminates in time c · t(|x|),
where |x| is the length of x.

• Some function function f(x) over strings x is in complexity class
DTIME(t(n)) if it has an algorithm of time complexity t(n)
computing it.

• The class P of polynomial-time computable functions is defined
as P=

⋃

k DTIME(nk).
• A set L of strings (also called a language) is in the same

complexity class as its indicator function 1L(x).

Example 5.1

• The usual algorithm of multiplying two integers has polynomial
time complexity.

• The school algorithm of deciding whether an integer is
composite (has a nontrivial divisor) is not polynomial.

Witnesses

The set balancing problem is an example from an important class.
We are given some input data (in this case, the family of sets
A= {A1, . . . , An}), a number t, and a requirement for a certain set
B, namely maxi ||Ai ∩ B| − |Ai \ B|| ≤ t. We are looking for a set B
satisfying this requirement. When such a set B is found, it can be
called a witness, or certificate showing for that the requirement can
be satisfied.

Matrix product testing

Here is another example.
• Given n× n integer matrices A,B, there is no known algorithm

to compute AB in O(n2) algebraic operations. Even if we are
given a matrix C, there is no known deterministic algorithm to
test the equality AB= C.

• Idea: AB= C if and only if for all vectors x we have A(Bx) = Cx.
This can be tested in time O(n2). So if ABx 6= C then x is a
witness for the statement AB 6= C.
The following algorithm will find a witness, if one exists, with
probability ≥ 1/2. Repeating it k times will reduce the
probability of not finding a witness to 2−k.

Simple randomized algorithm Choose a random vector x with
0-1 entries.
Compute c= Cx, b= Bx, c′ = Ab. If c= c′, accept, else reject.

This algorithm takes O(n2) operations.
If C = AB then it always accepts. Else, it accepts with probability
≤ 1/2. Indeed, let D= C−AB, and assume dij 6= 0. We have

(Dx)i = dijxj +
∑

k 6=j

dikxk.

Let xk for k 6= j be chosen arbitrarily, this fixes the sum term on the
right-hand side. Now xj is still chosen independently and uniformly
over {0,1}, and one of the two choices makes the result 6= 0.

Polynomial identity

Given two functions f(x), g(x), is it true that f(x) = g(x) for all input
values x?
The functions may be given by a formula, or by a complicated
program.

Example 5.2 The matrix product checking example of above
can be seen as checking

A(Bx) = Cx

for all x.

As in the example, if the identity does not hold we may hope that
there will be many witnesses x.

An example where mathematics can be used is when f(x), g(x) are
polynomials. The following fact is well-known from elementary
algebra.

Proposition 5.3 A degree d polynomial of one variable has at

most d roots.

So, if we find P(r) = 0 on a random r, this can only happen if r hits
one of the d roots.

But, what is this good for? Checking whether a given polynomial is
0 is trivial: just check all coefficients. In the interesting
applications, the polynomial has many variables, and is given only
by computing instructions.

Examples 5.4

1 The polynomial is given by a formula or aritmetical circuit,
using multiplications and additions, like
(x1 + 2x2)(x2 − 3x3)− (x2 + 5x1 − 3)(4x3 − x2

2 − 2x1).

2 It is given as det(A1x1 + · · ·+Akxk +Ak+1) where the Ai are
n× n integer matrices. Has potentially exponential size in n,
but for each fixed value of (x1, . . . , xk) there is an efficient
algorithm of computing the determinant: Gaussian
elimination. (The algorithm uses divisions, too, so its
polynomial complexity is not trivial—as rounding of fractions
is not allowed.)

We need to estimate the probability of hitting a root in a
multivariate polynomial.

Lemma 5.5 (Schwartz) Let p(x1, . . . , xm) be a nonzero

polynomial, with each variable having degree at most d. If
r1, . . . , rm are selected randomly from {1, . . . , f} then the probability
that p(r1, . . . , rm) = 0 is at most md/f .

Proof. Induction on m. Let p(x1, . . . , xm) = p0 + x1p1 + · · ·+ xd
1pd,

where at least one of the pi, say pj, is not 0. Let
q(x1) = p(x1, r2, . . . , rm). Two cases:

¨

pj(r2, . . . , rm) = 0 with probability ≤ (m− 1)d/f ,
q(r1) = 0 with probability ≤ d/f .

Total is ≤md/f .

Matchings in graphs

Let G= (V, G) be a bipartite graph, with the edges between sets A
and B, A= {a1, . . . , an}, B= {b1, . . . , bn}. Assign to each edge aibj a
variable xij. Matrix M:

mij =

¨

xij if aibj ∈ E(G),
0 otherwise.

Theorem 5.6 (König) There is a complete matching in G if and

only if det(M) is not identically 0.

Proof. Consider a term in the expansion of the determinant:

±m1π(1)m2π(2) · · ·mnπ(n),

where π is a permutation of the numbers 1, . . . , n. For this not to be
0, we need that ai and bπ(i) be connected for all i; in other words,
that {a1bπ(1), . . . , anbπ(n)} be a complete matching in G. In this way,
if there is no complete matching in G then the determinant is
identically 0. If there are complete matchings in G then to each one
of them a nonzero expansion term corresponds.
These terms do not cancel each other (any two of these monomials
contain at least two different variables), the determinant is not
identically 0.

We found a polynomial-time randomized algorithm for the
matching problem in bipartite graphs.
What’s the point? We mentioned it before that there are also a
polynomial-time deterministic algorithms for this problem (for
example via maximum flows). But there is a theoretical advantage,
since determinant-computation can be parallelized: performed on
a parallel machine in logc n steps.

Definition 5.7 A language L is in R(t(n)) if there is a randomized

algorithm A working in time O(t(n)) such that for all x ∈ Σ∗

• if x 6∈ L then A(x) rejects.
• if x ∈ L then A(x) accepts with probability ≥ 1/2.

Let RP=
⋃

k R(nk).

If we want 1− 2−k in place of 1/2, we can repeat k times; this does
not change the definition of RP.

Example? We have not seen an interesting example of an RP
language yet, since matrix product testing is also in P.

Such an example will be prime testing, though now it is also known
that primes are in P.

Contrast RP with NP

L ∈ RP if there is a k and a (deterministic) algorithm A(x, r) running
in time nk with x ∈ Σn, r ∈ {0, 1}n

k
such that

• if x 6∈ L then A(x, r) rejects for all r.
• if x ∈ L then A(x, r) accepts for at least half of all values of r.

On the other hand L ∈ NP if there is a k and a (deterministic)
algorithm A(x, r) running in time nk with x ∈ Σn, r ∈ {0,1}n

k
such

that
• if x 6∈ L then A(x, r) rejects for all r.
• if x ∈ L then A(x, r) accepts for at least one value of r.

The algorithm A(x, r) in the NP definition is called the verifier
algorithm, the values of r for which it accepts are called witnesses,
or certificates. Thus, RP ⊆ NP.

An NP language L is also in RP if it has a verifier algorithm with the
property that if x has a witness then it has many (at least half of all
potential ones).

Example 5.8 The word has is important in the above remark.

The language COMPOSITE is in NP, since a verifier predicate is

B(x, r)⇔ r|x ∧ r 6∈ {1, x}.

For this verifier, however, it is not true that if there is one witness
there are many. For example, if x = p2 for a prime p then p is the
only witness.
Nevertheless, COMPOSITE ∈ RP. But this is shown with the help of
a randomized prime/compositeness test algorithm (see later), that
is with a different verifier B′(x, r) for the same language
COMPOSITE.

Two-sided error

It is actually more natural to consider a randomized complexity
class with two-sided error.

Definition 5.9 A language L is in BP(t(n)) if there is a
randomized polynomial-time algorithm A working within time
O(t(n)) such that for all x ∈ Σ∗

• if x ∈ L then A(x) rejects with probability < 1/3.
• if x 6∈ L then A(x) accepts with probability < 1/3.

Let BPP=
⋃

k BP(nk).

Example? I do not recall a simple natural example of BPP.

But since RP is not closed under complementation, if L1, L2 ∈ RP
then about L1 \ L2 we can only say that it is in BPP.

Theorem 5.10 The definition of BPP does not change if we

replace 1/3 with 1/2− ε for a fixed ε > 0, and also not if we
replace it with 2−nk

for any k> 0.

To get from error probability 1/2− ε to error probability 2−nk
, use

repetition const · nk times, majority voting and the Chernoff bound.

Why not 1/2? The definition of BPP does not work with 1/2 in

place of 1/3: in that case we get a (probably) much larger class
closely related to #P (see later). But we could use any 1/2− ε for
some constant ε.

Randomized classes

What questions to ask about a randomized algorithm? Clearly, with
randomization we give up (almost always) some certainty, but
what sort?

1 If an algorithm always solves the problem exactly (like
Quicksort), it be called a Las Vegas algorithm (for no
particular reason) as opposed to Monte-Carlo algorithm for
the case when the result may be wrong. In the Las Vegas case,
we want to know, how fast (in various statistical measures)?

2 Otherwise we will generally assume a fixed time bound and
are interested in the probability of correct solution, or other
statistical goodness of the solution.

No error

Let Σ be a finite alphabet. We will consider languages, sets L ⊆ Σ∗

of strings with letters in Σ.

Definition 5.11 For a language L ⊆ Σ∗ we say that L ∈ ZP(t(n))
if there is a Las Vegas algorithm A(x) working in time t(n) deciding
x ∈ L in expected time O(t(n)). Let ZPP=

⋃

k ZP(nk).

Example? It is not easy to show a nontrivial example of a ZPP
language. Adleman and Huang have shown that prime testing is in
ZPP, but now it is also known that it is in P.

Characterizing Las Vegas

The proof of the following theorem is a good opportunity to
practice our notions.

Theorem 5.12 The following properties are equivalent for a
language L:

i L ∈ ZPP;

ii L ∈ RP∩ co-RP;

iii There is a randomized polynomial-time algorithm that
accepts or rejects, correctly, or returns the answer “I give up”,
with probability ≤ 2/3.

Proof. It is obvious that (i) implies (ii) (Markov inequality).
To see that (ii) implies (iii), submit x to a randomized algorithm
that accepts L in polynomial time and also to one that accepts
Σ∗ \ L in polynomial time. If they give opposite answers then the
answer of the first machine is correct. If they give identical answers
then we “give up”. In this case, one of them made an error and this
has probability at most 1/2< 2/3.
To see that (iii) implies (i) modify the algorithm A given in (iii) in
such a way that instead of the answer “I give up”, it restarts. If on
input x, the number of steps of A(x) is τ and the probability of
giving it up is p then on this same input, the expected number of
steps of the modified machine is

∞
∑

t=1

pt−1(1− p)tτ=
τ

1− p
≤ 3τ.

Corollary 5.13 If a problem has a Las Vegas algorithm A(x) with

running time T(x) with ET(x)≤ p(n) for a polynomial p(n),
(n= |x|), then it has another one, A′(x), with a constant ρ < 1 and
random running time U(x), with the property

P
§

U(x)
p(n)

> t
ª

< ρt.

In other words, U(x) has very small probability of being large; much
better than what comes from the Markov inequality for T. (Then,
of course, not just EU is polynomial but also for example EU2.)

Relation to P/poly

A computational model similar to P is the set of languages
recognizable by a polynomial-size Boolean circuit. It can also be
characterized in terms of Turing machines.

Definition 5.14 A language L is in Time(t(n))/f(n) if there is

Turing machine M such that on inputs x, a of size n, f(n), M(x, a)
halts in time O(t(n)), and for each n there is a fixed string an such
that x ∈ L iff M(x, an) accepts.
We define P/poly =

⋃

k,l Time(nk)/nl =
⋃

k Time(nk)/nk.

The string an is the advice string for n; it is the same for all inputs x
of length n.

Theorem 5.15 A language is in P/poly if and only if it can be

computed by a logic circuit of polynomial size.

The idea of the proof is that for each n the advice string an
describes the logic circuit that decides x ∈ L for each n. (The strict
proof needs to elaborate the idea in both directions.)

The more interesting theorem is:

Theorem 5.16 (Adleman) BPP ⊆ P/poly.

Proof. Let L ∈ BPP, |x| ∈ Σn, with |Σ|> 1. A simple idea: the good
coin tosses deciding x ∈ L could play the role of the advice string
an. But this is too simple, since the good coin tosses may be
different for each x. Let M be a probabilistic Turing machine
working in time nk that decides L with error probability < |Σ|−n.
Write M(x) as M′(x, r), where M′ is a deterministic Turing machine
with input x ∈ Σn and auxiliary input r ∈ {0, 1}n

k
which represents

the coin tosses. Let

E(x) = { r : M(x, r) decides incorrectly whether x ∈ L },

then P(E(x))< |Σ|−n. Let En =
⋃

x∈Σn E(x), then P(En)< 1,

therefore there is a string an ∈ {0,1}n
k
\ En. Then M(x, an) decides

x ∈ L always correctly, so an can be taken as the advice string.

Adleman’s theorem shows that the class P/poly encompasses all
functions computable in polynomial time and using randomization.
Can we get even more by using both polynomial circuits and
randomization?
The answer is, no. There is a natural definition of randomized logic
circuits, namely circuits with some extra inputs for random bits.
The reasoning of Adleman’s theorem generalizes to this case,
showing anything that can be computed by a polynomial-size
randomized circuit can be also computed by a (somewhat larger,
but still polynomial-size) circuit without randomization.

Games

A zero-sum two-person game is played between players R and C
(stands for “row and column” and defined by an m× n matrix A.
We say that if player R chooses a pure strategy i ∈ {1, . . . , m} and
player C chooses pure strategy j ∈ {1, . . . , n} then there is payoff:
player C pays amount aij to player R.

Example 6.1 m= n= 2, pure strategies {1, 2} are called “attack

left”, “attack right” for player R and “defend left”, “defend right” for
player C. The matrix is

A=

�

−1 1
1 −1

�

.

Mixed strategy: a probability distribution over pure strategies.
p= (p1, . . . , pm) for player R and q= (q1, . . . , qm) for player C.
Expected payoff:

∑

ij

aijpiqj = pTAq.

If player R knows the mixed strategy q of player C, he will want to
achieve

max
p

∑

i

pi

∑

j

aijqj =max
i

∑

j

aijqj

since the maximum is always achieved by some pure strategy.

Player C wants to minimize this and can indeed achieve

min
q

max
i

∑

j

aijqj.

This can be rewritten as a linear program:

minimize t
subject to t≥

∑

j aijqj, i= 1, . . . , m
qj ≥ 0, j= 1, . . . , n

∑

j qj = 1.

It is straightforward to check that (as for any real function of p,q):

max
p

min
q

pTAq≤min
q

max
p

pTAq.

But in our case, we will have equality!

The theorem below directly follows from the duality theorem of
linear programming:

Theorem 6.2 (von Neumann) We have

min
q

max
i

∑

j

aijqj =min
q

max
p

∑

j

aijpiqj

=max
p

min
q

∑

j

aijpiqj =max
p

min
j

∑

j

aijpi.

Geometrically, this says that as a function of the mixed strategies
p,q, the function pTAq has a global saddle point, which is the
maximum (in p) of minima (in q) as well as the minimum of
maxima (minimization and maximization is both times by the same
variables).

For the matrix A=
�

−1 2
1 −3

�

, writing pT = (p, 1− p): the min-max is

min
q

max
i

∑

j

aijqj =min
q

max{−q+ 2(1− q), q− 3(1− q)}

=min
q

max{2− 3q,−3+ 4q}.

The height of the line 2− 3q runs from 2 to −1, and for the line
−3+ 4q from −3 to 1. Let q∗ = 5/7 be the point where they meet.
For q< q∗, the maximum is for i= 1 and decreasing; for q> q∗ it is
for i= 2 and increasing. So the min-max is 2− 3q∗ = −1/7.
The value maxp min{−p+ (1− p), 2p− 3(1− p)} will be the same
(compute it!).

max{2− 3q,−3+ 4q}

Application to algorithms

Yao’s theorem will connect the average time of some deterministic
algorithms (on varying inputs) with that of a randomized
algorithms (on fixed input). Consider a finite number m of possible
inputs xi. and a finite number n of possible computations
(algorithms) Cj. Let the row player R choose an input xi, and the
column player C choose an algorithm Cj. The payoff is some aspect

aij = L(Cj(xi))

of the computation Cj(xi). For definiteness, let it be the
computation time.
A distribution p on inputs is a random input. A distribution q on
algorithms a randomized algorithm.

Let us apply the minimax theorem:

Theorem 6.3 (Yao) We have

max
p

min
j

∑

i

L(Cj(xi))pi =min
q

max
i

∑

j

L(Cj(xi))qj.

Thus the time we get by choosing an input distribution that
maximizes the smallest possible expected time of all (deterministic)
algorithms (in our collection), is the same as the by choosing the
randomized algorithm that minimizes the worst expected time on
all possible (deterministic) inputs.
In practice, frequently only the easy, weak form of the theorem is
used, namely that for each p,q we have

min
j

∑

i

L(Cj(xi))pi ≤max
i

∑

j

L(Cj(xi))qj.

Game trees or tree formulas

An arbitrary Boolean function f(x1, . . . , xn) can be computed by a
formula using only NOR operations. Such a formula, can be
represented as a tree:

x1 x2

x3

x4 x5 x6 x7

x8

x9

Figure: A game tree

• Evaluating the expression can be seen as finding the value of a
two-person game of strategy. Each node is a possible state of
the game. Player A has the move at the top, player B has the
move at the children of the top, and so on.
A player wins at a node if the other player loses at all of its
children. f(x1, . . . , xn) = 1 if player A wins at the top.

• We are interested now in the query complexity: How many
inputs need to be evaluated to compute the result? For
simplicity, assume that the formula is a full binary tree, so
n= 2k for a height k.

• It is easy to see that each correct algorithm will have to
evaluate all variables in the worst case. But a randomized
algorithm may do better.

A randomized algorithm

A recursive randomized algorithm A(h) for binary trees of height h:
• Choose a child of the root uniformly at random, and evaluate it

according to A(h− 1).
• If it returns 1 then return 0; otherwise evaluate also the other

child.

Let α0(h) be the expected number of probes if the value is 0, and
α1(h) if it is 1.

α1(h)≤ 2α0(h− 1),

α0(h)≤ α1(h− 1) +α0(h− 1)/2.

Hence α0(h)≤ 2α0(h− 2) +α0(h− 1)/2. This is a linear recursion;
standard methods show that its solutions grow like ch where
c= 1+

p
33

4 is the positive solution of the equation

x2 = 2+ x/2.

Is this the best one can do?
Yes, but we will only (half-)prove a weaker lower bound here.

(A) We want a lower bound on the expected value on arbitrary
randomized algorithms, on the worst inputs.

(B) Instead we will find some (clever) input distribution and
lowerbound the expected value of all deterministic
algorithms on it.

• The easy part of Yao’s Theorem says that solving (B) gives a
lower bound for (A), too. The hard part says that if we are
really clever we get the best possible lower bound.

• We only need the easy part now, but still need to be clever!

For a non-optimal lower bound, we choose a distribution P in
which each xi = 1 with probability p, independently (the optimal
distribution is not independent).
Let p= 1

2(3−
p

5), then it satisfies

(1− p)2 = p,

and P
�

Yj = 1
	

= p also for each internal node Yj of the NOR tree.

We need to find a lower bound on all deterministic evaluation
algorithms. This is still too many algorithms.

Definition 6.4 Call an algorithm depth-first if for each subtree

T, if after evaluating some variables in it, the value YT is not found,
then the next evaluated variable is also taken from T.

The following lemma helps simplifying the situation.

Lemma 6.5 The smallest expected value over distribution P will

(also) be achieved by a depth-first algorithm.

For this lemma, it is important that the tree is the full binary tree.
Still, the proof is not easy, we will skip it here.

Let us give a lower bound using the lemma. If W(k) is the expected
value for a tree of height k, then

W(k) =W(k− 1) + (1− p)W(k− 1) = (2− p)W(k− 1)

= (2− p)k = 2k log(2−p) = nβ

where β = log(2− p) = log
�

p
5+1
2

�

< log
p

3= α.
So our lower bound does not meet the upper bound. It can be
matched by a more clever, non-independent distribution.

Packet routing

• Given a network: a directed graph G= (V, E) that is strongly
connected. Edges are called links.

• From each point i a message vi needs to get to its destination
d(i). For simplicity, assume that

i 7→ d(i)

is a permutation.
• Discrete timesteps. In each step, each link can forward only one

message, the others are queued up in the queue of that link.
• The issue: the congestion delays caused by this.
• For packet i let Li be the total time to reach its destination. We

are interested in minimizing L=maxi Li.

• Trivial lower bound in the worst case, L≥ the diameter of G.
How much worse can congestion make it?

• We want routing algorithm, that is oblivious: the path ρi it
chooses from source i to destination d(i) does not depend on
d(j) for j 6= i.

Theorem 7.1 (Nontrivial) On a network of size N in which

each vertex has outdegre ≤ d, for every deterministic oblivious
algorithm there is a choice of destinations giving L= Ω(

p
N/d).

When the diameter of G is much smaller than
p

N (not the case of a
2-dimensional grid) then we hope that a randomized algorithm
improves on this.
Such an example will now be examined.

• The hypercube network G= (V, E) is popular for connecting
many parallel processors.
V = the set of all N = 2n binary strings of length. An edge
connects two binary strings (in both directions) if they differ
only in one bit.

• Degree of nodes: n. Diameter: n.
• There are examples of graphs with constant degree and

logarithmic diameter (expanders), but the hypercube is easy to
analyze.

Example 7.2 (A simple oblivious algorithm)

• Bit fixing: keep changing the first bit in which you still differ
from the destination.

• A simple adversarial permutation causing this to take Ω(
p

N/n)
steps: flip the bits around the middle of the string.

Wild idea

Two phases.

1 Send every packet vi to a random intermediate destination
σ(i). (The map i→ σ(i) need not be one-to-one.)

2 Send each vi from σ(i) to d(i).

3 Use the bit-fixing algorithm for each phase.

Bit fixing has a convenient property: if two routes depart from each
other, they will never meet again.

Theorem 7.3

a This algorithm achieves EL(i)≤ 2n for each i (thus, delay n).

b It also gives P {L> 14n } ≤ 1/N.

Lemma 7.4 Let packet v follow a sequence of edges

ρ = (e1, . . . , ek). Let S be the set of packets other than v passing
through at least one of the ej. Then the delay of v on ρ is at most
|S|.

Proof. Let ρ = (a0, a1, . . . , ak), ei = (ai−1, ai). Draw a 2 dimensional
grid (see figure). For each packet, v, if it dwells in point ai at time t,
we show it at coordinate (i, t− i). So, as long as it is on ρ in each
step it either moves right (when not delayed) or moves up (when
delayed). Now each horizontal line below the top one ends in a
packet leaving ρ.

1 2 3

4

5

6

7

Figure: The structure of delays along a route. Going right: proceeding,
going up: waiting. Messages are numbered. They can enter and leave the
route, but not return (property of bit-fixing).

• ρi = the path from i to σ(i).
E |ρi|= n/2 (the expected number of bits in which i and σ(i)
differ).

• Let Hij = 1 if ρi and ρj share an edge.
T(e) = the number of paths crossing edge e.

• By symmetry ET(e) does not depend on e, let us estimate it via
the sum:

∑

e

T(e) =
∑

i

|ρi|,

NnET(e) =
∑

e′
ET(e′) =

∑

i

E |ρi|= Nn/2,

ET(e) = 1/2.

Let T′(e)≤ T(e) the number of paths ρ2, . . . ,ρN crossing edge e.
Since the paths are chosen independently, for any value r of ρ1:

E{T′(e) | ρ1 = r}= ET′(e)≤ ET(e) = 1/2.

By the lemma, the total delay of, say, v1 is at most
∑

j6=1

H1j <
∑

e∈ρ1

T′(e),

E{
∑

j 6=1

H1j | ρ1 = r}<
∑

e∈r

ET′(e)≤
∑

e∈r

ET(e) = |r|/2≤ n/2.

This bounds the expected delay on 1→ σ(1) by n/2. We saw that
the expected path length, |ρ1|, is n/2, so the total expected time of
1→ σ(1) is ≤ n. It follows that EL(1)≤ 2n, proving part a of the
theorem.

For the proof of part b notice that H1j, j= 2, . . . , N are independent
random variables in [0,1], and

E
∑

j6=1

H1j ≤
∑

e

ET′(e)≤ n/2.

A Chernoff bound calculation (see the book) gives that

P

(

∑

j6=1

H1j > 14n

)

< 1/N2,

then it follows by the union bound that

P

(

max
i

∑

j6=i

Hij > 14n

)

< 1/N.

Local search

(Following hints by Shanghua Teng.)
Let G= (V, E) be an undirected graph, and f : V→ R. Function f
has a local minimum at some v ∈ V if f(v)≤ f(u) for all neighbors u
of v in G. We are looking for a local minimum, while trying to
minimize is the number of queries. (Seems easier than global
minimum.) Let us add the condition f(v)≤ f(u0) for some fixed
starting point u0.
Consider the special case where V = I× J×K is a lattice slab, where
I, J, K are of the form, I = {i0, i0 + 1, . . . , i1} for integers i0 ≤ i1. Two
points (x1, y1, z1), (x2, y2, z2) in V are neighbors if

|x1 − x2|+ |y1 − y2|+ |z1 − z2| ≤ 1.

In other words, each point can only have neighbors along the
coordinate axes at a distance 1.
Let n=max{|I|, |J|, |K|}.

Theorem 8.1 There is an algorithm to find the minimum in time

O(n2).

Proof. Without loss of of generality, assume n= |I|. Let
m= b(i0 + i1)/2c. I1 = {i0, . . . , m}, I2 = {m+ 1, . . . , i1},
U = {m} × J×K. Then V = V1 ∪ V2 where Vj = Ij × J×K. Without
loss of generality, assume u0 ∈ V1.
Let f(u) =minx∈U f(x), for some u ∈ U (not just local minimum).
Let u′ ∈ V2 be the right neighbor of u along dimension 1. Cases:
• f(u)> f(u0). Search recursively in V1.
• f(u)≤ f(u0). Cases:
• f(u)> f(u′). Search recursively in V2 with u′ in the role of u0.
• f(u′)≥ f(u). Search recursively in V1 with u in the role of u0.

In three recursion steps, n→ n/2, using < 3n2 + 6 queries. Hence
termination in O(n2) queries.

Theorem 8.2 No deterministic algorithm can do better than

O(n2) in the worst case.

Here is an adversary to show it, for the cube V where
I = J = K = {1, . . . , n}. For a set S ⊆ V let

∂ (S)

be the outside boundary of S in G, and dG(x, y) the distance
function in G.
The adversary will decide some answers in advance in such a way
that no decided point forms a local minimum, and the undecided
points form a connected component H of G. When an undecided
point u will be asked this may break up H into several (at most 4)
components Hi. If not, she answers with f(u) smaller than in any
neighbors. If so, let H1 be the largest of these components, and
∆= ∂ (

⋃

i>1 Hi), m=minx∈∆\{u} f(x). Let D be the maximum
diameter of Hi, i> 1.

The adversary answers f(u) =m− 1−D, and for each x ∈ Hi, i> 1
decides

f(x) = f(u) + dHi
(x, u).

This creates no local minimum: indeed, the values descend in Hi
towards u, and u itself has an undecided neighbor in H1. The lower
bound rests on the following lemma.

Lemma 8.3 There is a time when 1
6 |V| ≤ |H| ≤

5
6 |V|.

Proof. Let us look at the last step when |H|> 5
6 |V|. Then after this

step we have

5|H1| ≥ 4|H1|+ 1≥ |H|>
5
6
|V|,

|H1|>
1
6
|V|.

Lemma 8.4 If for H ⊆ V we have 1
6 |V| ≤ |H| ≤

5
6 |V| then

∂ (H) = Ω(n2).

Proof. Exercise, see also Example 12.18.

The last two lemmas imply that that there is a time in the process
when ∂ (H) = Ω(n2). Since all points of ∂ (H) have been queried,
the number of queries is indeed Ω(n2).
The result can be generalized to dimension d: there is a
deterministic algorithm with O(nd−1) queries, and each
deterministic algorithm requires Ω(nd−1) queries.

Randomized local search

The following result is completely independent of the structure of
the graph. Let |N|= |V|, and let ∆ be the maximum degree.

Theorem 8.5 (Aldous 83) There is a randomized algorithm

finding a local minimum in random time T with ET = O(
p

N∆).
Moreover, we have

P
�

T/
p

N∆> k+ 1
	

< e−k.

• In particular, for the d-cube the expected time is O(
p

dnd/2).
• Special case: n= 2, so we are searching on the vertices of a

d-dimensional cube (Hamming cube). The upper bound givesp
d2d/2.

• The adversary argument for the deterministic algorithm gives a
lower bound for the Hamming cube. 2d(1−ε) (via a lemma
similar to 8.4).

• The bound of the theorem is optimal for randomized
algorithms. The lower bound proof for the randomized case is
difficult; for the Hamming cube, see Aldous 83.

The algorithm:

1 Choose a set S of points randomly, let s= |S|. Find
f(u) =minx∈S f(x).

2 Follow a sequence u= u0, u1, . . . , uτ where ui+1 is a neighbor
of ui with f(ui+1)< f(ui), as long as you can. When you cannot
continue, you found a local minimum uτ. Total number of
queries σ ≤ s+∆τ.

Let ρ be the rank of f(u) in a sorted { f(x) : v ∈ V }. For any k> 0,

P {σ > s+ k∆N/s } ≤ P {τ > kN/s } ≤ P {ρ > kN/s }

≤
�

N − kN/s
N

�s

=
�

1−
k
s

�s

≤ e−k.

Choose s=
p
∆N, then P

�

σ > (k+ 1)
p
∆N

	

< e−k. So the
expected number of queries is O(

p
∆N), and the distribution has an

exponentially bounded tail.

• A popular optimization method, simulated annealing is similar:
search for the optimum using random steps, where the size of
the steps used is gradually decreased.

• Our example is extreme.
• First stage: random steps with no size constraint.
• Second stage: deterministic steps of minimum size.

The precise formulation of simulated annealing uses Markov
processes (see later).

Fingerprinting

Recall the equality check AB= C for matrices by using a random
vector x. Another view of the same idea: imagine that matrices A,B
are held in one location (see by player Alice) and the matrix C
elsewhere (say by player Bob). Task: check the equality AB= C
with a minimal amount of communication. Randomized algorithm:
Bob chooses a random x, sends the fingerprint Cx (along with x
itself) to Alice, who then checks A(Bx) = Cx. This communicates
only O(n) bits instead of O(n2).
(In the original application we counted the operations performed:
O(n2) in place of n3.)

Equality checking

Alice and Bob hold bit strings a and b of length n, and want to
check a= b without having to to communicate all of a.
• There is a theorem showing that any deterministic protocol

needs at least n bits communication in the worst case (see the
Lovász notes).

• Randomized algorithm: treat a,b as numbers. Choose a
random prime number p from some set {p1, . . . , pk} of primes
and send p and a mod p. Of course, Bob checks whether a
mod p= b mod p. Error only a 6= b but p | b− a. If a,b have n
bits, then |b− a| ≤ 2n has at most n prime divisors, the
probability of error is bounded by n/k. For error ε choose
k= n/ε.

We need to choose from among at least k primes. Let π(n) be the
number of primes up to n. The theorem below follows from the
“great” prime number theorem, but has a much simpler proof (see
the Appendix of the Lovász notes).

Theorem 9.1 (Chebyshev) For large n we have

π(n)≥ 0.75n/ ln n.

Algorithm: choose p≤ 1.5k ln k. Apply a prime test. If p is not a
prime, repeat. Else send p and the fingerprint a mod p (< 2 log n
bits, instead of 2n).
Bonus: From the bit string a= a1a2 · · ·an, the fingerprint a mod p
can be computed with very little cost, using the following loop:
s← 0.
for i= 1 to n:

s← 2s+ ai mod p.

Hashing

Given: universe U, and a typically much smaller subset S ⊆ U, say
|S|<m. We want an easily computable function
hS : U→ {0, . . . , m− 1} in such a way that h is (nearly) 1-1 on S.
The set N will be called the set of buckets, or bins.

Example 10.1 (Application) Decide questions of the form

x ∈ S fast, or create tables for functions f defined on S.

We may want some additional features: say, easy modification of hS
in case some elements are added to S or deleted.
In a data structures course you have learned several methods, for
example via self-balancing trees. The method based on “hashing”
wins in most applications by its irresistible simplicity.

Look at functions h : U→ B independently of S. The event
h(x) = h(y) for x, y ∈ S is called a collision. We say then that h is a
“hash function” for S if the number of collisions is small on S. In
this case there will be collision resolution methods to create an
efficient hS. We say h is perfect for S if it has no collisions on S.
Each function h behaves very badly on some sets S.
Assume m= |B|, n= |U|, and |S| ≤ s for all S.

Theorem 10.2 If n≥ s ·m then for every function h : U→ B
there is a set S mapped by h into a single bucket.

Proof. We have
∑

y∈B |f
−1(y)|= n,

1
m

∑

y∈B

|f−1(y)|=
n
m
≥ s,

so there is a y0 ∈ B with |f−1(y0)| ≥ s. Let S= f−1(y0).

Random hash functions

For some finite set H, we can view the function h : U ×H→ B as a
randomized hash function, or a family of hash functions in the
sense that for each fixed r ∈ H (which can be chosen randomly) the
function h(·, r) maps from U to B.

Definition 10.3 The family h(·, ·) is 2-universal if for all

x 6= y ∈ U and a random R we have

P {h(x, R) = h(y, R) } ≤
1
|B|

. (10.1)

Equality here if h(x, R) and h(y, R) are independent for all pairs
x 6= y.

Example 10.4 A universal hash function in which in the
equation (10.1) we don’t always have equality: let U = B,
h(x, r) = x for all r. Then there are no collisions at all, so their
probability is 0.
Of course, in this example hashing is unnecessary.

Example 10.5 (Complete independence) H = BU, and

h1(x, (r1, . . . , r|U|)) = rx. Here, all the values h(x, r) for different x
are independent.
This is useless, we want r to be small enough for storage and
computation.

An example universal hash function

We assume that our table size m= |B| is a prime number.
For an integer “dimension” d> 0 assume n≤md, and break up the
key x into a sequence

x = (x1, x2, . . . , xd), 0≤ xi <m.

(If x is a bit string, break it into segments of size log m.) Fix
random coefficients 0≤ ri <m, i= 1, . . . , d: the number of possible
random inputs is |H|=md.

h(x, r) = r1x1 + · · ·+ rdxd mod m.

We use the notation a≡ b (mod m) for a mod m= b mod m. This is
the same as requiring m|(a− b).

Fact 10.6 Let p be a prime, d 6≡ 0 (mod p) and ad≡ bd (mod p)
then a≡ b (mod p).

Indeed, by the fundamental theorem of arithmetic, if a prime
number divides a product, it must divide one of its factors. Here, p
divides (a− b)d. It does not divide d, so it divides a− b.

Let us show that h(x, r) is universal: in fact, the values h(x, R) for
different x are pairwise independent.
Assume (x1, . . . , xd) 6= (y1, . . . , yd). We show that
P {h(x, r) = h(y, r) } ≤ 1/m (actually, = 1/m). There is an i with
xi 6= yi, we might as well assume x1 6= y1. If h(x, r) = h(y, r) then

0≡ h(x, r)− h(y, r)≡ r1(x1 − y1) + A (mod m),

A≡ r1(y1 − x1) (mod m),

where A only depends on the random numbers r2, . . . , rd. No matter
how we fix r2, . . . , rd, there are m equally likely ways to choose r1.
According to the Fact above, only one of these choices gives
r1(y1 − x1)≡ A (mod m), so the probability of this happening
(conditionally on fixing r2, . . . , rd) is 1/m. Since this probability is
the same under all conditions, it is equal to 1/m.

Counting problems: the class # P

Definition 11.1 Function f is in #P if it can be written as |W(x)|
where W(x) is the set of witnesses for a predicate V(x, y)
computable in time polynomial in |x|:

W(x) = {y : V(x, y) = 1 }.

Note that W(x) (if nonempty) consists of elements y of length
≤ p(|x|) for some polynomial.

• Some #P-problems are all obviously NP-hard: the ones coming
from an NP-complete V(x, y).

• There are reductions among these problems, and there are
#P-complete ones, for example the number of bipartite
matchings (even though this one is not coming from an
NP-complete V(x, y)).

Repeated tests

How to aproximate a #P function?
• If y is from the range R(x) = Σp(n), for n= |x|, then repeated

independent tests will work only if the probability of success
f(x)
|R(x)| is not tiny.

• More formally: let X1, . . . , XN be i.i.d. random variables,
VarXi = σ2, EXi = µ. By Chebyshev’s inequality

P
¨

|
∑

i

Xi/N −µ|> t

«

≤ (σ/t)2N−1, so

P
¨

|
∑

i

Xi/N −µ|> µ/2

«

≤ (2σ/µ)2N−1.

Converges too slowly to 0 if σ/µ is large.

Example 11.2 Xi = 1 with probability p and 0 otherwise. Then

σ2 = p(1− p), our bound is 4(1−p)
pN , and we need N > 1

p if p is small.
Estimating an exponentially small probability this way would
require an exponentially large number of samples.

A general idea for approximate counting

Find sets Ui = Ui(x) ⊆ R(x), i= 1,2, . . . , m where
• We know |U1(x)|.
• Um(x) = {y : V(x, y) = 1 }.
• The quotients |Ui|

|Ui−1|
are approximable by sampling. Say if

Ui−1 ∩Ui = ; then sampling from Ui−1 ∪Ui helps estimate
|Ui|

|Ui|+|Ui−1|
and hence |Ui|

|Ui−1|
.

• To sample from Ui−1 ∪Ui, sometimes the Markov chain
Monte-Carlo method helps, see below.

Example 11.3 (see also under the Metropolis algorithm, later)

Uk(G) is the set of matchings µ of size k of a bipartite graph G (see
the book). Step of a random walk: for µ ∈ Uk−1 ∪Uk, take a
random edge e and:
• If µ ∈ Uk, delete e from µ if possible.
• If µ ∈ Uk−1, and at least one end of e is unmatched, add e to µ.

If another edge intersects, delete it from µ.

What can we hope from a randomized algorithm?

Definition 11.4 An algorithm A(x) is a FPRAS (fully polynomial

randomized approximation scheme) for computing f(x) if it is
polynomial in |x| and 1/ε, and

P { |A(x)− f(x)|> εf(x) } ≤ 1/3.

This definition combines randomization and approximation.
We will return to the question of changing 1/3 to arbitrary constant
δ < 1/2.

FPRAS for DNF satisfaction

Try to find the number of satisfying assignments of a disjunctive
normal form

f(x) = C1(x)∨ · · · ∨ Cm(x),

where x= (x1, . . . , xn). Here each Ci(x) is a conjunction of some
variables xk or their negations. Let Si = {x : Ci(x) = 1) }. Then it is
easy to compute |Si|. For example, if Ci(x) = x1 ∧¬x3 ∧¬x4 then
|Si|= 2n−3.
We want to compute |S| where S= S1∪ · · ·∪Sm. This would be easy
if the Si were disjoint, but they are not. But we know something
about the intersections. For each x we can compute the cover
multiplicity c(x) = |{ i : x ∈ Si }|. Indeed, c(x) = |{ i : Ci(x) = 1 }|.

More generally, estimate the size of a set

S= S1 ∪ · · · ∪ Sm,

assuming that
• We can generate uniformly the elements of Si for each i (this is

true for {x : Ci(x) = 1 }).
• We can compute in polynomial time |Si|.
• For each element x, we can compute in polynomial time the

cover multiplicity c(x) = |{ i : x ∈ Si }|.

• Let M = |S1|+ · · ·+ |Sm|. Pick I ∈ {1, . . . , m} such that
P { I = i }= |Si|/M, then pick an element X ∈ SI uniformly. Then

P {X = x }=
∑

Si3x

P { I = i }P {X = x | I = i }=
∑

Si3x

|Si|
M

1
|Si|
=

c(x)
M

.

• Let Y = M
c(X) , then

EY =
∑

x∈S

M
c(x)

P {X = x }= |S|.

• VarY ≤M2 ≤m2|S|2, hence
p
VarY
EY ≤m, a polynomial bound. So

if we sample Y, repeatedly, Chebyshev’s inequality allows to
approximate EY = |S| fast: we have a FPRAS.

Recall that an algorithm A(x) is a FPRAS if it is polynomial in |x|
and 1/ε, and

P { |A(x)− f(x)|> εf(x) } ≤ 1/2.

Theorem 11.5 The definition of a FPRAS does not change if we

replace 1/3 on the right-hand side with any constant δ ≤ 1/2.

The idea of the proof is repetition, but we cannot apply the law of
large numbers to A(x), not knowing its expected value. We only
know that it is in the interval f(x)± εf(x) with probability 3/4.

Let our algorithm B(x) repeat N times the algorithm A(x). Let
Z1, . . . , ZN be the values of A(x) in the repetitions. Then B(x)
outputs the median M of Z1, . . . , ZN.
To analyze, let Ui = 1 if Zi > f(x) + εf(x) and 0 otherwise. Then
P {Ui = 1 } ≤ 1/3, while

P {M > f(x) + εf(x) } ≤ P
¨

∑

i

Ui ≥ N/2

«

≤ e−N/18

from the Chernoff bound. A choice N = O(log 1
δ) makes this smaller

than δ/2.
We find P {M < f(x)− εf(x) }< δ/2 similarly.

Markov chains

Let X1, X2, . . . be a sequence of random variables with values in a
discrete state space V = {v1, v2, . . . }. The sequence is called a
Markov chain if for all t, for all s1, . . . , st+1 we have

P {Xt+1 = st+1 | X1 = s1, . . . , Xt = st }= P {Xt+1 = st+1 | Xt = st } .

In words, Xt+1 depends on X1, . . . , Xt−1 only through Xt.

Example 12.1 Let Y1, Y2, . . . be a sequence of independent
random variables, St = Y1 + · · ·+ Yt. Then the sequence S1, S2, . . .
forms a Markov chain.

If for each i, j the value pij = P {Xt+1 = i | Xt = j } is independent of t
then the Markov chain is called homogenous. The matrix (pij) is
called its transition matrix.
From now on, we will only consider homogenous Markov chains, in
a finite state space.

View a Markov transition matrix as a directed graph G= (V, E,P)
on the state space V. There is an edge u→ v if puv > 0; label the
edge with puv.

Example 12.2

P=







1/2 1/4 0 1/4
1/3 2/3 0 0
2/3 0 0 1/3
0 2/3 1/3 0






.

2 1
1/3

1/4
2/3 1/2

34

1/3

1/3

2/3 2/3
1/4

• The Markov condition says that Xt has enough information
about the system to determine (the probability distribution of)
its future behavior Xt+1, Xt+2, . . .: the past influences the future
only through the present.

• The condition may fail if we omit some information: If
X0, X1, . . . is a Markov process and f a function then the process
defined by Yt = f(Xt) is typically not Markov. It is called a
hidden Markov process.

Example 12.3 In Example 12.2, let f(s) = 1 if s ∈ {1,2}, and 2 if

s ∈ {3, 4}. Now
P { f(Xi+1) = 2 | f(X1) = f1, . . . , f(Xi−1) = fi−1, f(Xi) = 1 } typically
depends on f1, . . . , fi−1. Indeed: P { f(Xi+1) = 2 | Xi = 1 }= 1/4 and
P { f(Xi+1) = 2 | Xi = 2 }= 0, but f(s) = 1 does not tell us whether
s= 1 or 2.

• If we only know the values Yt = f(Xt) then it is a challenge to
infer from them some (not unique) underlying Markov process
Xt. This is a typical machine learning task.

If the vector q(t) describes the distribution of Xt, that is
qi(t) = P {Xt = i }, then

q(t+ 1) = q(t)P.

Since the process is homogenous the numbers

pij(t) = P {Xt+k = j | Xk = i }

do not depend on k, and are elements of the matrix Pt, that is the
t-step transition matrix is the tth power of the transition matrix P.
An u-v walk of length t on the directed graph of states is a sequence
of states W = (v0, v1, . . . , vt) where u= v0, v= vt, and pvi,vi+1

> 0. We
don’t call it a “path” since it may intersect itself (many times). Then

puv(t) =
∑

W

pv0v1
pv1v2

· · ·pvt−1vt

where W runs through all u-v-walks W of length t.

Let if X1, X2, . . . be our Markov chain. The matrix-vector
multiplication Pf also has probability meaning. If
f = (f(1), . . . , f(n))T then let

g = Pf , g = (g(1), . . . , g(n))T.

Then

g(i) =
∑

j

pijf(j) = E{f(Xt+1) | Xt = i},

so Pf shows the conditional expectations of f(Xt+1), when looking
at time t.

Convergence

We are interested in the limiting behavior of Markov chains.
A distribution q is stationary, or invariant, or an equilibrium if
q= qP.

Does every Markov chain have an invariant distribution? No.
Example: Let St = X1 + · · ·+ Xt where Xi > 0 are integer
i.i.d. random variables. Then St is a Markov chain but
limt→∞ P {St = n }= 0 for all n.

This does not happen if the set of states is finite.

Examples 12.4

1 A stochastic matrix P is called doubly stochastic if we not only
have

∑

j pij = 1 for all i but also
∑

i pij = 1 for all j. It is easy to
see that then the uniform distribution is invariant.

2 If a stochastic matrix P is symmetric then it is doubly
stochastic. As a simplest example, let

P=

�

1− p p
p 1− p

�

.

Theorem 12.5 Every homogenous finite Markov chain has an
invariant distribution.

Proof sketch. Let q(0) be arbitrary distribution, q(t) = qPt, and let

q(t) =
1
t

t
∑

i=1

q(i) =
1
t

t
∑

i=1

q(0)Pi.

The sequence q(t) may not converge (it actually does in our finite
case, see later), but we can select a convergent subsequence q(tk);
let its limit be π.
Exercise: show that π is invariant.

• Can a Markov chain have more than one invariant distribution?

Yes. Example: Let P=

�

1 0
0 1

�

. Then every distribution q over

the two states is invariant with respect to P.
This example Markov chain is pathological since its graph is not
connected.

• A state v is called transient when qv = 0 for every invariant
distribution q. Else it is called persistent. (This terminology is
different from the one in Motwani-Raghavan.)

Consider the strongly connected components of the graph G of a
finite Markov chain. From now on, we will just call them
components.
• A Markov chain is called irreducible if the graph consists of a

single component.
• The (strongly connected) components (of every directed graph

G) form a (new) acyclic graph G′. (View the edges of this
acyclic graph as going downward.)

• A component is called final (minimal) if no edge leaves it—so
when it is at the bottom of the graph G′.

0 1
1/3

1/4
2/3 3/4

2

3

2/3

4

1/3

1/3

1/3

2/3

52/3

1/3

2/3

The Markov chain above has components {2}, {5}, {3, 4}, {0, 1}.
Only the component {0, 1} is final.

Theorem 12.6 Let the matrix P belong to a Markov chain.

a A state v is persistent if and only if it is in a final component.

b There is a unique invariant distribution π if and only if there is
only a single final component. In this case for each initial state
q(0) we have q(t) = 1

t

∑t
i=1 q(i)→ π.

The proof is not hard.

• If there is a unique invariant distribution, does q(t) always
converge to it?

No. Example: P=

�

0 1
1 0

�

. If q(0) = (q1, q2) then

q(1) = (q2, q1), q(2) = (q1, q1), and so on.
There is only one invariant distribution here, π= (1/2,1/2),
but q(t) does not converge to it (unless q(0) = π).

The following condition eliminates the problem:
A finite irreducible Markov transition matrix P is called aperiodic if
there is a t with Pt > 0. (There is a number of equivalent
characterizations: see any probability book.)

Theorem 12.7 Let P be a the matrix of an irreducible Markov

chain with stationary distribution π. We have q(t)→ π for all
initial distributions q(0) if and only if P is aperiodic.

You might see some parts of the proof in homework.

Random walk on a graph

From a directed graph G= (V, E) define transition probabilities as
follows: from each point choose each outgoing edge with equal
probability. If A is the adjacency matrix and D the diagonal matrix
formed from the outdegrees di then P= D−1A.

Connected undirected graph G: replace each edge with two
directed edges. Let

volG=
∑

i

di, qi = di/(volG).

Check: the distribution q is stationary, moreover, since DP= A is a
symmetric matrix, then qipij = qjpji, that is

P {Xt = i, Xt+1 = j }= P {Xt = j, Xt+1 = i } . (12.1)

• Processes with (12.1) are called reversible: the paths have the
same statistics forward in time as backward. With Q the
diagonal matrix for q, this says that QP is symmetric.

• In the undirected graph random walk also each edge has the
same probability of passing:

qipij = 1/(vol G).

Speed of convergence

How fast do we approach equilibrium?
• Can be very exponentially slow for directed graphs. Example:

A= {a0, . . . , an}, B= {b0, . . . , bn}, V = A∪ B,

E = {(a0, a1), (a1, a2), . . . , (an, b0),

(b0, b1), (b1, b2), . . . , (bn, a0),

(a1, a0), (a2, a0), . . . , (an, a0),

(b1, b0), (b2, b0), . . . , (bn, b0)}.

For the equilibrium π we have π(A) = π(B) = 1/2. But there a
c> 1 (compute one!) such that P {Xi ∈ B | X1 = a0 }< 1/4 for
all i< cn. Similarly, if the walk starts from a0 then it will take
exponential expected time to reach B.

• For undirected graphs, the convergence is much faster: we
develop the theory below.

Linear algebra

• For vectors x= (x1, . . . , xn)T, y = (y1, . . . , yn)T, let
〈x,y〉= xTy =

∑

i xiyi. For vector x we denote by
‖x‖= ‖x‖2 = 〈x,x〉1/2 = (

∑

i |xi|2)1/2 its length, also called the
L2-norm.

• But for any q= (q1, . . . , qn) where qi > 0 we could define a new
inner product. Let Q be the diagonal matrix with elements qi on
the diagonal. Define 〈x,y〉Q =

∑

i qixiyi. Let us denote

‖x‖Q = 〈x,x〉1/2Q . then

〈x,y〉Q = xTQy.

This new inner product is also bilinear. It also obeys the
Cauchy-Schwartz inequality:

〈x,y〉Q ≤ ‖x‖Q · ‖y‖Q,

and therefore among all vectors y with ‖y‖Q = 1, the expression
〈y,x〉Q is maximized by y = x/‖x‖Q.

The L1-norm is defined as ‖x‖1 =
∑

i |xi|. The Cauchy-Schwartz
inequality gives

‖x‖1 =
∑

i

1 · |xi| ≤ (
n
∑

i=1

12)1/2(
∑

i

x2
i)

1/2 =
p

n‖x‖.

Just as we call vectors x,y orthogonal if 〈x,y〉= 0, we can call them
Q-orthogonal if 〈x,y〉Q = 0. An n× n matrix M is Q-symmetric if for
all x,y

〈x,My〉Q = 〈Mx,y〉Q.

When q= (1, . . . , 1) then this is the ordinary notion of symmetry.
Generalizing to Q-inner products a basic theorem of linear algebra:

Theorem 12.8 Let M be a Q-symmetric matrix. There is a basis

of Q-orthonormal vectors u1, . . . ,un that are eigenvectors of M with
some real eigenvalues λ1 ≥ · · · ≥ λn. For an arbitrary vector
v=

∑

i ciui we have

Mv=
∑

i

λiciui.

Matrices with all nonnegative elements have some special
properties used in Markov chain theory.

Theorem 12.9 (Perron-Frobenius)

a If M is any matrix with nonnegative elements (not necessarily
symmetric) then it has a nonnegative eigenvalue λ1 with
eigenvector u1 ≥ 0, and λ1 ≥ |λi| for all i> 1.

b If also M is aperiodic (that is Mt > 0 for some t), then u1 > 0,
and λ1 > |λi| for i> 1.

Let M be a Q-symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn.
• Suppose λ1 = 1, and denote δ = 1−maxi>1 |λi|, then for

x= c1u1 + · · ·+ cnun we have

Mtx− c1u1

Q = (
n
∑

i=2

|λi|tqic
2
i)

1/2 (12.2)

≤ (1−δ)t‖x‖Q ≤ e−δt‖x‖Q, (12.3)

that is Mtx→ c1u1 with speed e−δt. The speed of the
convergence depends on δ, often called the eigenvalue gap.

• (For nonsymmetric matrix M there is a similar, but more
complex estimate.)

Reversible Markov chains

For a Markov chain P, with reversible distribution q, the matrix P is
Q-symmetric. Indeed,

〈x,Py〉Q =
∑

i

xiqi

∑

j

pijyj

=
∑

ij

xipijqjyj =
∑

ij

=
∑

ij

xiqjpjiyj

=
∑

j

yjqj

∑

i

pjixi = 〈Px,y〉Q.

So we can apply the theorem about the eigenvectors to the matrix
P with the Q-inner product, giving us eigenvalues λi.

Theorem 12.10 We have |λi| ≤ 1.

Proof. Let λ be an eigenvalue of P with eigenvector x. Assume
without loss of generality that |x1|=maxi |xi|. Then

λx1 =
∑

j

pijxj,

|λ||x1| ≤
∑

j

pij|xj| ≤ |x1|.

• Since P1= 1, the vector 1 is an eigenvector of P with with
eigenvalue 1. By Theorem 12.10 no other eigenvalues have
larger absolute value.

• Assume that P is nonperiodic, and therefore λ1 > |λi| for i> 1.
Let ui be the orthonormal basis of Theorem 12.8.

• Recalling that QP is symmetric,

QPui = λiQui,

uT
i QP= λiu

T
i Q.

So vi = uT
i Q are the left eigenvectors of P with eigenvalues λi.

In particular, vT
1 = 1TQ= q has eigenvalue 1.

• The vectors vi = Qui are orthonormal with respect to the inner
product 〈x,y〉Q−1 .

• Let r≥ 0 be a distribution over the states, so a row vector with
∑

i ri = 1 that is r1= 1, and express r=
∑

i civ
T
i . Computing the

first coordinate, using orthonormality of vi with 〈x,y〉Q−1:

c1 = rQ−1v1 = r1= 1.

• By (12.2)

rPt→ c1vT
1 = uT

1 = q.

Convergence speed again:

rPt − q

Q−1 = O((1−δ)t).

Eigenvalue gap for lazy walks

With no negative eigenvalues, δ = 1−λ2. This can be achieved by
creating a lazy version of any graph random walk.
Let P be a random walk on a graph G. Obtain G′ by adding
self-loops of probability 1/2 to each point of G: then P′ = (I+ P)/2.
The eigenvalues λ′i = (λi + 1)/2 of P′ are all nonnegative.
In what follows the notation i∼ j means {i, j} ∈ E.

Laplacian

• Recall P= D−1A. The eigenvalues 1−λi belong to I− P, with
the same eigenvectors ui. The following, Laplacian matrix has
the same eigenvalues:
L= D1/2(I− P)D−1/2 = D−1/2(D−A)D−1/2. Its eigenvectors are
D1/2ui. Since L is symmetric, they are mutually orthogonal. For
y = D−1/2x,

〈x,Lx〉= 〈y, (D−A)y〉

=
∑

i

�

diy
2
i −

∑

j:i∼j

yiyj

�

=
∑

i<j:i∼j

(yi − yj)
2.

• Linear algebra: the second lowest eigenvalue of L is

1−λ2 = min
〈x,D1/21〉=0
‖x‖=1

〈x,Lx〉= min
∑

i diyi=0

∑

i<j:i∼j(yi − yj)2
∑

i diy
2
i

. (12.4)

The expression (12.4) implies

Theorem 12.11 1−λ2 ≥
1

(diamG)(volG) .

Proof. Multiplying each yi by the same constant does not change
∑

i<j:i∼j(yi−yj)2
∑

i diy
2
i

. Let us do this to get
∑

i diy
2
i =

∑

i di = vol G. Let

yu =maxi yi, yv =mini yi, then now yu − yv ≥ 1. Take a shortest
path u= v0, v1, . . . , vk = v from u to v. Then

∑

i<j:i∼j

(yi − yj)
2 ≥

k
∑

j=1

(yvj
− yvj−1

)2 ≥ (
k
∑

j=1

yvj
− yvj−1

)2/k

= (yu − yv)
2/k≥ 1/k≥ 1/diamG.

The inequality bringing in 1/k used Cauchy-Schwartz:

k ·
∑

i

x2
i = ‖1‖

2‖x‖2 ≥ 〈1,x〉2 = (
∑

i

xi)
2.

Speed of convergence

The number of steps needed to get within distance ε of the
equilibrium can be measured by 1/δ:

e−δt < ε,

if t> log(1/ε)
δ . A spectrum of possibilities:

• Directed graphs: sometimes exponential-time convergence.
• Undirected graphs, no negative eigenvalue: polynomial-time

convergence. Indeed, by Theorem 12.11
1/δ < (diam G)(vol G) = O(|V|3).

• Sampling, approximate counting an exponential-size subset V
of an exponential-size universe U. We need logarithmic (in |U|)
convergence, hence we need 1/δ = O((log |U|)−c) for some
c> 0.

• Expanders (see later): constant-time convergence, constant δ.

Sampling via Markov chains (MC Monte-Carlo)

• Sometimes a distribution q is given (it may even be uniform)
over a set U. To approximate the probabilities of certain
interesting sets, we need to sample from q.

• As a special case, q is uniformly distributed on some V ⊂ U. The
set V is exponentially large, but it is only an exponentially small
part of some easy-to-sample universe U. So we cannot just pick
a random element of U repeatedly until we hit V.

• Idea: set up some Markov chain X1, X2, . . . in U, with invariant
distribution q, starting from some arbitrary element X1 = v1. (If
q is supported by a set V then let v1 ∈ V.) Simulate Xi. If the
distribution of Xn converges fast to q then soon we can stop,
and take Xn as an approximate sample.

Example 12.12 (Ising model) Call two pairs (i, j), (i′, j′) are

neighbors and write (i, j)∼ (i′, j′) if |i− i′|+ |j− j′|= 1. View a
matrix σ with elements in {−1,1} like a “ferromagnet” with
individual atomic magnets pointing up or down. The energy U(σ)
is defined as

−
∑

u∼v

σuσv.

Let β > 0 be a fixed parameter (the “inverse temperature”). We
define Zβ =

∑

σ e−βU(σ), and the probability

qσ(β) = e−βU(σ)/Z(β)

(the so-called Boltzmann distribution). Many versions of this
example are of central interest in physics.

An appropriately designed Markov chain will converge to q and
allow sampling from it.

Designing a reversible Markov chain

Suppose that a graph G= (V, E) is given, along with a distribution q
over V. Define transition probabilities puv along the edges such that

qupuv = qvpvu, (12.5)

so the process is reversible (and thus q is invariant). Define puu to
make sure

∑

v puv = 1. Relation (12.5) remains true if we multiply
puv by cuv where cuv = cvu. Let C = (cuv) be an arbitrary symmetric
stochastic matrix (say cuv = 1/d for u 6= v and maximum degree d).
The following formula, called the Metropolis algorithm, is a
popular choice:

puv = cuv min
�

1,
qv

qu

�

for v 6= u.

Check that this is reversible!

Example 12.13 (Subgraph) Let G= (V, E) where

V = {1, . . . , n} × {1, . . . , n}, (i, j)∼ (i′, j′) if |i− i′|+ |j− j′|= 1. Let q
be the uniform distribution. The transitions for the Metropolis
algorithm give

puv =
1
4

min
�

1,
qv

qu

�

for v 6= u.

In words: try to move in each of the 4 directions (north, south,
east, west) with probability 1/4. If the move would take you
outside the square, stay in place.
This is not quite the the same as the random walk on the graph, it
gives larger stationary probability to the border points.

Example 12.14 (Metropolis algorithm for the Ising model)

For states σ,σ′ of the Ising model say σ ∼ σ′ if they differ only in
a single position u= (i, j), that is σu 6= σ′u. In this case

qσ′
qσ
= eβ(U(σ)−U(σ′))

depends only the values of σv for neighbors v of lattice point u.
Such Markov processes are called probabilistic cellular automata.

Example 12.15 (Counting matchings) Let Mk be the set of

matchings of size k in a bipartite graph G. Under certain conditions
one can estimate Mk for each k. For this, one will estimate

|Mk|
|Mk−1 ∪Mk|

for each k starting from k= 1.

Define a graph whose points are matchings in Mk−1 ∪Mk. Let m, m′

be two matchings m, m′ ∈Mk ∪Mk−1. We say that they are
neighbors if there is an e= (u, v) ∈ V2 such that one of the
following holds:

Addition e ∈ E, m ∈Mk−1, m′ ∈Mk, m′ =m∪ {e}.
Deletion e ∈ E, m′ ∈Mk−1, m ∈Mk, m=m′ ∪ {e}.
Rotation m, m′ ∈Mk−1 and there is a w with (u, w) ∈m and
(v, w) ∈m′.

The Markov chain is defined by the Metropolis algorithm: choose a
random (u, v), apply an operation determined by (u, v) if it is
possible, else do nothing.
Irreducibility is easy to establish; the difficulty is estimating the
eigenvalue gap.

Conductance

The following quantities may help estimating the eigenvalue gap.
For any S ⊂ V let q(S) =

∑

i∈S qi, and δ(S) the set of edges between
S and V \ S. By q(δ(S)) =

∑

(i,j)∈δ(S) qipij we measure the flow
through the edges of δ(S). The conductance

Φ′ = min
q(S)≤1/2

q(δ(S))
q(S)

.

lowerbounds the relative probability flow out of a small part S of
the graph. A related quantity (sometimes this is called
conductance):

Φ(S) =
q(δ(S))

q(S)q(V \ S)
, Φ=min

S
Φ(S).

Clearly Φ′ ≤ Φ≤ 2Φ′.

If the graph is regular, then volG= dn, q(S) = |S|/n,

Φ(S) =
|δ(S)|

d|S| · |V \ S|/n
, Φ′ = min

|S|≤n/2

|δ(S)|
d|S|

.

Theorem 12.16 We have Φ2/8≤ 1−λ2 ≤ Φ.

The upper bound follows easily by choosing yi to be constant on S
and on V \ S. The lower bound is harder, we will take it on faith.

Lowerbounding conductance

The following method sometimes helps.
Suppose that for each i 6= j we can construct a flow fij of value qiqj
from i to j, in such a way that the sum of all these flows on any
edge (i, j) is at most cqipij.

Theorem 12.17 If the above flow has been defined then Φ≥ 1
c .

Proof. Let Φ= Φ(S). The total amount of flow from S to V \ S is
q(S)q(V \S). Summing these up on the edges of the cut δ(S), we get

q(S)q(V \ S)≤ q(δ(S))c,
1
c
≤

q(δ(S))
q(S)q(V \ S)

= Φ(S).

Flow method for undirected graph random walks

Scaling up, from i to j we send a flow didj. On each edge, the sum
of flows passing through should be ≤ c · vol G.

Example 12.18 Let G be the n× n× n lattice cube, the degrees

are ≤ 6, vol G= 6n3(1− o(1)). From point (i, j, k) to point (i′, j′, k′)
we send a flow of size ≤ 36 along the path that first goes from i to
i′, then from j to j′, then from k to k′. Each i− i′ edge carries a flow
sum of at most n · 36n3 = 36n4. Only 1/n of these continues after
the turn to the j− j′ edges, but the flow can accumulate again,
keeping the bound 36n4. The same happens on the k− k′ edges, so
the bound on the sum of flows is 36n4 ≤ (6+ o(1))n · volG. By
Theorem 12.17, Φ≥ 1/7n when n is large. This also proves
Lemma 8.4.

Your book illustrates this technique on the example of the Markov
chain on matchings.

Expanders

• An “expander” is essentially a graph whose eigenvalue gap is
lowerbounded by some constant. We generally look at a family
of expanders, with infinitely many possible sizes, all sharing the
same eigenvalue gap lower bound.

• Restrict attention to bipartite, regular graphs, but allow
multigraphs: edges have integer multiplicity.

The eigenvalue gap measures, in a way, the degree of connectivity,
as seen from the formula

Φ′ = min
|S|≤n/2

|δ(S)|
d|S|

.

seen earlier. This says that for any set S of size ≤ n/2, at least a
fraction Φ′ of all edges starting from points of S must go to V \ S.

• Bipartite graph: left and right parts. For a subset S of the left
set of G= (V, E), let Nb(S) be the set of neighbors of S: points
connected by an edge to some element of S.

• The graph expands S by a factor λ if |Nb(S)| ≥ λ|S|.
• For d,α,λ > 0, a d-regular bipartite multigraph G is a
(d,α,λ, n)-expander if it expands every subset S of size ≤ αn of
the left set by a factor λ.

L

E

degree N

R

E′

degree K

An expander. Here, the degree of points is different in the left set
and in the right set.

Random expanders

• Are there expanders with constant d,α,λ and arbitrarily large
n? The proof illustrates the probabilistic method.

• We will choose a random bipartite multigraph of degree d and
show that it is expander with positive probability. Choosing α
small (constant) will bring λ arbitrarily close to d (you cannot
hope better).

• Start with dn left nodes u1, . . . , udn and dn right nodes
v1, . . . , vdn. Choose a random complete matching among these.
Call the resulting graph M.

• Obtain G as follows: collapse each group of d left nodes into a
single node: u1, . . . , ud into one node, ud+1, . . . , u2d into another
node, and so on. Similarly collapse each group of d right nodes.
Edges are inherited from the ancestors. The process may give
multiple edges: a multigraph B. Two nodes of M are called
cluster neighbors if they are collapsed to the same node of B.

Theorem 13.1 For each f > 0, if α is sufficiently small then this

process gives a (d,α, d(1− f), n)-expander with positive probability
for all sufficiently large n.

In what follows we will prove this.

Let S be a set of size αn in the left set of G. Estimate the probability
that it has too few neighbors. Assign edges to the nodes of S in
some fixed order of the preimage of S in M. Call a node of the right
set of M occupied if it has a cluster neighbor already reached by an
earlier edge. Let random variable Xi be 1 if the ith edge goes to an
occupied node and 0 otherwise. There are

dn− i+ 1≥ dn− dαn= dn(1−α)

choices for the ith edge, at most d2|S| of these are occupied.
Therefore

P {Xi = 1 | X1, . . . , Xi−1 } ≤
d2|S|

dn(1−α)
=

dα
1−α

=: p.

By Theorem 1.23 (“Chernoff bound”) and (1.5):

P
¨ dαn
∑

i=1

Xi ≥ fdαn

«

≤ edαnHp(f) ≤
�

ep
f

�fdαn

.

The number of different neighbors of S is dαn−
∑

i Xi, hence

P {Nb(S)≤ dαn(1− f) } ≤
�

ep
f

�fdαn

=
�

edα
f(1−α)

�fdαn

.

Multiply with the number of sets S of size ≤ αn as estimated
in (1.6):

∑

i≤αn

�

n
i

�

≤
� e
α

�αn
,

� e
α

�αn� edα
f(1−α)

�fdαn

=

�

e2d
f(1−α)

�

eαd
f(1−α)

�fd−1�αn

.

The base is < 1 if f > 1/d and α is sufficiently small.

The above proof is an existence proof.
• Not only does not it help us compute an expander efficiently,

but even if we are handed one, does not give any effective way
of checking it.

• However, if we just want a large eigenvalue gap, that can be
computed effectively.

• In many theoretical applications, we need efficiently
computable expanders: say, of size 2n in which the neighbors of
each point are listed in time polynomial in n. Such
constructions exist. In this course, we will not see them, since
the proofs are generally complicated. But we will see an
application.

BPP amplification

Let L ∈ BPP, with a randomized polynomial algorithm A(x, r), that
for each x decides whether it is in L, and fails only with probability
≤ 1/100. Assume |r|= |x|= n. How to decrease the error
probability to, say, 2−k? We learned to repeat independently some
number of times and to take the majority. In some cases, we must
be parsimonious with the number of random bits used. Two
interesting possibilities:
• Use independent repetitions r1, . . . , rm. The Chernoff bound

shows that O(nk) random bits suffice, and the number of
operations still polynomial in n, k.

• Use pairwise independent random strings of the form ri = ai+ b
(mod p): then O(n+ k) random bits suffice, but the number of
operations becomes exponential in k.

With constructive expanders, we will only use n+O(k) random bits
and still a polynomial number of operations.

Algorithm 1 (Call it B(x, r).) Let N = 2n. For some constants

d,δ, take a d-regular undirected graph GN = (VN, EN) for
VN = {1,2, . . . , N}. With self-loops, we also achieve that λ2 is the
second largest eigenvalue. Assume δ ≤ 1−λ2, so G is an
“expander”. The graph must be given in such a way that for each
point i, the list of its d neighbors is computable in time polynomial
in n.
Choose a random r0 = R(0) ∈ VN uniformly. Let R(0), R(1), R(2), . . .
be a random walk over GN. Given R(i− 1), we need only a new
random binary string ri of size dlog de to find R(i+ 1), since we only
need to choose between the outgoing edges.
Let β be such that λβ2 ≤ 0.1. Compute A(x, R(iβ)) for each
i= 1, . . . , m and take the majority.

We will achieve P {B(x, r) is wrong } ≤ 2−k with m= O(k).

Let X1, X2, . . . ∈ {0,1} be independent variables with
P {Xi = 1 } ≤ σ, and let i1 < i2 < · · ·< ik. Then
P
�

Xi1 = 1, . . . , Xik = 1
	

≤ σ−k. We will develop a similar estimate
for our Markov chain.
Let P be transition matrix obtained by making β steps of the
random walk on our expander. Then λ2(P)≤ 0.1. The equilibrium
distribution π is still the uniform distribution.

For a matrix A let ‖A‖= ‖A‖2 =maxx 6=0 ‖xA‖/‖x‖. It is easy to see
‖AB‖ ≤ ‖A‖‖B‖.
Let A be a symmetric matrix with eigenvalues λi, then it is easy to
see

‖A‖=max
i
|λi|.

Let Xi = R(iβ), then Xi is a random walk with matrix P and initial
distribution q. For a set S ∈ V, let DS be the diagonal matrix with
1’s in positions i ∈ S and 0’s elsewhere. We have

P {X1 ∈ S1, . . . , Xm ∈ Sm }=

qPDS1
· · ·PDSm

1

≤
p

N

qPDS1
· · ·PDSm

.

Though our final interest is in the norm ‖·‖1, due to the better
properties of the norm ‖·‖= ‖·‖2 we will go through estimating

PDS1
· · ·PDSm

≤

PDS1

 · · ·

PDSm

.

Lemma 13.2 Let S be a set of states with π(S)≤ σ. We have

‖PDS‖ ≤min(1,σ1/2 +λ2).

Proof. Let π,u2, . . . ,un be an orthonormal basis of row
eigenvectors of P. For any vector q= c1π+

∑

i ciui =: u+ v we have

qP= u+
∑

i>1

λiciui =: u+ v′,

v′

≤ λ2‖v‖,
‖qPDS‖ ≤ ‖qP‖ ≤ ‖q‖,

‖qPDS‖ ≤ ‖uDS‖+

v′DS

≤ σ1/2‖u‖+λ2‖v‖ ≤ (σ1/2 +λ2)‖q‖.

Let S= { r : A(x, r) is wrong }, and assume π(S)≤ 0.01. Using
λ2 ≤ 0.1 and lemma 13.2 gives ‖PDS‖ ≤ 0.1+ 0.1= 1/5.
Let S1, S2, . . . , Sm be a sequence of sets where each Si is either S or
VN \ S and there are w occurrences of S. Then we obtain

‖π‖= N−1/2,

PDS1
· · ·PDSm

≤ (1/5)w1m−w ≤ (1/5)w,

πPDS1
· · ·PDSm

≤ ‖π‖

PDS1
· · ·PDSm

≤ N−1/2(1/5)w,

πPDS1
· · ·PDSm

1 ≤ N1/2N−1/2(1/5)w = (1/5)w.

A wrong majority decision corresponds to a sequence S1, . . . , Sm
with at least w≥m/2 occurrences of S. There are at most 2m

different ways to choose this sequence, therefore the probability of
a wrong decision is at most 2m(1/5)m/2 = (4/5)m/2.

Note ‖π‖= N−1/2 was important. Starting from a single point

instead of the uniform distribution does not work.

What is probability?

What is probability? The question is often answered referring to
relative frequency in repeated independent experiments.
• The classical law of large numbers offers an “internal”

justification of this interpretation.
• The Markov chain applications go beyond this interpretation.

The BPP amplification does not repeat experiments
independently, and still achieves a very small probability of
error.

• Markov-chain Monte-Carlo works on a space of exponential
size, but takes a sample in a polynomial number of steps that
has nearly the desired distribution. Typically each sample will
be different, making a frequentist interpretation again dubious.

Randomness

• Probability theory started approximately with Pascal (mid 17th
century).

• Its current mathematical framework was introduced by
Kolmogorov (1931). This framework does not address the
question: what is a random string?

• This question was raised maybe first by Laplace (early 19th
century), then by von Mises (early 20th century). Von Mises
proposed the convergence of relative frequency on
subsequences generated by some “rule” as a criterion. But he
could not formalize the notion of a rule.

• Church (1947) defined “rule” as a recursive rule. But the
frequency test proved insufficient, as shown by Ville.

• The current theory is based on Kolmogorov’s introduction of
desciption complexity (1965) and later work by Martin-Löf and
Levin.

The paradox giving rise to the notion of randomness is this.
Suppose your friend gives you a 0-1 sequence x1x2 · · ·x100 of length
100, and told that it is the result of a series of coin tosses he made
the day before. If the sequence is 010101 · · ·01 then you will not
believe your friend. He may challenge you for your reasons,
however, since each sequence of length 100 has the same
probability 2−100.
You may say, “yes, but this sequence is created by a rule”, but what
is a rule? There is an infite number of possible rules.
Laplace’s guessed that there are only few sequences obeying a
simple rule, but without saying what a simple rule is. Kolmogorov
formalized the notion of the simplicity needed here.

Description complexity

Fix some alphabet Σ ⊃ {0,1}. Let T be a Turing machine with
• input tape with alphabet {0,1,∗}, where ∗ is the “blank

symbol”,
• output tape with alphabet Σ∪ {∗}.
• work tape with some alphabet containing ∗.

We define the partial function T : {0,1}∗→ Σ∗ as follows. To
compute T(p) we write string p onto the input tape of T, leave the
other tapes blank. We start T. If T halts and the output tape
contains a single nonblank string x at the beginning, then T(p) = x.
Otherwise T(p) is not defined.

We view the machine T as an interpreter of descriptions. Thus, we
way that the binary string p describes the output T(p). (We use
binary descriptions for having a common base of comparison.) Let

KT(x) = min
T(p)=x

|p|.

We say that KT(x) is the description complexity, or Kolmogorov
complexity, of string x on machine T. This notion is, of course,
machine-dependent. For every string x there is an interpreter Tx
such that KTx

(x) = 0. But interestingly, the machine-dependence is
quite moderate.

Theorem 14.1 (Invariance) There is an interpreter U that is

optimal in the following sense. For every other interpreter T there
is a constant cT such that for all strings x ∈ Σ∗ we have

KU(x)≤ KT(x) + cT.

The theorem shows that no other interpreter T can have much
shorter descriptions than the optimal interpreter U, since the
difference will be bounded by a constant (dependent on T).

Proof. There is an interpreter (an appropriate universal Turing
machine) U such that for all interpreters T there is a string qT such
that for all strings p ∈ {0,1}∗ we have

T(p) = U(qTp).

Here, qT contains an encoded description of the machine T (its
transition table). Now for all strings x and all machines T we have

KU(x)≤ KT(x) + |qT|.

Fix an optimal interpreter U and write

K(x) = KU(x).

We will use the notation f(n)
+
< g(n) to mean f(n)≤ g(n) +O(1).

The notion f(n) += g(n) is defined similarly.

The function K(x) has several synonymous names, some of them
suggest other interpreations.
• Description complexity.
• Minimal compression size.
• Amount of individual information.
• Algorithmic information.
• Algorithmic entropy.

Upper and lower bound

Theorem 14.2 For a binary string x of length n we have

K(x)
+
< n.

Proof. Define a machine T that simply outputs its input. Then
apply the invariance theorem.

The following theorem shows that this bound is sharp, in a
statistical sense.

Theorem 14.3 Let X be a uniformly chosen random binary

string of length n. Then

P {K(X)< n− k }< 2−k.

Proof. There are at most 2i descriptions of length i, so at most
1+ 2+ 4+ · · ·+ 2n−k−1 < 2n−k strings with complexity < n− k.

Example 14.4 Note that if the string x is of the form 0101 · · ·01

(n/2 times) then

K(x)
+
< log n.

Since as we have seen, the probability is very small of getting any
string of such low-complexity, we have a sort of justification for our
suspicion about its coin-tossing pedigree. In fact, a good argument
can be made (in the more advanced versions of this theory) to view
n−K(x) as a measure of the non-randomness of string x.

Example 14.5 If x is a binary string of length n such that
∑

i xi = k then with p= k/n we have

K(x)
+
< log

�

n
k

�

+O(log n) = nH(p) +O(log n),

where H(p) = −p log p− (1− p) log(1− p). (This indicates a relation
to information.)
Indeed, given n and k (by strings of length log n) we can enumerate
all binary strings containing k 1’s, and describe x by the rank of x in
this enumeration.

The following theorem limits the usefulness of the function K(x).

Theorem 14.6 The function K(x) is not computable.

Proof. (By contradiction.) Assume that K(x) is computable. For
each k let f(k) be the smallest x (lexicographically) with K(x)> k,
and let T be a Turing machine computing f(k) from a binary
representation of k. We have

K(f(k))≤ KT(f(k)) + cT ≤ log k+ 1+ cT.

But by definition we have k< K(f(k)), leading to a contradiction
for large k.

This proof formalizes the paradox: “the smallest number defineable
with fewer than 100 characters”.

Despite its non-computability, the notion of description complexity
and the definitions of randomness and information built on it have
proved of great value in clarifying some important issues of
randomness, information and prediction.
In randomized computations and in cryptographical applications
we frequently work with strings that are not random, only
pseudo-random; again, in order to understand the difference, it is
useful to know what randomness means.

Derandomization
Conditional expectations

Frequently, a randomized algorithm can help us to a deterministic
one. We will illustrate this on the set balancing problem, which we
recall.
Given an n×m matrix A with 0-1 entries. We are looking for a
vector b with 1,−1 entries for which

‖Ab‖∞

is minimal.

A good vector can be found by random choice. Let β1, . . . ,βn be
independent, with P

�

βj = 1
	

= P
�

βj = −1
	

= 1/2, and let
β = (β1, . . . ,βn). Let aT

i the ith row, let Ei be the event
|aT

i β |> 8
p

m ln n. We showed

P {Ei } ≤ 2/n2.

So with probability 1− 2/n, all n rows have discrepancy
≤ 8
p

m ln n.
Let the random variable Xi be 1 if Ei holds and 0 otherwise. Let
Y =

∑

i Xi. Our theorem shows EY ≤ 2/n.

Consider a tree with all possible values b1 · · ·bn of the sequence
β1 · · ·βn at the leaves, and the inner nodes at level k steps down
from the top labeled by values of b1 · · ·bk. If you think into it you
will see that for each b1 · · ·bk, the value

f(b1 · · ·bk) = E{Y | β1 = b1, . . . ,βk = bk }

is computable in polynomial time, and

f(b1 · · ·bk) = (f(b1 · · ·bk0) + f(b1 · · ·bk1))/2.

Therefore the following algorithm works for computing a sequence
b1 · · ·bn recursively: For k= 0, . . . , n− 1, compute the bk such that

f(b1 · · ·bk−1bk)≤ f(b1 · · ·bk−1(1− bk)).

With this sequence we will have ‖Ab‖∞ ≤ 8
p

m ln n. Indeed, we
have

E{Y | β1 = b1, . . . ,βn = bn } ≤ 2/n< 1.

But this is a deterministic integer value: if its expectation is < 1
then it is 0: in other words, none of the events Ei happens.

Two-point sampling

• The following example is from the area of parallel computing.
We have had such an example earlier, since the randomized
algorithm to decide whether a graph has a matching adds value
only in the parallel computing model.

• We will not give a formal definition of a parallel computer.
Different versions exist (EREW, CEREW, etc.). The class NC of
functions computable in polylog time and with a polynomial
number of processors is insensitive to these differences.

Given a graph G= (E, V), we want to find a maximal independent
set (an independent set not contained in any other independent
set). (Finding a maximum independent set is NP-complete.) It is
easy to find one in polynomial time, but the greedy algorithm of
finding one is sequential. The parallel algorithm of Luby given
below puts the problem into NC.

Plan:

1 Find a randomized parallel algorithm (putting the problem in
RNC, randomized NC).

2 Derandomize it.

We will follow the scheme only approximately.

Definition 15.1 For a subset S ⊆ V of the graph G, let E(S) be

the set of edges of G with at least one end in S.
Let Γ (v) be the set of neighbors of point v, dv = |Γ (v)| its degree,
and ΓS=

⋃

v∈S Γ (v).

Theorem 15.2 There is a constant c and a randomized parallel

algorithm to find an independent set S(r) ⊆ V with
E |E(ΓS(r))| ≥ c|E|.

We can repeat this algorithm on V1 = V \ ΓS(r). Iterating similarly a
logarithmic number of times gives a maximal idependent set.

Algorithm 2 We construct the set S as follows.

1 (in parallel) Put each point v ∈ V with probability 1
2dv

into a set
S1. Assume first that the choice is made independently for
each point.

2 (in parallel) If an edge has both ends in S1 then delete the
lower-degree end from S1 (break ties arbitrarily), resulting in
the desired set S.

The following probabilistic analysis lowerbounds the expected
value E |E(ΓS)|.

Definition 15.3 A point is called good if it has at least dv/3

neighbors with degree ≤ dv; otherwise it is bad. An edge is good, if
at least one of its endpoints is good.

The following lemma allows us to concentrate on good edges:

Lemma 15.4 At least of half of all edges are good.

Proof. Let us direct the edges from lower to higher degree, and let
d+v , d−v denote the in- and outdegrees. Let VB, VG be the bad and
good points, e(X, Y) be number of edges between sets X, Y.
In a bad point dv ≤ 3(d+v − d−v). Hence the sum of degrees of bad
points is ≤ 3× (the flow from bad points to good points):

2e(VB, VB) + e(VB, VG) + e(VB, VG)≤ 3(e(VB, VG)− e(VG, VB))

≤ 3(e(VB, VG) + e(VG, VB)),

e(VB, VB)≤ e(VB, VG) + e(VG, VB).

Let c1 = 1− e−1/6.

Lemma 15.5 If v is a good point with positive degree then it is
in ΓS1 with probability ≥ c1.

Lemma 15.6 Every point v ∈ S1 will also be in S with
probability ≥ 1

2 .

Lemma 15.4 says that at least half of the edges are good.
Lemma 15.5 implies that a good edge will get an endpoint into ΓS1
with probability ≥ c1. Lemma 15.6 implies that this endpoint will
be also in ΓS with probability ≥ 1

2 . Multiplying the results
lowerbounds the expected value:

E |E(ΓS)| ≥ 1
2 · c1 · 1

2 = c1/4.

The theorem follows with c= c1/4.

Proof of Lemma 15.5. We make at least dv/3 independent
attempts with probability ≥ 1

2dv
, so the the probability of not

succeeding even once is ≤ (1− 1
2dv
)dv/3 ≤ e−1/6.

Proof of Lemma 15.6. A point v will only be deleted if a neighbor
of degree ≥ dv has been selected. For each such neighbor this
happens with probability ≤ 1

2dv
. Apply the union bound to the at

most dv such neighbors.

Derandomization

• We used n independent random variables Xv(r) where Xv(r) = 1
if point v is selected, and 0 otherwise, and P {X(r)v = 1 }= 1

2dv
.

The only lemma in which we used independence was
Lemma 15.5.

• In a homework problem we will see that with a different
constant c1 the lemma will also hold when only pairwise
independence is used.

• Two-point sampling creates p independent random variables
Yv(r) ranging over {0, . . . , p− 1}, using only 2 log p independent
random bits. Using an appropriate p (say p= O(n2) this can be
used to generate pairwise independent random variables Xv(r),
with P {Xv(r) = 1 } ≈ 1

2dv
.

• We still have E |E(ΓS(r))| ≥ c|E|, so there is a particular choice r0
of these bits giving |E(ΓS(r0))| ≥ c|E|. Since now |r|= O(log n),
we can search for r0 in polynomial time.

	Introduction
	Event space, probability space
	Conditional probability, independence
	Random variables
	Expected value
	Restart and expectation of geometric
	Inner product, variance
	Law of large numbers
	Central limit theorem
	Exponential convergence
	Set balancing

	Generating a random variable
	Randomization or average case
	Quicksort
	Randomized classes
	Polynomial time
	One-sided error: witnesses
	Polynomial identity
	Two-sided error
	No error
	Characterizing Las Vegas
	Relation to P/poly

	Yao's theorem and an application
	A theorem
	Game trees or tree formulas

	Packet routing
	Local search
	Fingerprinting
	Hashing
	Counting
	Repeated tests
	FPRAS
	DNF satisfaction
	Amplifiying FPRAS

	Markov chains
	Basic definitions
	Convergence
	Random walk on a graph
	Speed of convergence
	Linear algebra
	Sampling via Markov chains (MC Monte-Carlo)
	Designing a reversible Markov chain
	Conductance

	Expanders
	Random expanders
	Constructive expanders
	BPP amplification
	Frequentist interpretation of probability

	Randomness
	The problem
	Description complexity
	Upper and lower bound
	Uncomputability

	Derandomization
	Conditional expectations
	Two-point sampling

