
Computational complexity
Freely using various textbooks, mainly the one by Arora-Barak

Péter Gács

Computer Science Department
Boston University

Fall 2019

It is best not to print these slides, but rather to download them
frequently, since they will probably evolve during the semester.

The class structure

See the course homepage.
In the notes, section numbers and titles generally refer to the book:
Arora-Barak: Computational Complexity.

Description complexity

See the lecture linked to the schedule in the course homepage.
• The paradox of randomness: what does it mean that the

sequence

01

is unlikely to come from a sequence of coin tosses?
• The definition of complexity

KM (x) = min
M(p)=x

|p|.

Invariance

Weak dependence on the machine M .

Theorem (Invariance) There is an “optimal” machine U with

the following property. For every machine M there is a cM such that
for all x we have KU(x)≤ KM (x) + cM .

Proof sketch. Let U be a optimal universal machine, that can
simulate the work of any machine M , given a description qM of M .
If M(p) = x then U(qM p) = x .

We will fix such an optimal universal machine U , and write
K(x) = KU(x).

Upper and lower bounds

Theorem There is a constant c such that for any binary string x ,

we have K(x)≤ |x |+ c.

Proof. Let p be a program saying that the data string following it
must be printed: then U(px) = x .

Theorem For all n> k > 0, the number of binary strings x with

K(x)< n− k is less than 2n−k.

Proof. There are at most i different programs of length i, hence the
number of strings with complexity i is at most 2i . We can then
estimate the number in question as

1+ 2+ 4+ · · ·+ 2n−k−1 = 2n−k − 1.

Uncomputability

The function n− K(x) seems a useful measure of non-randomness
of a binary string x of length n. Unfortunately:

Theorem No machine can compute K(x).

Proof. Suppose there was such a machine M , then U could
simulate it. Then there is a program p such that for any binary
string 〈m〉 denoting a number m, U(p〈m〉) is the first string xm with
K(x)> m. We have

m< K(x)≤ |p|+ log m,

a contradiction for large m.

This proof is a formalization of a famous paradox: the sentence
“The smallest number not definable with fewer than 200
characters.” defines a number in fewer than 200 characters.

TeX notation (say in email)

• “Control sequences” begin with \.

• a \le b for a ≤ b, a_i for ai , a^{25} for a25,

x \in A for x ∈ A, X \cup Y for X ∪ Y , X \cap Y for

X ∩ Y , X \subseteq Y for X ⊆ Y , X \setminus Y for X \ Y ,

\alpha for α, and so on.

• If you want a math formula to be compiled, then in a TeX file
put it between $ signs.
In a Piazza question/answer, put it between $$ signs.

Notation for languages

Alphabet, string, length | · |, binary alphabet.
Empty string e.
Set Σ∗ of all strings in alphabet Σ.
Lexicographical enumeration.

Encodings

Machines can only handle strings. Other objects (numbers, tuples)
will be encoded into strings in some standard way. Let us use codes
that show their own end, and can therefore concatenated freely.

Example Let ′[′,′]′,′ ,′ 6∈ Σ, then we can encode elements

u= s1 . . . sn of Σ∗ by themselves as 〈u〉= u, and pairs (u, v) as

〈u, v〉= [u, v].

For example, 〈0110,10〉= [0110, 10].

For a natural number x , we may denote by 〈x〉 the code of its
binary representation, and again 〈x , y〉= [〈x〉, 〈y〉].
Triples, quadruples, or arbitrary finite sequences of natural
numbers are handled similarly.

A relation can be viewed as a set of pairs and encoded as a
language.

Example Encoding the relation

{ (x , y) ∈N2 : x divides y }

as a language

{ 〈x , y〉 ∈ {0,1,′ [′,′]′,′ ,′ }∗ : x , y ∈N, x divides y }.

Encoding a function over strings or natural numbers: first, its graph
as a relation, then this relation as a language.
The cardinality of the set of all languages: see later.

Turing machines

(Definition partly taken from the Lovász notes.)

a k doubly infinite tapes, tape symbol alphabet Σ.

b Read-write heads.

c Control unit with state space Γ .

Configuration: (control state, the tape contents, head position).
Transition functions

α : Γ ×Σk→ Γ ,

β : Γ ×Σk→ Σk,

γ : Γ ×Σk→ {−1, 0,1}k

define the machine M(Γ ,Σ,α,β ,γ). They are applied repeatedly to
transform a configuration into a next one.

Conventions

• A part of the alphabet Σ0 ⊆ Σ will be called the input-output
alphabet. Assume it always contains 0, 1, while Σ \Σ0 always
contains a blank symbol . Normally, only finitely many
positions on the tape will not be blank.
Sometimes, some tapes are designated for input, and some for
output.

• The set of states Γ contains two distinguished states: starting
state qstart, and halting state qhalt.

• Computing a function f : Σa
0→ Σ

b
0: input and output

conventions. The input strings are the maximal strings of
input-output symbols found at the beginning of input tapes.
Similarly for output strings, after halting.

• Examples of Turing machines computing some simple functions.
• A set of strings L ⊆ Σ∗ is sometimes called a language (a

decision problem).

Variants on the definition: simulations

• One-sided tapes, only left-right moves (no staying in place), etc.
• The notion of simulation of machine M2 by machine M1: only

the input-output behavior is reproduced.
In practice: representing the data structure of M2 in that of M1,
and “programming” the update. Each step of M2 will be
simulated by several steps of M1.

Two tapes

p p p H1 s5 t5 s6 t6 H2 s7 t7

6

simulated
head 1

?

simulates 5th cell
of first tape

6

simulated
head 2

?

simulates 7th cell
of second tape

ppp

If s(x) is the memory requirement and t(x) is the time requirement
of the 2-tape machine on input x , then the time requirement of the
1-tape simulation is O(s(x)t(x)) = O(t2(x)).

Simulating more complex machines

• 2-dimensional tape: several possibilities.
• The solution using (address, content) pairs is generalizable:

say, to a machine whose storage structure is a tree.

The random access machine

Memory a (potentially) infinite sequence x[0], x[1], x[2], . . . of
memory registers each containing an integer.

Program store a (potentially) infinite sequence of registers
containing instructions.

x[i] := 0; x[i] := x[i] + 1; x[i] := x[i]− 1;

x[i] := x[i] + x[j]; x[i] := x[i]− x[j];

x[i] := x[x[j]]; x[x[i]] := x[j];

if x[i]≤ 0 then goto p.

Input-output conventions.
How to define running time?
Simulations between the RAM and Turing machines. There is at
most a t 7→ t2 slowdown.

The concept of an algorithm: Church thesis

Church-Turing Thesis This says that any algorithm defined in

any “reasonable” formalism is implementable by some Turing
machine.

Not a theorem, since it refers to unspecified formalisms. The above
examples are part of its justification.

History Different formal definitions by Church (lambda calculus),
Gödel (general recursive functions), Turing (you know what),
Post (formal systems), Markov (a different kind of formal
system), Kolmogorov (spider machine on a graph) all turned
out all to be equivalent.

Algorithm any procedure that can be translated into a Turing
machine. (or, equivalently, into a program on a universal
Turing machine, see later)).

Uses of Church’s Thesis

Justified Proving that something is not computable by Turing
machines, we conclude that it is also not computable by any
algorithm.

Unjustified Giving an informal algorithm for the solution of a
problem, and referring to Church’s thesis to imply that it can
be translated into a Turing machine. It is your responsibility to
make sure the algorithm is implementable: otherwise, it is not
really an algorithm. Informality can be justified by common
experience between writer and reader, but not by Church’s
Thesis.

More encodings

Consider some Turing machine M(Γ ,Σ,α,β ,γ).
• Elements s of alphabet Σ are encoded into strings of {0, 1,#} as
〈s〉 (binary string followed by #). For any one alphabet Σ, we
make all code strings 〈s〉 the same length.

• States q are encoded similarly into strings 〈q〉.
• The numbers −1,0, 1 are encoded into, say, 〈−1〉= 10#,
〈0〉= 00#, 〈1〉= 01#.

• For each pair q, a, let q′ = α(q, a), a′ = βq, a, σ = γ(q, a). The
tuple (q, a, q′, a′,σ) describes the action of M on observing
(q, a), and is encoded into E(q, a) = 〈q〉〈a〉〈q′〉〈a′〉〈σ〉.

• The whole transition function of M is encoded into

〈M〉= E(q1, a1)E(q2, a2) . . . E(qn, an),

where (qi , ai) runs through all pairs (q, a).

Universal machine

• Machine U takes two input strings in the input-output alphabet
Σ0, and simulates all one-input machines M over this same
input-output alphabet (the tape alphabets are not restricted).
It is universal if U(〈M〉, x) = M(x) for all M , x . (When M(x)
does not halt, then U(〈M〉, x) should not halt either.)

• U(p, x) is a partial function: undefined whenever U does not
halt after producing output on input (p, x).

• Construction: simulating k tapes of one machine with k+ 2
tapes of a universal machine. (See an explicit program in the
Lovász notes.)
Tape k+ 1 represents the transition table, tape k+ 2 represents
the current state.

• The number of tapes can be reduced further, of course.

The efficiency of the universal simulation

• The slowdown is only a constant factor, but this factor is huge.
Indeed, simulating every step of M involves passing through its
whole transition table. (Just imagine listing all possible control
states of your laptop computer.)

• The simulation can be made much faster if, for example, the
transition function is computed by a logic circuit (like in your
laptop computer).

Matrix picture

Imagine (M , w) 7→ M(w) = U(〈M〉, w) in a matrix with rows
indexed by 〈M〉 and columns indexed by w: at position (〈M〉, w)
sits the result M(w), if it is defined, namely if the computation of
M halts on input w. Let us put∞ where it does not.

w0 = e w1 = 0 w2 = 1 w3 = 00 . . .
〈M1〉 e ∞ 0001 e . . .
〈M2〉
〈M3〉 〈M3(e)〉= 111 〈M3(0)〉= 010 〈M3(1)〉=∞ 〈M3(00)〉=∞ . . .
〈M4〉

...
. . .

The diagonal (partial) function D(x) = U(x , x) is computable but
its complement,

D(x) =

¨

0 if U(x , x) 6= 0

1 otherwise.

is not: if it was, then there would be a k with U(k, x) = D(x). But
D(k) was made different from U(k, k)!

Halting problem

Let Halting be the set of pairs (p, x) on which U(p, x) halts.

Theorem (Halting) The set Halting is (algorithmically)
undecidable.

Proof. If it was decidable then with its help, we could compute
D(x).

This proof is a typical (but simple) example of a reduction: we
reduce the computation problem of D to that of Halting.

Diagonal method

The method used to show that D(x) is undecidable, is called the
diagonal method.
• First used by Cantor to show that the real numbers (as

represented, say, by infinite decimal fractions) cannot be listed
in a sequence.

• Many uses in computer science, mainly to prove hierarchy
theorems.

Sample hierarchy theorem

Theorem There is a function not computable in n2 steps (as the

function of the length of input) on any 2-tape Turing machine, but
computable in O(n2 log n log log n) steps on some 2-tape Turing
machine.

Proof: (Idea: the diagonal construction yields a function that is
computable, but in time longer than the bound used to define it.)
Let Mp be the 2-tape machine with program p. Form the “diagonal”
E(x) (similar to D(x) before) as follows: Let S(p) be a string of 0’s
of length 22|p| . For x = pS(p) for some p we define

E(x) =

0 if x = pS(p) and Mp(x) 6= 0

is computed in time ≤ |x |2 on Mp,

1 otherwise.

• There is no 2-tape machine Mp computing E(x) in time |x |2.
Indeed, if there were one then it would compute Mp(x) in time
≤ |x |2, but E(x) is defined for |x |= pS(p) to be different from
this value.

• Let us define a 4-tape machine computing E(x) in time
O(|x |2 log log x). A 4-tape universal Turing machine U(p, x)
simulates Mp with description p and running time t on input x
in time O(|p| · t). Within such a time it can also keep track of
the number of simulated steps and notice when it would exceed
|x |2. Modifying U(p, x) we can compute E(x) for x = pS(p)
and n= |p| in time O(n(n+ 22n

)2) = O(|x |2 log log |x |).
• By a non-trivial method any 4-tape machine can be simulated

on a 2-tape machine in time O(t log t), this adds a factor of
O(log |x |).

Other undecidable problems

• Many undecidable questions are purely mathematical,
unrelated to Turing machines. The proof of undecidability is
typically reduction to D(x), but these reductions can be very
complex.

• Consider equations of the form:

x2 + 3xz3 − 2y4 − 6= 0.

Every such polynomial equation can be viewed as a string of
symbols E. Let D be the set of such strings E for which the
corresponding equation has solution in integers x , y, z, . . .
(these equations are called Diophantine equations). By a
famous theorem, the set D is undecidable.

Some history

• The mathematician Hilbert asked in 1900 as one of his 23
famous challenges for mathematics in the coming century, to
find a solution method for general Diophantine equations.
There was no notion of undecidability at the time.

• The notion of computability was defined in the 1930’s, in works
of Gödel, Church and Turing. The theorem that the solvability
of Diophantine equations is undecidable is due to Matiasevich,
relying on earlier works of Davis, Putnam and Robinson.

Let Halting′ be the set of all (codes of) Turing machines that halt on
empty input.

Theorem The set Halting′ is undecidable.

Proof. Reducing Halting to Halting′: for each pair (p, x) we
construct a machine Mp,x that on empty input does the same as U
on input (p, x). If we could decide whether Mp,x halts, we could
decide Halting.

Tiling

• Prototile: a square shape, with a symbol on each side:

a
b d

c

• Tile: an exact copy of some prototile.
• Kit: a finite set of prototiles.
• Initialized kit: a kit with a distinguished initial tile t: so it is

given as a pair (K , t).
• Given a kit K , tiling the whole plane with K (if possible).
• For an initialized kit, we require that the tiling of the plane

contains the initial tile.

• LTLNG is the set of (encodings of) kits for which tiling the plane
is possible, and LNTLNG the set of those for which it is not.

• L′TLNG is the set of initialized kits tiling the plane.

Theorem The set L′TLNG is undecidable.

So it is undecidable about an initialized kit whether it tiles the
plane. The set LTLNG is also undecidable, but that theorem is
harder to prove.

Proof idea. For each Turing machine M , we can construct a kit
that tiles the plane if and only if M does not halt on empty input.
As we put down these tiles, the rows will have to represent simulate
subsequent configurations in a Turing machine computation.
The next slides illustrate the kit used.

∗

∗
∗

∗
∗

∗
∗

N

∗

N

1

1
1

1
1

∗START

g1

∗START

N

START∗

P

2

2
2

∗g1

g2

∗g1

g1

∗
∗

P

∗

P

1

∗g2

g1

∗g2

g2

∗
∗

∗
∗

P

∗

P

∗g1

g1

∗
∗

∗
∗

∗
∗

P

∗

P

A tiling simulating a sample computation.

h′

hg

g ′

α(g, h) = g ′

β(g, h) = h′

γ(g, h) = 1

h′g ′

hg

α(g, h) = g ′

β(g, h) = h′

γ(g, h) = 0

h′

g ′

hg

α(g, h) = g ′

β(g, h) = h′

γ(g, h) = −1

hg

g

h
a)

hg

h

g

b)

h

h
c)

Tiles around the simulated head position.

∗

N

∗

N

∗START

N

START∗

P

∗

P

∗

P

Tiles in the starting row.
For tiling the lower half-plane, add new tiles obtained by reflecting
above tiles along the horizontal axis, and reversing the order of
symbols in the labels of horizontal edges.

Some context for the undecidability of tiling.

Theorem If a kit K can tile every finite square then it can tile the
whole plane.

Proof. Let S1 ⊂ S2 ⊂ · · · be a sequence of squares where
⋃

i Si is the
whole plane. For i < j let T be a tiling of Si and U a tiling of S j . We
will write U > T if U is an extension of T .
Since each Si can be tiled, there is a tiling T1 of S1 with infinitely
many tilings U > T1. Similarly, there is a tiling T2 > T1 with
infinitely many tilings U > T2, and so on. The union of the tilings
T1 < T2 < · · · will tile the whole plain.

This proof is not constructive: each step requires to check infinitely
many conditions. And indeed, there is a kit K that tiles the whole
plain but each of its tilings is uncomputable.

Corollary If K cannot tile the whole plane then there is some

finite square that it cannot tile.

A tiling of the whole plane is called periodic if there is a tiling of a
square (let us call it a repeating base) such that the whole tiling is
obtained by just using disjoint copies of this tiled square. The
undecidability result and the last corollary imply the following.

Theorem There is a set of tiles that tiles the whole plane but

none of its tilings is periodic.

Proof. Given a kit K we can start a computation A checking for
sizes n= 1, 2,3, . . ., whether a square of size n has a tiling. By the
corollary above, if K cannot tile the plane then B terminates telling
this.
It is also possible to start a computation B that searches for all
possible repeating bases, and eventually finds one if one exists. If K
can tile the plane periodically then B terminates telling this.
If every kit that tiles the plane tiles it also periodically then this
algorithm would always terminate, and the tiling problem would
be decidable.

Undecidability in logic

Sentences Strings in some alphabet that are statements about
some mathematical objects.

Negation Assume that from each sentence s, another sentence s′

called its negation can be computed.

Proof of some sentence T is a finite string P (in possibly another
alphabet) that is proposed as an argument that T is true.

Formal system or theory F is an algorithm to decide, for any pair
(P, T) of strings whether P is an acceptable proof for T . A
sentence T for which there is a proof in F is called a theorem
of the theory F.

• A theory is called consistent if for no sentence can both it and
its negation be a theorem.
Inconsistent theories are uninteresting, but sometimes we do
not know whether a theory is consistent.

• A sentence S is (logically) undecidable in a theory T if neither S
nor its negation is a theorem in T.

• A consistent theory is complete if it decides all sentences.

theorems

antitheorems
(negation is a theorem)

contradictions
(prevent consistency)

undecided statements
(prevent completeness)

Theorem If a theory T is complete then there is an algorithm

that for each sentence S finds in T a proof either for S or for the
negation of S.

Proof. Start listing all proof candidates of S and of its negation,
and keep checking them. Eventually either a proof of S or a proof
of its negation will be found. This is a program to actually find out
whether S is provable in T.

• A theory T dealing with natural numbers is called rich if there is
an algorithm computing for each (p, x), a sentence φ(p, x) that
is a theorem of T if and only if U(p, x) halts.

• There are well-known theories that are rich: one only needs a
language with simple relations between (number-codes of)
strings that help express how one TM configuraton gives rise to
another. Then a proof of U(p, x) halting can just trace the
sequence of configurations starting from (p, x).

Theorem (Gödel’s incompleteness theorem)
Every rich theory is incomplete.

Proof. If the theory were complete then, as shown, it would give a
procedure to decide algorithmically the halting problem.

• If the last proof is expanded by making diagonalizaton explicit
then for any rich theory T a pair (p, x) is found such that
• “U(p, x) does not halt” is expressible in T and true.
• it is not provable in T.

• There are other, more interesting, sentences that are not
provable, if only the theory T is even richer: Gödel proved that
assertions expressing the consistency of T are among these.
This is the Second Incompleteness Theorem of Gödel.

• Historically, Gödel’s incompleteness theorems preceded the
notion of computability by 3-4 years.

Complexity classes

Complexity of a problem (informally): the complexity of the “best”
algorithm solving it.

Problems • Compute a function
• Decide a language
• Given a relation R(x , y), for input string x find an output

string y for which R(x , y) is true. Example: R(x , y) means
that the integer y is a proper divisor of the integer x .

What is the running time as a function of the length of input?
Given an algorithm, this is often a nontrivial question.

Example running time estimate
Gaussian elimination

• Solving a set of linear equations by Gaussian elimination: O(n3)
algebraic operations (±, ·,÷).

• Turing machine complexity=bit complexity. The problem of
round-off errors.

• Rational inputs, exact rational solution: How large can the
numerators and denominators grow? In principle, adding
fractions: a

b +
a′
b′ =

ab′+a′b
bb′ =: A

B may double the number of bits
in the denumerator: potential of exponential increase of the
lenght of numbers.

• Reducing A
B : divide by gcd(A, B) (you know this is computable

in polynomial time from A, B).
• New algorithm: Gaussian elimination combined with the above

reduction after each step.

Theorem In the new algorithm, the length of numbers remains

polynomial in the length of the input.

For a proof, look in the Lovász notes.
Hence Gaussian elimination can be done in polynomial time: that
is, in a polynomial number of bit operations, not only algebraic
operations.

Upper and lower bounds

DTIME(f (n)): a class of languages.

Upper bound given a language L and a time-measuring function
g(n), showing L ∈ DTIME(g(n)).

Lower bound given a language L and a time-measuring function
g(n), showing L 6∈ DTIME(g(n)).

Example Let DTIME(·) be defined using 1-tape Turing

machines, and let L1 = {uu : u ∈ Σ∗ }. Then it can be proved that

L1 6∈ DTIME(n1.5).

The difficulty of proving a lower bound: this is a statement about
all possible algorithms.

Why complexity classes?

Why we are just speaking about complexity classes, rather than the
complexity of a particular problem.
Sometimes there is no “best” algorithm for a given problem. See
the so-called speedup theorems.

Why language classes?

Sometimes, there are trivial lower bounds for functions: namely,
| f (x)| (the length of f (x)) is a lower bound.

Example f (x , y) = x y where the binary strings x , y are treated
as numbers.

Naive algorithm x · x · · · · · x (y times). This takes y
multiplications, so it is clearly exponential in the length of y .

Repeated squaring now the number of multiplications is
polynomial in |y|.

But no matter what we do, the output length is |x y | ≈ y · |x |,
exponential in |y|.
(Still, repeated squaring gives a polynomial algorithm for
computing (a, b, m) 7→ ab mod m).

If the function values are restricted to {0, 1} (deciding a language)
then there are no such trivial lower bounds.

Polynomial time
Invariance with respect to machine model

P=
⋃

c
DTIME(nc), EXP=

⋃

c
DTIME(2nc

).

2-tape Turing machines and even 2-dimensional and
random-access machines can be simulated by 1-Tape Turing
machines, with a slowdown similar to t 7→ t2. Therefore to some
questions (“is there a polynomial-time algorithm to compute
function f ?”) the answer is the same on all “reasonable” machine
models. (Caveat about quantum.)

Some examples

• PATH: find the shortest path between points s and t in a graph.
Breadth-first search.

• The same problem, when the edges have positive integer
lengths. Reducing it to PATH in the obvious way (each edge
turned into a path consisting of unit-length edges) may result in
an exponential algorithm (if edge lengths are large).

• Dijkstra’s algorithm works in polynomial time also with large
edge lengths.

Algorithms on integers

The greatest common divisor of two numbers can be computed in
polynomial time, using:

Theorem gcd(a, b) = gcd(b, a mod b).

This gives rise to Euclid’s algorithm.
Why polynomial-time?

Does it capture “practical”?

• We may extend the class by allowing randomization—see later.
• It may miss the point. On small data, an 0.001 · 20.1n algorithm

is better than a 1000n3 algorithm.

Still, in typical situations, the lack of a polynomial-time algorithm
means that we have no better idea for solving our problem than
“brute force”: a run through “all possibilities”.

NP problems

Examples

• Shortest vs. longest simple paths
• Euler tour vs. Hamiltonian cycle
• Ultrasound test of sex of fetus.

Decision problems vs. optimization problems vs. search problems.

Example Given a graph G.

Decision Given k, does G have an independent subset of size ≥ k?

Optimization What is the size of the largest independent set?

Search Given k, give an independent set of size k (if there is one).

Optimization+search Give a maximum size independent set.

Polynomial-time verification

Example Hamiltonian cycles.

• For simplicity, we assume that all our problem instances are
encoded into binary strings.

• An NP problem given by a polynomial p(n), and a relation

V (x , w),

of binary strings with values in {0, 1} that for a given input x
and a candidate witness (certificate) w is computable in time
p(|x |) and verifies whether w is indeed witness for x . (Then
necessarily |w| ≤ p(|x |)).

• The language defined by the problem is the set of strings

L = { x ∈ {0,1}∗ : ∃w V (x , w) = 1 }.

The class NP is the set of languages L definable this way.

The same decision problem may belong to very different
verification functions (search problems).

Example (Compositeness) Let the decision problem be the
question whether a number x is composite (nonprime). The
obvious verifiable property is

V1(x , w)⇔ (1< w< x)∧ (w|x).

There is also a very different verifiable property V2(x , w) for
compositeness such that, for a certain polynomial-time computable
b(x), if x is composite then at least half of the numbers
1≤ w≤ b(x) are witnesses. This can be used for probabilistic
prime number tests.

Nondeterminism

Nondeterministic machines are not modeling any real machines:
you can view this concept rather as a fancy way of talking about
the existential quantifier. But this concept went into the name of
the class NP, so let us define them.
• Nondeterministic Turing machines: possibly more than allowed

transition from any given configuration: instead of transition
functions α,β ,γ, we have transition relations.

• Such a machine accepts an input x if it has a sequence of
transitions from x leading to “accept”. A language L is accepted
by machine M if L is the set of those inputs accepted by M .

Theorem A language L is in NP if and only if it is accepted by
some polynomial-bounded machine.

Satisfiability

• Let us use Boolean variables x i ∈ {0,1}, where 0 stands for
false, 1 for true. A logic expression is formed using the
connectives ∧,∨,¬: for example

F(x1, x2, x3, x4) = (x1 ∨¬x2)∧ (x2 ∨¬x3 ∨ x4).

Other connectives: say x ⇒ y = ¬x ∨ y .
• An assignment (say x1 = 0, x2 = 0, x3 = 1, x4 = 0) allows to

compute a value (in our example, F(0, 0,1, 0) = 0).
• An assignment (a1, a2, a3, a4) satisfies F , if F(a1, a2, a3, a4) = 1.

The formula is satisfiable if it has some satisfying assignment.
• Satisfiability problem: given a formula F(x1, . . . , xn) decide

whether it is satisfiable.

Special cases:
• A conjunctive normal form (CNF) F(x1, . . . , xn) = C1 ∧ · · · ∧ Ck

where each Ci is a clause, with the form Ci = x̃ j1 ∨ · · · ∨ x̃ jr .
Here each x̃ j is either x j or ¬x j , and is called a literal.
SAT: the satisfiability problem for conjunctive normal forms.

• A 3-CNF is a conjunctive normal form in which each clause
contains at most 3 literals—gives rise to 3SAT.

• 2SAT: as will be seen, solvable in polynomial time.

2-SAT∈ P

The algorithm explores the consequences of ¬x ∨ y⇔ x ≤ y .
• Graph with directed edges between literals. For ¬x ∨ y for any

literals x , y , add directed edge x → y and ¬y →¬x .
• Repeat: find directed cycle C . If it contains a literal and its

negation we call it a contradiction. If there is one, the formula
is nonsatisfiable: otherwise collapse C .

• Otherwise we end up with a directed acyclic graph, and now we
know the formula is satisfiable.

• To satisfy, repeat: For each literal x , if there is no path from x
to ¬x then add ¬x → x and set x = 1, otherwise add x →¬x
and set x = 0.

Circuits

Logic formulas can be generalized to logic circuits (Boolean circuits
if using ∧,∨,¬).
• Acyclic directed graph, where some nodes and edges have

labels. Nodes with no incoming edges are input nodes, each
labeled by some logic variable x1, . . . , xn.
Nodes with no outgoing edges are output nodes.

• Some edges have labels ¬. Non-input nodes are labeled ∨ or ∧.
• If there is just one output node, the circuit C defines some

Boolean function fC(x1, . . . , xn). Circuit satisfiability is the
question of satisfiability of this function.

• Assume also that every non-input node has exactly two
incoming edges.

Theorem (Well-known) For every Boolean function

f : {0,1}n→ {0, 1}k there is a Boolean circuit C f with n inputs and
k outputs computing f .

• The circuit satisfiability problem.
• Specialize: formula satisfiability problem.
• Specialize: CNF satisfiability, that is SAT.
• Specialize: 3SAT.

On the other hand:

Theorem Circuit satisfiability can be reduced to 3SAT.

Our first nontrivial example of reduction.
Proof. Introduce a new variable yi for the output of each gate. The
relation of each gate output to its inputs can be expressed by a
formula of at most 3 variables: for example yi ⇔ x j ∧ yk.
Transform this into a 3CNF Gi . The conjunction of all these gives a
3CNF

F(x1, . . . , xn, y1, . . . , ym) = G1 ∧ · · · ∧ Gm,

where ym is the output. The satisfiability of the circuit is equivalent
to the satisfiability of F(x1, . . . , xn, y1, . . . , ym)∧ ym.

Reducibility, completeness

Reduction of problem A1 to problem A2 in terms of the verification
functions V1, V2 and a reduction (translation) function τ:

∃w V1(x , w)⇔∃u V2(τ(x), u).

Examples

• Reducing linear programming to linear programming in
standard form.

• Reducing satisfiability for circuits to 3SAT.

Use of reduction in this course: proving hardness.
• NP-hardness.
• NP-completeness.

Theorem Circuit satisfiability is NP-complete.

Consider a verification function V (x , w). For an x of length n, to a
Turing machine T computing V (x , w), in cost t, construct a circuit
Cx of polynomial size in n, t (easier to see going through a cellular
automaton simulating T) that computes V (x , w) from any input
string w. (We translated x to Cx .) Now there is a witness w if and
only if Cx is satisfiable.

Theorem 3SAT is NP-complete.

Translating a circuit’s local rules into a 3-CNF.

Theorem INDEPENDENT SET is NP-complete.

Reducing SAT to it.

Example Set cover ≥ vertex cover ∼ independent set.

Integer linear programming

• Special case: solving Ax= b, where the m× n matrix A≥ 0 and
the vector b consist of integers, and x j ∈ {0,1}.

• Case m= 1 is the subset sum problem.
• Reducing SAT to this. Translate the clause x1 ∨ x2 ∨¬x3 to

x1 + x2 + x ′3 + y1 + y2 = 3,

x3 + x ′3 = 1.

• Trick to put always 1 to the right-hand side: use the fact that
x ≤ y iff x + (1− y) + z = 1 is solvable.

• When always 1 on the right-hand side: equivalent to the set
partition problem.

Reducing two equations to one:

a11 x1 + · · ·+ a1n xn = b1,

a21 x1 + · · ·+ a2n xn = b2.

Let D > ai j , bi , and form

(a11 + Da21)x1 + · · ·+ (a1n + Da2n)xn = b1 + Db2.

If x1, . . . , xn satisfies this it satisfies both above. Iterating this trick
reduces Ax= b to subset sum.

Hamilton paths

Reducing the SAT to dHAMPATH, the problem of directed
Hamilton paths.
• Points vstart, vend, and one point for each of the m clauses C j .
• For each of the n variables x i , a doubly linked chain

X i = vi,0↔ vi,1↔·· ·↔ vi,3m−1↔ vi,3m.
• vstart→ v1,0, v1,3m; vn,0, vn,3m→ vend.
• vi,0, vi,3m→ vi+1,0, vi+1,3m if i < n.
• If x i occurs in C j then vi,3 j−2→ C j → vi,3 j−1.

If ¬x i occurs in C j then vi,3 j−1→ C j → vi,3 j−2.

Making x i true corresponds to traversing X i from left to right.

coNP

• Definition of the coNP class: L is in coNP if its complement is in
NP. Example: logical tautologies.

• The class NP∩ coNP. Examples: duality theorems.
• Example of a class that is in NP∩ coNP, and not known to be in

P: derived from the factorization problem.
Let L be the set of those pairs of integers x > y > 0 for which
there is an integer 1< w< y with w|x . This is clearly in NP.
But the complement is also in NP. A witness that there is no w
with the given properties is a complete factorization

x = pα1
1 · · · p

αk
k

of x , along with witnesses of the primality of p1, . . . , pk. The
latter are known to exist, by an old—nontrivial—theorem that
primality is in NP.

Set of equations Ax= b (rational coefficients), looking for integer
solution.
• Is this in NP?

Yes, but not trivially. It follows if whenever there is a solution
there is a polynomial-length one .

• If some y makes yT A integer but yT b is not then clearly no
integer solution x—since y “derives a contradiction”.

Theorem If there is no integer solution x then there is such a y.

Does this prove that the problem Ax= b is in coNP?
Not quite, but yes if there is also a polynomial-size y in the
theorem (also true).

Knapsack problem

The knapsack problem is defined as follows.
Given: integers b ≥ a1, . . . , an, and integer weights w1 ≥ · · · ≥ wn.

maximize wT x
subject to aT x≤ b,

x i = 0,1, i = 1, . . . , n.

Dynamic programming: For 1≤ k ≤ n,

Ak(p) =min{aT x : wT x≥ p, xk+1 = · · ·= xn = 0 }.

If the set is empty the minimum is∞. Let w= w1 + · · ·+wn. The
vector (Ak+1(0), . . . , Ak+1(w)) can be computed by a simple
recursion from (Ak(0), . . . , Ak(w)). Namely, if wk+1 > p then
Ak+1(p) = Ak(p). Otherwise,

Ak+1(p) =min{Ak(p), ak+1 + Ak(p−wk+1) }.

The optimum is max{ p : An(p)≤ b }.
Complexity: roughly O(nw) steps.
Why is this not a polynomial algorithm?

Related pairs of tractable and NP-hard problems

• 2-SAT and 3-SAT (though max 2-SAT is NP-hard)
• 2-coloring and 3-coloring
• 2-matching and 3-matching
• maximum matching and maximum independent set
• Euler paths and Hamilton paths
• Chinese postman problem and the traveling salesman problem

Space complexity

In defining DSPACE(g(n)), count only the amount of work tape
used. This allows to have even logarithmic space complexity: log n
space suffices to keep track of the position of the input being
scanned. Let L= DSPACE(log n), NL= NSPACE(log n).
Obvious relations:

DTIME(S(n)) ⊆ DSPACE(S(n)) ⊆ DTIME(2O(S(n))),

L ⊆ NL ⊆ P ⊆ NP∩ coNP ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

None of these relations is known to differ from equality. Some
equalities cannot hold simultaneously: for example P 6= EXP is easy
and NP 6= NEXP is also known.

What can be computed in polynomial space?
• Obviously NP ⊆ PSPACE.
• But we can do also more complicated things in polynomial

space than just trying out all possible witnesses. For example,
we can evaluate very general games.

Games

For problems (that seem) beyond NP, consider a (2-person) board
game:
• Length parameter n: all configurations are described by binary

strings of length n. (The configuration shows whose turn it is.)
• For configurations C , C ′, the predicate C → C ′ says whether C ′

is allowed by a move from C . Assume it decidable in
polynomial time.

• Final(C) says whether C is final (no move possible), and W (C)
for final configurations returns win/lose/draw. These are
polynomial time.

Example Chess, or Go (boards of any size).

Decide a game

Algorithm W (x , t) (recursive) evaluates configuration x at time t
for the player whose turn it is.

if Final(x) then return W (x)
if t ≥ 2n then return draw // Some configuration repeats.
for all configurations y with x → y do

if W (y, t + 1) = lose then return win // Move worth choosing
for all configurations y with x → y do

if W (y, t + 1) = draw then return draw
return lose

• Space requirement defined: board-size × stack-length (number
of moves). At most exponential. But only polynomial for
polynomial number of moves (still exponential time).

• For an exponential time bound: memoization (dynamic
programming): store each result W (x , t) once computed, and
check before the recursive call. May use exponential space even
with polynomial number of moves.

Polynomial-time games are PSPACE-complete

• We have decided in polynomial space whether a configuration x
is winning in p(n) moves: that is W (x , p(n)).

• For an arbitrary n-space computation, we will find a game.

For configurations of some Turing machine M , board

(t1, C1 | C0 | t2, C2)

means that M has configurations Ci at time t i , and C0 at time
t0 = b

t1+t2
2 c. C0 can be “?”. Start from (0, C |? | 2n, “accept”).

Players: Prover wants to prove the acceptance; Verifier keeps
testing.

Prover’s move Fill in the question sign.

Verifier’s move If t0 = t1 + 1 or t2 − 1 then check. Move to
(t1, C1 |? | t0, C0) or (t0, C0 |? | t2, C2).

No limitation of computational power on either Prover or Verifier.

Games and logic
Prenex form

We can standardize any quantified Boolean formula into a
form—called prenex form where all quantifiers are in front.
• Bring negations inside using the de Morgan rules:

¬(u∨ v) = ¬u∧¬v, ¬∃x F(x) = ∀x¬F(x),

¬(u∧ v) = ¬u∨¬v, ¬∀x F(x) = ∃x¬F(x).

• Change the bound variables to prevent clashes:

∀x F(x)∨∀xG(x) = ∀x F(x)∨∀yG(y).

• Bring quantifiers outside:

A∧ ∃x F(x) = ∃x(A∧ F(x)).

Game to formula

C → C ′ means there is a move from C to C ′.
C → C ′→ C ′′ := C → C ′ ∧ C ′→ C ′′.
C0 := the starting configuration. Starting player wins in 4 moves:

∃C1∀C2∃C3∀C4(C0→ C1→ C2→ C3→ C4 ∧ C4 loses)

• SAT is the special case of 1 move: ∃Xφ(X).
• Any game can be expressed by such a quantified Boolean

formula (length depends on the bound on the number of
moves).
Indeed, C → C ′ can be represented by a polynomial-size circuit;
this is expressible by ∃Zφ(C , C ′, Z) with 3-CNF φ, and auxiliary
variables Z = (z1, . . . , zk).

• Any quantified Boolean formula in prenex form
∃X1∀X2∃X3 · · ·φ(X1, . . . , Xk) where X i = (x i1, . . . , x in),
corresponds to some game with k moves.

Other PSPACE-complete games

Many tricky reductions have been made showing various
simply-defined games PSPACE-complete.
Go and Checkers (on n× n boards) are among them.

NPSPACE=PSPACE

• Nondeterministic machine, language computed by it, NP,
NPSPACE.

• Proof of PSPACE-completeness of games applies without
change also to nondeterministic machines. So if L ∈ NPSPACE
then x ∈ L iff x is a winning configuration in a certain game
with polynomial number of moves.

• Hence NPSPACE= PSPACE.
• Generalizing further (without any new idea) shows

Theorem (Savitch) NSPACE(S(n)) ⊆ DSPACE((S(n))2).

In particular, NSPACE(log n) ⊆ DSPACE(log2 n). Not known
whether the inclusion is strict, that is whether L= NL.

• A typical (actually, complete) problem in NL: Given a directed
graph G with two points s, t in it, decide whether there is a
directed path from s to r. (The log2 n-space algorithm may not
be polynomial time!)

Exponential-time games are EXP-complete

Players: again Prover and a Verifier. Convenient to use cellular
automata, transition function C(a, b, c). State at time t at position i
is η(i, t). Let η(i, 0) = X i , i = 0, . . . , n− 1.
To test η(0, 2n) = “accept”. Board configuration:

(X | t, i | b | a−1, a0, a1)

where we expect b = η(i, t), and a j = η(i + j, t − 1) for
j = −1, 0,1, Each a j can be “?”.
Start with (X | 2n, 0 | “accept” |?, ?, ?).
(The board does not represent a whole—possibly exponential
size—CA configuration.)

Prover’s move Replace the question marks.

Verifier’s move If t = 1 check a j = X i+ j for j = −1, 0,1.
Else check b = C(a−1, a0, a1).
Then move to (X | t − 1, i + j | a j |?, ?, ?) where j ∈ {−1,0, 1}.

Randomization or average case

Algorithms can be analyzed probabilistically from several points of
view. First distinction:

1 The algorithm is deterministic, but we analyze it on random
inputs.

2 We introduce randomness during computation, but the input
is fixed.

3 Randomize and also analyze on random inputs.

Approach 1 is less frequently used, since we rarely have reliable
information about the distribution of our inputs. Levin’s theory of
problems that are hard on average adresses general questions of
this type.
Most practical uses of randomness belong to category 2,
randomization.

Examples

• Quicksort, median
• Prime number tests

Matrix product testing

Given n× n integer matrices A,B,C, there is no known
deterministic algorithm to test the equality AB= C in time O(n2).
The following algorithm will accept equality and reject inequality
with probability ≥ 1/2. Repeating it k times will reduce the
probability of false positive to 2−k.
• Choose a random vector x with entries from {−1, 1}.
• Compute c= Cx, b= Bx, c′ = Ab.

If c= c′, accept, else reject.

This algorithm takes O(n2) operations, and if C= AB then it always
accepts.

Claim Else, it accepts with probability ≤ 1/2.

The proof will be in a homework.

Polynomial identity

Given two functions f (x), g(x), is it true that f (x) = g(x) for all
input values x? The functions may be given by a formula, or by a
complicated program.

Example Matrix product testing is the same as testing

A(Bx) = Cx for all x.

We will concentrate on the case when f , g are polynomials. Crucial
fact from elementary algebra:

Proposition A degree d polynomial of one variable has at most
d roots.

So, if we find P(r) = 0 on a random r, this can only happen if r hits
one of the d roots.

What is this good for? Checking f (x) = g(x) is trivial: compare all
coefficients.
In the interesting applications, the polynomial has many variables,
and is given only by computing instructions: for example as the
output of an arithmetic circuit.

Example det(A1 x1 + · · ·+Ak xk +Ak+1), where Ai are n× n
integer matrices.

• When expanded, potentially exponential size in n, but for each
fixed value of (x1, . . . , xk) there is a polynomial algorithm:
Gaussian elimination.

• Rounding of fractions is not allowed, but you could do it
modulo some prime number larger than the largest possible
value of detA. (Find one using a randomized prime test.)
Or with exact fractions, as discussed earlier.

• An arithmetic circuit with logarithmic depth is shown in the
Lovász notes in the parallel algorithms section.

Estimate the probability of hitting a root in a multivariate
polynomial.

Lemma (Schwartz-Zippel) Let p(x1, . . . , xm) be a nonzero

polynomial, with variable x i having degree at most di . If r1, . . . , rm
are selected randomly from {1, . . . , f } then the probability that
p(r1, . . . , rm) = 0 is at most (d1 + · · ·+ dm)/ f .

Proof. Induction on m. Let p(x1, . . . , xm) = p0+ x1p1+ · · ·+ xd1
1 pd1

,
where pd1

6= 0. Let q(x1) = p(x1, r2, . . . , rm). Two cases:

¨

pd1
(r2, . . . , rm) = 0 with probability ≤ (d2 + · · ·+ dm)/ f ,

q(r1) = 0 with probability ≤ d1/ f .

Total is ≤ (d1 + · · ·+ dm)/ f .

Example Given a bipartite graph G = (U ∪ V, E) with

|U |= |V |= n, define the n× n matrix A(x11, x12, . . . , xnn) where

ai j =

¨

x i j if (ui , v j) is an edge,

0 otherwise.

Then detA(x11, . . . , xnn) is identically 0 if and only if G has no
perfect matching.
From here: a fast randomized test of the existence of perfect
matching.

• Similar matrix (a little more complex proof) for non-bipartite
graph G = (V, E). If (vi , v j) is an edge for i < j then let ai j = x i j ,
a ji = −x i j . Otherwise ai j = 0.

• Both of these are new examples (beyond the prime number
tests) of an alternative verification function for an NP language,
leading to a large number of witnesses if there is one.

Randomized classes

With randomization we give up (almost always) some certainty, but
what sort?

Monte-Carlo algorithm: we have a bound on the time, and on the
probability that the result is wrong.

Las Vegas algorithm (no particular reason): result is always
correct, but we bound the execution time statistically (say by
expected value).

One-sided error

Definition A language L is in R(t(n)) if there is a randomized

algorithm A working in time O(t(n)) such that for all x ∈ Σ∗

• if x 6∈ L then A(x) rejects.
• if x ∈ L then A(x) accepts with probability ≥ 1/2.

Let RP=
⋃

k R(nk).

If we want 1− 2−k in place of 1/2, we can repeat k times; this does
not change the definition of RP.

Examples Matrix product is not a good example, since it is also
easily in P.
• Compositeness of integers.
• Polynomial non-identity.

Contrast RP with NP

L ∈ RP if there is a k and a (deterministic) algorithm A(x , r)
running in time nk with x ∈ Σn, r ∈ {0,1}n

k
such that

• if x 6∈ L then A(x , r) rejects for all r.
• if x ∈ L then A(x , r) accepts for at least half of all values of r.

On the other hand L ∈ NP if there is a k and a (deterministic)
algorithm A(x , r) running in time nk with x ∈ Σn, r ∈ {0,1}n

k
such

that
• if x 6∈ L then A(x , r) rejects for all r.
• if x ∈ L then A(x , r) accepts for at least one value of r.

The algorithm A(x , r) in the NP definition is called the verifier
algorithm, the values of r for which it accepts are called witnesses,
or certificates. Thus, RP ⊆ NP.

An NP language L is also in RP if it has some verifier algorithm
with the property that if x has a witness then it has many (at least
half of all potential ones).

No error

Definition A language L is in ZP(t(n)) if there is a Las Vegas

algorithm working in time t(n) deciding x ∈ L in expected time
O(t(n)).
ZPP=

⋃

k ZP(nk).

Example? Quicksort is a Las Vegas algorithm, but sorting is also
in P.
It is not easy to find a nontrivial example of a ZPP language.
Adleman and Huang have shown that prime testing is in ZPP, but
by now, Agrawal, Kayal and Saxena showed that it is in P, too.

Characterizing Las Vegas

The proof of the following theorem is an exercise: it is a good
opportunity to practice our notions.

Theorem

a ZPP= RP∩ coRP.

b A language L is in ZPP if and only there is a randomized
polynomial-time algorithm that either decides x ∈ L correctly,
or returns “I give up”, but only with probability ≤ 1/2.

Two-sided error

It is natural to consider a randomized complexity class with
two-sided error.

Definition A language L is in BP(t(n)) if there is a randomized

polynomial-time algorithm A working within time O(t(n)) such
that for all x ∈ Σ∗

• if x ∈ L then A(x) rejects with probability ≤ 1/3.
• if x 6∈ L then A(x) accepts with probability ≤ 1/3.

Let BPP=
⋃

k BP(nk).

Similarly, we will say that L ∈ PP if there is a polynomial algorithm
that fails only with probability < 1/2 and decides x ∈ L.

Example I do not recall a simple natural example of BPP.

But since RP is not closed under complementation, if L1, L2 ∈ RP
then about L1 \ L2 we can only say that it is in BPP.

Theorem The definition of BPP does not change if we replace

2/3 with 1/2− ε for a fixed ε > 0, or even for n−k with any fixed
k > 0.

To get from error probability 1/2− ε to error probability 2−nk
, use

repetition O(nk) times, majority voting and the Chernoff bound.

Why not 1/2? The definition of BPP does not work with 1/2 in
place of 2/3: in that case we get a (probably) much larger
class closely related to #P (see later). But we could use any
1/2+ ε for some constant ε.

Placing BPP

• Is BPP= P? Some prominent computer scientists believe so,
since it is implied by the existence of certain “pseudo-random”
generators.

• Recall that an NP language can be defined with one existential
quantifier, formally NP= Σ1. A language in BPP can be defined
using 2 quantifiers: formally, BPP ⊆ Σ2 ∩Π2, so it is still in the
polynomial hierarchy. The proof uses the technique of
“universal hashing” .

• On the other hand, the whole polynomial hierarchy is contained
in PP, so this class is (probably) much bigger than BPP.

Interactive proofs

• We have just seen that interaction in the proof process allows to
verify much more computationally complex assertions than a
single-step proof: in polynomial time, we can check any
PSPACE predicate.

• But in the Prover/Verifier paradigm, it is more natural to
restrict Verifier to only polynomial-time power.

• If Verifier is allowed only deterministic polynomial-time
verification, then interaction brings nothing new compared to a
single step. (This is proved by an easy argument.) To go
beyond, Verifier will be allowed to randomize.

Examples

• Paul wants to prove to a color-blind friend Vera that his two
socks have different color. Vera puts the socks behind her back
and with probability 1/2 switches them. Then she challenges
Paul to tell whether she switched.

• Paul has two (labeled) graphs G1, G2, and wants to prove Vera
that they are not isomorphic. Vera chooses a random j ∈ {1, 2},
shows Paul a randomly permuted version of G j , and asks Paul
to guess j.

If Paul is truthful, he answers Vera correctly in every attempt. If he
is not, then he will miss with probability 1/2.
(Though “Vera” translates into “Faith”, our Vera requires at least
some kind of proof. . ..)

Graph non-isomorphism is only known to be in coNP, so no plain
proof is known for it. But the above example provides an
interactive proof.

Formal definition of interactive proofs

Formalizing interactive computation with Verifier’s coin-tossing, is
straighforward. But some issues remain.

How many rounds? Polynomially many, but any constant number
of rounds, for example 2, is also interesting.

One-sided version True assertion proved with probability 1.
False one proved with probability ≤ 1/2.

Two-sided version True assertion proved with probability ≥ 2/3.
False one with probability ≤ 1/3.
We will find that the two versions have the same power.

Private-coin version Verifier does not show Prover her coin-tosses
(essential in the socks/graph-nonisomorphism example).

Public-coin version Prover learns Verifier’s coin-tosses. It is
nontrivial that private-coin proofs can be transformed into
public-coin proofs. We may have to skip that theorem here.

IP= PSPACE

Let IP be the set of languages provable using interactive proofs. By
enumerating all possible interaction sequences and summing up
probabilities, it is easy to show IP ⊆ PSPACE. It was a major
collaborative achievement to prove the following:

Theorem IP= PSPACE.

We have already given an interactive proof for graph
non-isomorphism, which is in coNP.
We give now one for 3SAT, also in coNP. The method will
generalize.

Arithmetization

A Boolean formula φ(x1, . . . , xn) can be seen as a polynomial
Pφ(x1, . . . , xn), using the following conversion:

a ∧ b = a · b, ¬a = 1− a.

A 3-CNF formula with m clauses converts into a polynomial
g(x1, . . . , xn) of degree

d ≤ 3m.

We do not expand the products. It matters only that g can be
evaluated fast, and has a degree bound.

∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

g(x1, . . . , xn) = 0.

We will rather prove, for an arbitrary K:
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

g(x1, . . . , xn) = K .

What do we gain by arithmetization?

In parts of the proof, the prover may claim some identity of
polynomials. We have seen that then cheating is caught fast if we
can substitute large numbers, not just 0,1. Protocol: fix some
N ≥ 2dn.

Verifier: If n= 1 just check g(0) + g(1) = K . Else:

Prover: Sends an explicit univariate degree d polynomial s(x) that
is equal to

h(x) =
∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

g(x , x2, . . . , xn).

Verifier: Reject if s(0)+ s(1) 6= K; otherwise pick a random number
r ∈ {1, . . . , N}. Recursively use the same protocol to check

s(r) =
∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

g(r, x2, . . . , xn).

Claim The prover can get away with cheating, with probability

at most nd/N .

Proof by induction on n: two cases, similarly to the case of
polynomial identity check.

Quantified formulas in IP

The above idea seems generalizable to quantified formulas:
∀xφ(x) iff Pφ(0) · Pφ(1) 6= 0. More generally,

∀x1∃x2 · · · ∃xnφ(x1, . . . , xn)⇔

0 6=
∏

x1∈{0,1}

∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

Pφ(x1, . . . , xn).

Problem when products are used, the degree of the polynomial
can grow exponentially, and the degree bound was essential.

Solution For x i ∈ {0,1}, xk
i = x i . There is therefore a multilinear

equivalent polynomial (linear in each variable).

Linearization

For polynomial g(x1, . . . , xn) let

g ′ = Lx i g = x i g(x1, . . . , x i−1, 1, x i+1, . . . , xn)

+ (1− x i)g(x1, . . . , x i−1, 0, x i+1, . . . , xn),

then g ′(x1, . . . , xn) = g(x1, . . . , xn) for x1, . . . , xn ∈ {0, 1}n, but g ′ is
linear in x i .
(Note: Lx i does not bind x i the way ∃x i or ∀x i do.)
In constructing the polynomial for ∀x1∃x2 · · · ∃xnφ(x1, . . . , xn), we
linearize the remaining free variables after every product operation:

∀x1∀x2∃x3∀x4 g(x1, x2, x3, x4)

7→
∏

x1∈{0,1}

Lx1

∏

x2∈{0,1}

∑

x3∈{0,1}

Lx1 Lx2 Lx3

∏

x4∈{0,1}

g(x1, x2, x3, x4).

This is the form whose value will be proved interactively.

• Operators Ox ∈ {Lx ,∃x ,∀x , [x = a]}. The substitution [x i = a]
where a is some constant, replaces x i with a. This operator
does not increase the degree.

• Our formula is g = O1 x i1 · · ·Ok x ik h(x1, . . . , xn) where h is a
polynomial of the variables x1, . . . , xn, of degree d. It has no
free variables.

• Push each substitution [x i = a] inside to the front of the
outermost occurrence of Lx i . If there is no such occurrence
then for example in case of i = 1, just use h(a, x2, . . . , xn) in
place of h(x1, x2, . . . , xn).

• Prover can prove g = b for any (polynomial-length) b
with probability 1 if it is true,
with probability ≤ ε if it is false.

• Let i1 = 1, then we have
g = [x1 = a]Lx1 g ′ or g = ∃x1 g ′ or g = ∀x1 g ′

for some (implicit) univariate polynomial g ′ = g ′(x1) of degree
≤ d. Prover provides an explicit degree d polynomial s(x),
claiming s(x) = g ′(x) for all x (not only binary).

• Assume for example g = [x1 = a]Lx1 g ′(x1), the other cases are
similar.

• Verifier checks directly a1s(0) + (1− a1)s(1) = b. Then picks
random r ∈ {1, . . . , N} and asks (recursively) a proof for
s(r) = [x1 = r]g ′.
The recursion works since g ′ has fewer operators.

Failure probability if Prover lies: Verifier may pick a number r that
swallows the lie, with probability ≤ d/N . Otherwise, Prover may
prove a false equality s(r) = [x1 = r]g ′ with probability ≤ ε.

So we can handle every additional operator Ox i at the expense of
another d/N term in the failure probability.
Seen from inside out, the (per variable) degree d first decreases to
1 (Lx i operators), and from there on it will never be more than 2.

Note The prover in this protocol uses public coins. But it is still

not trivial to show that for any (constant, or even polynomial-size)
k, a k-round interactive proof implies a (k+ 2)-round one with
public coins.

Constraint satisfaction

Generalize CNFs as follows. Constraints on a vector of n of binary
variables u= (u1, . . . , un). Instead of just disjunctive clauses, more
general constraints, depending on any q-tuple σ = (i1, . . . , iq) of
spots. Write

uσ = (ui1 , . . . , uiq).

A qCSP instance is a set of constraints φ = {φ1, . . . ,φm}, where
φi = (σi , fi), and each fi : {0, 1}q→ {0,1} is a Boolean function.
An assignment u ∈ {0,1}n satisfies the constraint φi if fi(uσi

) = 1.
Let

val(φ)

be the largest possible fraction of constraints that can be satisfied,
over all possible assignments u ∈ {0,1}n.

The ρ-GAPqCSP is a problem to determine, for a given instance φ
of qCSP, which of the following cases holds:

1 val(φ) = 1

2 val(φ)< ρ.

Examples MAX3SAT, MAXCUT, with appropriate ρ.

This is a promise problem: we are promised that the input falls into
one of the two classes—at least are not obliged to answer correctly
when it does not.

Gap-producing reduction

Theorem (PCP theorem, constraint satisfaction view) There

are constants ρ, q such that ρ-GAPqCSP is NP-hard: for every NP
language L there is a polynomial translation τ with:

Completeness: x ∈ L implies val(τ(x)) = 1.

Soundness: x 6∈ L implies val(τ(x))< ρ.

This implies that even approximating val(φ) within ρ is NP-hard.
But is a little stronger, since it shows a particular form of reduction.

Spot-checkable proofs

We will recast NP-hard constraint satisfaction into another
language, with a new version of interactive proof called
probabilistically checkable proofs (I will call them spot-checkable
proofs).

Definition An (r, q)-PCP verifier Vπ(x , i): The bit string π of

length 2rq that V checks is called a proof (for x ∈ L, corresponding
to the assignment u in the CSP above), if the following holds.
There is a set of constraints φi = (σi , fi) of size ≤ q with i ≤ 2r .
To some input x and random bit string i, of length r seen as an
index, verifier V computes in polynomial time the constraint φi
and returns

Vπ(x , i) = fi(πσi
).

Let L be a language. For verifying x ∈ L we require:

Completeness: If x ∈ L then there is a proof π with
P {Vπ(x , i) = 1 }= 1.

Soundness: If x 6∈ L then for all proofs π we have
P {Vπ(x , i) = 1 } ≤ 1/2.

If there is a (c · r(n), d · q(n))-PCP-verifier for L then we say
L ∈ PCP(r(n), q(n)).

Theorem (PCP theorem, proof verification view)

NP= PCP(log n, 1).

Equivalence of the two views.

MAX3SAT is hard to approximate

Theorem There is a constant ρ < 1 such that MAX3SAT cannot
be approximated to within ρ unless P= NP.

Proof.

1 Turn each of the m constraints into ≤ 2q clauses of a qCNF.

2 Use the following identity: A∨ B⇔∃z((¬z ∨ A)∧ (z ∨ B)).
Apply it repeatedly to disjunctions A∨ B of size > 3 with A of
size 2, turning any clause with q > 3 disjuncts to at most q− 1
clauses of ≤ 3 disjuncts each.

3 Now we have a 3-CNF with ≤ q2q constraints. If ε fraction of
the original constraints is unsatisfied then so is ε

q2q fraction of
the new ones.

From MAX3SAT to independent sets

• Take the usual reduction from 3SAT to independent sets:
Each occurrence of each literal is a point. Points are connected
if they are in the same clause or are negations of each other.
k satisfied clauses give k independent points and vice versa.

• We just showed that approximating the size of maximum
independent set to some factor 1− ε is NP-hard.
Let us increase the gap to any constant positive factor.
For graph G of size n, let Gk = (V k, Ek), where (u1, . . . , uk) is
adjacent to (v1, . . . , vk) iff there is an i where ui is adjacent to
vi . If the maximum independent set size of G is r, then that of

Gk is rk. Relative sizes: r
n →

� r
n

�k
.

Towards the proof of the PCP theorem

To illustrate the techniques, we will prove:

Theorem NP ∈ PCP(poly(n), 1).

This allows poly(n) random bits— and with it, proofs of size
2poly(n)—but still only a constant number of spot checks. Still not
trivial.

Difficulty: how to catch a prover when he leaves a gap only in one
spot of a long proof?

Solution idea: Encode the proof using some error-correcting code,
so that even one error of the original proof changes the
codeword in a large fraction of places.

Spot checking: We need not only that the cheating changes a large
fraction of the places, but that it is detectable by spot checks.
Our error-correcting code achieving this is very redundant.

Walsh-Hadamard code

Denote the inner product of n-bit vectors x,y by x� y=
∑n

i=1 x i yi .

Definition The Walsh-Hadamard code WH(u) of an n-bit word

u is a 2n-bit word representing a linear Boolean function:

fu =WH(u), fu(x) = u� x.

Example WH(0010) = 0011001100110011, where we listed

the values of 0011� x for x= 0000, 0001, . . . , 1111.

(I do not know why “Walsh-Hadamard”: both Hadamard and
Walsh lived before error-correcting codes.)
Clearly, every linear function f is a Walsh-Hadamard code fu for
some u.

Linearity check

A linear function is locally decodable: If g is close to linear function
f , then for all x, f (x) can be restored (with large probability) from
a few spot checks of g.
This relies on the following theorem showing that if a function
passes linearity check with high probability then it is almost linear.

Theorem Let f : {0,1}n→ {0,1} be such that

Px,y∈{0,1}n{ f (x+ y) = f (x) + f (y)} ≥ ρ > 1/2.

Then f is ρ-close to some linear function.

We accept this on faith, it is proved later in the book (using Fourier
transforms).

Local decoding

Let us use the theorem for local decoding. Suppose that g is
(1−δ)-close to a linear function f . Method to find f (x) for any x:
• Choose random vector u.
• Output y= g(x+ u)− g(u).

With the help of the theorem, it is an exercise to show
P {y= f (x) } ≥ 1− 2ρ.

Quadratic equations

For showing NP ⊆ PCP(poly(n), 1), start from an NP-complete
problem of algebraic nature: QUADEQ. This asks for the
solvability of a set of quadratic equations modulo 2.

Proposition QUADEQ is NP-complete.

Proof. Recall the reduction of circuit satisfiability to 3SAT. We
obtained first a set of constraints of the form z = ¬x , z = x ∨ y ,
z = x ∧ y . Now, for example z = x ∨ y can be translated into

z ≡ 1− (1− x)(1− y) (mod 2).

Example (all operations understood modulo 2):

u1u2 + u1u5 + u3u4 = 1

u1u4 + u2u2 = 0

u1u4 + u3u4 + u3u5 = 1

In general:

n
∑

j,k=1

ai, jku juk = bi , i = 1, . . . , m.

Let A be the m× n2 matrix (ai, jk), and u⊗ u the tensor product (a
vector with elements u juk). Then this can be written as
A(u⊗ u) = b.
From a solution (witness) u, the PCP proof is the pair (f , g) with

f =WH(u), g =WH(u⊗ u).

Checking the long proof

Each random check to be repeated some constant number of times.

1 Check the linearity of f , g. From now on, under f , g, we will
actually mean f̃ (x), g̃(x) obtained by local decoding.

2 Verify g =WH(u⊗ u) assuming f =WH(u): check
g(r⊗ r′) = f (r) f (r′) for random vectors r, r′.

3 Check A(u⊗ u) = b as follows.
With zi = (ai, jk), notice (A(u⊗ u))i = g(zi). Checking
g(zi) = bi for all i would be too many checks, so we combine
them into one, with random coefficients.
With columns a11, . . . ,ann of A , let v�A be the vector with
coordinates v� a jk, j, k = 1, . . . , n.
Check g(r�A) = r� b for a random vector r.

Simple estimates show that if the proof is bad then with probability
at least 1/2, one of these checks fails.

Binary constraints

How about constraints of size just 2?
Given a graph G = (V, E) and a partition V = S ∪ T , S ∩ T = ;, the
set of edges in the cut is denoted

E(S, T) = { (u, v) ∈ E : u ∈ S, v ∈ T }.

Example The MAX-CUT problem: given graph G = (V, E), find

the cut (S, T) with the largest possible |E(S, T)|. This is a 2CSP
problem: on each edge is a constraint saying that the ends should
have different values.
MAX-CUT is known to be NP-complete. Inapproximability is
harder.

Here, we will show that the constraints can be made binary, but we
make it at the expense of increasing the alphabet size from 2 to
some constant value W .

Definition qCSPW is the q-ary constraint satisfaction problem:

we have n variables x1, . . . , xn and m q-ary constraints as before,
but the variables can take values from {1, . . . , W}, for a constant W .

Example (Approximate 3-coloring) Given a graph G, assign 3
colors to its vertices in such a way that maximizes the number
edges whose endpoints have different colors.
This problem is in 2CSP3.

More generally, a 2CSPW has a constraint graph: its edges are the
pairs that participate in some constraint.

Proposition For every q there is a polynomial algorithm τ

translating every qCSP instance φ on n variables with m
constraints to an instance ψ= τ(φ) of 2CSP2q on m+ n variables,
with the following properties.
• If φ is satisfiable then ψ is also satisfiable.
• If val(φ)≤ 1− ε then val(ψ)≤ 1− ε/q.

Construction. If φ(u1, . . . , un) = φ1 ∧ · · · ∧φm, introduce for each
clause φi an extra variable yi = (zi1, . . . , ziq) ∈ {0,1}q (viewed as q
binary variables).
ψ has qm constraints. Suppose u4 occurs in φi: say
φi = u3 ∨¬u4 ∨ u7 (case q = 3). Then ψi,4 says

(zi1 ∨¬zi2 ∨ zi3)∧ (u4⇔ zi2).

This construction gives a constraint graph with unbounded degree
(possibly m).

Expander graphs

Sometimes a constraint graph with bounded degree is desirable.
The method to find hard problems with such a graph uses
expanders, an important tool in theoretical computer science.
An expander is a graph G = (V, E) with a constant degree d that
behaves in some important respects as a random graph. Let S ⊂ V .
If the graph is random with degree d, then we expect
E(S, T)≈ d|S||T |/|V |.

Definition For a λ≤ 1, we will call a graph a λ-expander if for

all cuts (S, T):

|E(S, T)| ≥ (1−λ)d|S|
|T |
|V |

.

It is not hard to prove by counting argument that expander graphs
of arbitrarily large size exist for all constants λ, and d.

What makes expanders interesting is that some of them can be
efficiently constructed (even though they behave somewhat like
random graphs).

Definition Let us fix degree d and λ < 1. We say that an

algorithm defines an explicit expander family with parameters
(d,λ) if for all n it computes in time polynomial in n a d-regular
graph Gn that is a λ-expander.

Theorem There is a constant d and an explicit expander family

with parameters (d, 0.9).

We absolutely have to take this now on faith.

Let φ = φ1 ∧ · · · ∧φm be a 2CSPW instance, on variables u1, . . . , un.
We will construct from this another set of constraints, with a
bounded degree constraint graph. Suppose variable u j appears in k
constraints.
• New variables y1

j , . . . , yk
j : one for each occurrence of u j in some

constraint φi . In old constraint φi , change u j to the
corresponding new variable y s

j .

• We need new constraints trying to enforce y1
j = · · ·= yk

j .

Adding just the constraints y1
j = y2

j , . . ., yk−1
j = yk

j is not

sufficient, since when for example y1
j 6= y2

j = · · ·= yk
j , only one

constraint is violated (the reduction may not be
gap-preserving).

• Idea: constraints y s
j = y t

j along edges (s, t) of a “random-like”
graph. Get expander graph Gk on {1, . . . , k}.

This defines a new constraint set ψ=ψ1 ∧ · · · ∧ψm′ , with
m′ ≤ m(d + 1). The graph of ψ has degree ≤ d + 1.

It is obvious that if φ is satisfiable then ψ is also.

Claim If val(φ)≤ 1− ε then val(ψ)≤ 1− ε/c with

c ≤max{2(d + 1), 20W}.

For the proof, consider an assignment to all variables y s
j . We assign

to u j the plurality value of y1
j , . . . , yk

j . Let t j be the number of y s
j

that disagree with the plurality: t j/k ≤ 1− 1/W .
Simple case: assume

∑

j t j < mε/2. Then at least mε/2 violated
constraints of φ have unchanged value in ψ, and thus are also
violated.
Interesting case:

∑

j t j ≥ mε/2. By the expansion property, in
graph Gk these t i non-plurality variables have at least
(1−λ)d t j(1− t j/k)≥ 0.1d t j/W edges to the plurality variables
(as λ≤ 0.9).
So 0.1

∑

j d t j/W ≥
mdε
20W equality constraints are violated.

Approximating Vertex Cover and Steiner Tree

(From Vijay Vazirani’s book.)

Example (Vertex cover) Given an undirected connected graph

G = (V, E), and cost function on vertices c : V → Q+, find a
minimum cost vertex cover, that is a set V ′ ⊆ V such that every
edge has at least one endpoint incident at V ′.
Special case, in which all vertices are of unit cost: cardinality
vertex cover problem.

An NP-optimization problem Π consists of:
• A set of valid instances DΠ, decidable in polynomial time.
• Each instance I ∈ DΠ has a nonempty polynomial-time

decidable set SΠ(I) of feasible solutions, of length polynomially
bounded in |I |.

• A polynomial time computable objective function, objΠ
assigning a nonnegative number to each pair (I , s), where I is
an instance and s is a feasible solution for I .

• It is said whether this is a minimization or maximization
problem.

OPTΠ(I) = the optimum for instance I .

Gap-preserving reductions

There are several versions of this, depending on what is to
minimize and what to maximize. It would be better to call
“gap-translating”, since the reduction may change the gap size.

Definition A gap-preserving reduction Γ from a minimization

problem Π1 to maximization problem Π2 comes with four
functions: f1, α, f2, and β .
For a given instance x of Π1, it computes in poly-time an instance y
of Π2 such that

1 If OPT(x)≤ f1(x), then OPT(y)≥ f2(y).

2 If OPT(x)> α(|x |) f1(x), then OPT(y)< β(|y|) f2(y).
Since Π1 is minimization and Π2 is maximization, α(|x |)≥ 1 and
β(|y|)≤ 1.

Hardness of Vertex cover problem

To establish hardness of Vertex cover, we will give a gap-preserving
reduction from MAX3SAT.
For a fixed k, let MAX3SAT(k) be the restriction of MAX3SAT to the
instances in which each variable occurs at most k times.
For d ≥ 1, let V C(d) denote the restriction of the cardinality vertex
cover problem to instances in which each vertex has degree at most
d.

Theorem There is a gap preserving reduction from

MAX3SAT(29) to V C(30) that transforms a Boolean formula ϕ to a
graph G = (V, E), such that:

a if OPT(ϕ) = m, then OPT(G)≤ 2
3 |V |,

b if OPT(ϕ)< (1− εb)m, then OPT(G)> 2
3(1+ εv)|V |,

where m is the number of clauses in ϕ, εb is the constant from the
gap of MAX3SAT(29), and εv = εb/2.

Proof of the theorem

Can assume that each clause has exactly 3 literals: repeat as
necessary.
ϕ 7→ graph G: each literal of each clause 7→ a node.
Edges:
• Connect literals within each clause.
• Connect each literal with its negations.

G is an instance of V C(30), since each vertex has two edges of the
first type and at most 28 edges of the second type.
Size of a maximum independent set is exactly OPT (ϕ): proof as in
the NP-completeness reduction.
Complement of a maximum independent set in G is a minimum
vertex cover, so:

1 OPT(ϕ) = m⇒ OPT(G) = 2m= 2
3 |V |.

2 OPT(ϕ)< (1− εb)m⇒ OPT(G)> 2
3(2+ εb)m, thus

OPT(G)> 2
3(1+ εv)|V |, for εv = εb/2.

Steiner tree

Example (Steiner tree problem) (R, S, cost). Here R, S are

disjoint sets of required and Steiner nodes.
cost : R∪S→Q+ is a metric (triangle inequality). (The graph is the
complete graph on R∪ S with value cost(u, v) on each edge (u, v).)
Find a minimum cost tree in G (cost is the sum of the metric value
of edges) that contains R.

Theorem There is a gap preserving reduction from V C(30) to

the Steiner tree problem transforming an instance G = (V, E) of
V C(30) to an instance H = (R, S, c) of Steiner tree, and satisfies:

a if OPT(G)≤ (2/3)|V |, then OPT(H)≤ |R|+ (2/3)|S| − 1

b if OPT(G)> (1+ εv)(2/3)|V |, then
OPT(H)> (1+ εs)(|R|+ (2/3)|S| − 1),

where ε = 4εv/97, and εv corresponds to the gap of the V C(30)
established earlier.

Proof

From an instance G = (V, E), construct an instance H = (R, S, cost)
of the Steiner tree problem such that H has a Steiner tree of cost
|R|+ c − 1 iff G has a vertex cover of size c.
Edge e ∈ E 7→ a corresponding node re ∈ R.
Vertex v ∈ V 7→ corresponding node sv ∈ S.

cost(a, b) = 1 if a, b ∈ S,

cost(a, b) = 2 if a, b ∈ R,

cost(re, sv) = 1 if e is incident to v,

cost(re, sv) = 2 otherwise.

For a vertex cover C of size c, let SC = { sv : v ∈ C }. There is a tree
spanning R∪ SC using edges of cost 1 only: cost R+ c − 1.
For the other direction, take a a Steiner tree T of cost R+ c − 1.

Claim (to be proved below) We can transform T to a Steiner

tree T ′ of the same cost that uses only edges of cost 1.

Now, T ′ must have exactly c Steiner vertices, with all required
nodes having an edge of cost one to these. So these Steiner vertices
form a vertex cover.

Proof of the claim

• First we make sure that all edges (u, v) of cost 2 are between
points of R, by repeating the following: If u ∈ S, remove (u, v)
from T and obtain two components of T . Put an edge from v to
some x ∈ R to connect these components.

• Now repeat the following: consider an edge (re, r f) in R.
Removing (re, r f) from T we obtain two components, with sets
of required nodes R1, R2: re ∈ R1 and r f ∈ R2.
Since G is connected, there is a path π in G from an endpoint of
e to an endpoint of f . There are edges (a, b) and (b, c) in π
with r(a,b) ∈ R1 and r(b,c) ∈ R2. Add these edges, of cost 1, to
replace (re, r f).

Summing up:
If OPT(G)≤ (2/3)|V |, then OPT(H)≤ |R|+ (2/3)|S| − 1.
If OPT(G)> (2/3)(1+ εv)|V |, then
OPT(H)> |R|+ (2/3)(1+ εv)|S| − 1..

Historical remark

Gap-preserving reductions were introduced by Papdimitriou and
Yannakakis: they have given such reductions between 17 problems,
about two years before the PCP theorem.

Average-case complexity

Two distinct ways to introduce probability theory into algorithmic
analysis:

Randomization

Average case analysis instead of worst-case analysis. Due to the
difficulties of meaningful results about the average case, we
postponed it—now we return.

Natural question: when to call an algorithm polynomial-time on
average? The corresponding answers in case of randomization
(resulting in classes RP, ZPP, BPP) were robust: did not depend
much on machine models, or the constants like 1/2, 2/3 used. The
reason was that an experiment could be repeated, using new
random numbers. The result can be different, even with the same
input.
Repetition is not an option in average-case complexity: if a bad
input causes the algorithm to run long, repetition still gets the
same input!

Examples

• Random graphs, with the usual distributions, are generally not
good examples: many difficult problems are easily solved for
them.

• But some manipulation helps: finding large clique in a random
graph with a planted clique of size n1/4, seems difficult.

• Closest solution of a random set of linear equations modulo 2.
(Decoding a random linear code.)
Note, for real numbers: l2 (least squares) closest solution has
formula. l1 closest solution can be found by linear
programming.

Distributions

There is no reason to consider just the uniform distribution. In
general, in an algorithmic problem for which the average case can
be discussed, we are given both a function f (x) to compute, and a
probability distribution D on the set of inputs: a distributional
problem is given by the pair (f ,D). Simplification:
• Only decision problems: deciding some language L.
• Instead of one distribution over all strings, consider for each n a

different distribution Dn, on inputs of length n. We still write
(L,D).

Warning example

Let A be an algorithm on a 2-tape Turing machine whose running
time t1(x) on strings x of length n behaves as follows:

tA(x) =

¨

2−n if x = 1n,

n otherwise.

Let X be a random variable over {0, 1}n, with the uniform
distribution, then

E t1(X) = 2n · 2−n + n · (1− 2−n)< n+ 1,

so this seems a polynomial algorithm. But we may have to simulate
this algorithm on a 1-tape Turing machine, resulting in a running
time about which we only know that it is less than (tA(x))2. But
then for the expected time we only know

E (tA(X))
2 ≤ 22n · 2−n + n2 · (1− 2−n) = 2n + n2(1− 2−n),

not polynomial anymore.

Levin’s tricky solution is to take roots before averaging:

Definition Running time tA is polynomial on average,

distribution D, if there is an ε > 0 such that

E (tA(X))ε

n
= O(1).

A distributional problem (L,D) is polynomial on average, is in
distP, if it has a decision algorithm with running time polynomial
on average.

You can check that this property is robust with respect to taking a
power.

Which distributions?

• Need to restrict the class of distributions considered: otherwise
we are back to worst-case analysis.

• A reasonable class of distributions D: let

µDn
(x) =

∑

y∈{0,1}n:y≤x

P(x),

where y ≤ x is in the lexicographic sense, be the cumulative
distribution function of D.
We require µDn

(x) to be computable in polynomial time
(approximation within 2−k in time polynomial in n+ k). Such
distributions will be called P-computable.

• Why not require just P(x) to be computable? This seems too
weak for the results that come. It does not imply
P-computability.

• A weaker property that works just as well: a distribution is
called P-samplable, if it is the distribution of the output of a
randomized polynomial-time computation.
P-computable implies P-samplable (exercise), but the converse
is not believed to be true.

Note Two distinct new definitions of polynomiality, both
needed:
• What is an expected polynomial-time algorithm?
• What is a polynomial-time distribution?

The average-case version of NP:

Definition (L,D) is in distNP, if L ∈ NP and D is P-computable.

Definition (Average-case reduction) (L,D)≤p (L′,D′), if
there is a polynomial-time computable τ, and polynomials p, q with

Completeness x ∈ L⇔ τ(x) ∈ L′

Length regularity |τ(x)|= p(|x |)
Domination For all n, all y ∈ {0, 1}p(n),

P { y = τ(Dn) } ≤ q(n)P
¦

y =D′p(n)

©

.

Here, Dn denotes also a random variable with distribution Dn.

Length regularity makes sure polynomial-time has the same
meaning in the input and output.
Domination makes sure that probable instances of (L,D) do not go
into improbable instances of (L′,D′): needed to assure that an
expected polynomial algorithm for (L′,D′) implies one for (L,D).

Theorem If (L,D)≤p (L′,D′), and (L′,D′) ∈ distP, then

(L,D) ∈ distP.

The proof is straightforward, but uses all the required properties of
reduction.

A complete problem

Here is an NP language U that is simplest to prove complete:

(〈V 〉, x , 1t) ∈ U

if 〈V 〉 describes a verifying Turing machine, and there is a witness
w such that V (x , w) accepts in t steps. (From now on, we write V
in place of 〈V 〉.)
This is clearly complete: for every NP language L with verification
function V and polynomial time bound p(n), the translation
x 7→ (V, x , 1p(|x |)) reduces L to U .

To define Un for a distNP-complete distributional problem (U ,U),
choose randomly an n-bit string defining (V, x , 1n) as follows:
• Choose V uniformly among the first n machine descriptions:
|V |= dlog ne.

• Choose |x | uniformly from {0, . . . , n− |V | − 1}.
• Choose each bit of x uniformly, then pad it with 10t to length n.

This distribution is not uniform, but is is separately uniform for
each grain size. Ignoring multiplicative factors,

P(V x10t)∼ 2−|x |, |x | ∈ {0, 1, . . . , n− |V | − 1}.

Non-uniform distributions

Reduction to (U ,U) uses a probability theory idea. In
randomization, how to produce an arbitrarily distributed real
variable X , with cumulative distribution function
F(y) = P {X < y }? As shown, producing uniform distribution is
sufficient:

Proposition Suppose that F : (−∞,∞)→ [0, 1] is a monotonic

continuous function.
The variable F(X) is uniformly distributed over [0,1].
Conversely, if Z is uniformly distributed over [0, 1] then F−1(Z) is
distributed like X .

The proof is immediate.

Example Let X have the exponential distribution with

parameter λ: P {X < a }= 1− e−λa for a ≥ 0, and 0 for a ≤ 0.
Then 1− e−λX is uniform. On the other hand, if Z is uniform, then
− ln(1− Z)/λ is exponential with parameter λ.

Proof of the completeness theorem

We want to reduce the distNP problem (L,D), where L is given by
the pair (V, p(·)): here V is a verification function and p(·) a
polynomial bound. For each |x |= n we have x ∈ L if there is a
witness w such that V (x , w) accepts in time p(n). For a random
variable X distributed according to Dn, let F(x) = P {X < x }.
Consider an instance x of (L,D), with |x |= n. We define an
instance (V ′, y, 0t) of (U ,U).

Approximate idea Define V ′ to have V ′(y, w) = V (F−1(y), w).
Let y = F(x), t = p(n).

This is using the original reduction, plus translation of an arbitrary
(continuous) distribution to the uniform one.
Difficulty: The distribution Dn is not continuous, and Un is not
uniform.
We will try with an approximate version, which assigns strings y of
large probability in U to strings x of large probability in D.

For x ∈ {0, 1}n, let

g(x) =

¨

0x1 if F(x + 1)− F(x)< 2−n,

1z10n−|z| if 0.z is the shortest binary fraction in [F(x), F(x + 1)).

The function g : {0, 1}n→ {0, 1}n+2 is one-to-one.

Q(y)

y

x

F(x)
h(x)

The bars on the left show Q(y) = PU(y). The red dots show
h(x) = 0.z determining g(x), in the cases where
PD(x) = F(x + 1)− F(x)≥ 2−n. As seen, PU(g(x)) is roughly
proportional to PD(x).

Second attempt: V ′(y, w) = V (g−1(y), w).
Difficulty: is g(·) invertible in polynomial time? Maybe, but a trick
takes away this worry. Defining V ′, just add another witness that
does the inversion:

V ′(y, u, w) =

¨

0 if g(u) 6= y,

V (u, w) otherwise.

The final translation is τ(y) = (V ′, g(y), 1p(n)).

Communication complexity

A new kind of computation problem and complexity. Sometimes,
conclusions about other kinds of complexity, but the results are
important in their own right, too.
We will rely more on the Lovász notes than on the Arora-Barak
book.

Participants: Alice sees input x , Bob sees input y , both ∈ {0,1}n.

Goal: find bit f (x , y), so that at the end, both know it.
Example: f (x , y) shows whether x = y .

Method: Communication protocol, sending bits to each other.
Bits already sent always determine whose turn it is.

Cost: The total number of bits sent (computation is free).

Complexity: κ(C) = minimum over protocols of maximum cost.

Trivial solution: Alice sends x , Bob computes the bit f (x , y) and
sends it back to Bob. So, n+ 1 is an upper bound on the cost.

Combinatorial formulation

Communication matrix C = (cx y) of type 2n × 2n, where
cx y = f (x , y). Alice has row x , Bob has column y .
At each time of the protocol, both Alice and Bob know that (x , y) is
in some submatrix M (selected rows and columns).
• When Alice sends a bit, this decreases M by choosing a subset

of the rows.
• When Bob sends a bit, this decreases M by choosing a subset of

the columns.

The algorithm stops when M has all 0’s or all 1’s.
Protocol is a decision tree: each node has a submatrix M , shows
who splits it and how.
κ(C) = is the smallest possible depth of a decision tree.

A lower bound tool

Theorem κ(C)≥ 1+ log rank(C).

Proof. The number of leaves of the decision tree that have all-1
submatrices is ≤ 2κ(C)−1. Each such submatrix contributes at most
1 to the rank.

Example Let f (x , y) = 1 iff x = y . The rank of the matrix is

clearly 2n, so the trivial upper bound n+ 1 is exact.

Randomization

• How many bits do Alice and Bob have to exchange, if they want
to find the value f (x , y) only with error probability bounded by
1/3?

• We will treat only the example where f (x , y) = 1 iff x = y . We
will use the idea already introduced in an assignment, checking
x = y in logarithmic space. Let |x |, |y| ≤ n. We will treat them
as numbers. Choose some N > n to be determined later.
Alice: choose a random prime p < N , and send p and x mod p.
(We do not count the computational complexity of this now,
even though it is not large.)
Bob: accept iff x mod p = y mod p.

We will analyze the probability of failure.
The following two facts of number theory are used without proof.
Let π(n) be the number of primes less than n, and Π(n) their
product.

Theorem π(n)∼ n
ln n , Π(n)> 2n for large n.

The protocol uses 2 log N bits. It clearly accepts if x = y . What is
the probability that it accepts when x 6= y?
Let d = |x − y|, with prime divisors q1, . . . , qk, then, with pk the kth
prime:

2n > d ≥ q1 · · ·qk ≥ 2 · 3 · · · pk > 2pk ,

hence k ≤ π(n). So the probability that our random prime p
divides d is

≤
k

π(N)
≤
π(n)
π(N)

∼
n
N

.

Choose N = 3n, then this is ∼ 1/3. We proved

Theorem The randomized communication complexity of x = y

is only 2 log n+O(1).

	Introduction
	Preliminaries
	Turing machines
	Universality
	Undecidability
	The polynomial time class
	Complexity classes
	Polynomial time

	NP-completeness
	Examples
	Polynomial-time verification
	Satisfiability
	Reducibility, completeness

	Polynomial space
	Randomized computation
	Polynomial identity
	Randomized classes

	Interactive proofs
	Spot-checkable proofs, hard approximations
	Approximating Vertex Cover and Steiner Tree
	Average-case complexity
	Communication complexity

