
CS 530 Advanced algorithms
Freely using the textbook by Cormen, Leiserson, Rivest, Stein

Péter Gács

Computer Science Department
Boston University

Spring 2018

The class structure

See the course homepage.
In the notes, section numbers and titles generally refer to the book:
CLSR: Algorithms, third edition.

Graphs, shortest paths

(Review of material from Data Structures and Algorithms courses.)
Graph G = (V , E). V is the set of vertices (points), E is the set of
edges (lines). Directed or undirected graph.
Paths.
Algorithms to
• �nd a shortest (directed) path from a point s to another, t.
• �nd all points reachable from point s.

Method:
• breadth-�rst search
• remember with each newly reached point v the point u from
which you arrived at it.

If edges have lengths, a little more complex algorithm: Dijkstra’s.

E�cient algorithms

• Asking for an algorithm, we generally understand an e�cient
algorithm: better than brute-force.

• We measure the e�ciency of an algorithm generally by the
running time as a function of the length L of its input data
(number of bits representing it).
A “brute-force” algoritm has running time that is typically
exponential in L, that is of the form 2cL.
We are looking for algorithms with running time that is
polynomial in L, that is of the form O(Lc).

Example 2.1 When looking for a shortest path from s to t,
searching through all possible paths leaving s would be a
brute-force algorithm.
Breadth-�rst search is, on the other hand, polynomial.

Matchings

Examples 2.2

1 n workers and n jobs. Each worker is capable of performing
some of the jobs. Is it possible to assign each worker to a
di�erent job, so that workers get jobs they can perform?

2 At a dance party, with 300 students, every boy knows 50 girls
and every girl knows 50 boys. Can they all dance
simultaneously so that only pairs who know each other dance
with each other?

It depends. If each worker is familiar only with the same one job
(say, digging), then no.

• Bipartite graph: left set L (of girls), right set R (of boys).
• Matching, perfect matching.

Theorem 2.3 If every node of a bipartite graph has the same
degree d ≥ 1 then it contains a perfect matching.

Examples showing the (local) necessity of the conditions:
• Bipartiteness is necessary, even if all degrees are the same.
• Bipartiteness and positive degrees is insu�cient.

Maximum matching

Let us just look for a maximum-size matching, even if it might not
be perfect. What is the best we can hope for?

De�nition 2.4 A set W of vertices in a graph is called a vertex
cover if every edge has at least one end in S.

If our graph has a vertex cover W of size k then clearly there is no
matching of size k + 1. So the maximum size of a matching is at
most as large as the minimum size of vertex cover. Surprisingly,
there is an equality.

Theorem 2.5 (Vertex cover, by König-Egerváry) In a bipartite
graph, the size of a maximum matching is equal to the size of a
minimum vertex cover.

We will obtain the proof along with an algorithm to �nd the
maximum matching.

Enlarging a matching

Greedy matching method: just keep adding edges to M as long as
we can. We may get stuck with a maximal (unextendable) matching
that is not perfect, does not have the maximum number of edges.

Augmenting paths

New way to enlarge a matching M:

• GM is a graph obtained from
G by directing the edges of M
to left, the others to right.

• Augmenting path: a directed
path of GM that starts in L,
ends in R, both outside M. To
augment, switch the M and
non-M edges.

Augment a matching M

From the set U of unmatched points in L, gradually build:
set S reachable on directed paths in GM.
function f : S \ U → S where f (s) = previous point on path.
S← U, f ← the empty function
while not stopped do

Look for an edge sr between s ∈ S ∩ L and r ∈ R \ S
if there is none then

M is a maximum matching, return
else

S← S ∪ {r}, f (r) ← s
if r matched to some q ∈ L then

S← S ∪ {q}, f (q) ← r
else

trace back path P from r to U using f (·)
switch edges on P to increase M
return

Lemma 2.6 If M has no augmenting path, then there is a vertex
cover of size |M |.

Proof. U := the unmatched
points of L,
U∗ := points reachable in GM

from U.
Claim: (U∗ ∩ R) ∪ (L \ U∗) is
• a vertex cover
• has size |M |.

Check both statements! �

U
U⇤ \ R

L \ U⇤

Marriage theorem

Let us get a criterion for perfect matching. For S ⊆ L let

N(S) ⊆ R

be the set of all neighbors of the nodes of S.

Theorem 2.7 (The Marriage Theorem) A bipartite graph has a
perfect matching if and only if |L| = |R| and for every S ⊆ L we
have |N(S)| ≥ |S|.

Proof. The condition is obviously necessary.
Now assume that there is no perfect matching; then the Vertex
Cover Theorem gives a vertex cover W of size < n. Let S = L \W ,
then it is easy to see that |N(S)| < |S|. �

S
N(S)

There is no perfect matching here, since |S| = 4, |N(S)| = 3.

Example 2.8 6 tribes partition an island into hunting territories
of 100 square miles each. 6 species of tortoise, with disjoint
habitats of 100 square miles each.
Can each tribe pick a tortoise living on its territory, with di�erent
tribes choosing di�erent totems?
Yes, by the Marriage Theorem. Indeed, the combined hunting area
of any k tribes intersects with at least k tortoise habitats.

Flow networks

• Directed graph. Source s, sink t. Every vertex is on some path
from s to t.

• Flow function: f (u, v) on all edges (u, v) showing the amount of
material going from u to v. We are only interested in the net
�ow f̂ (u, v) = f (u, v) − f (v, u): then f̂ (v, u) = −f̂ (u, v). So we
simply require

f (v, u) = −f (u, v).

• Excess at point v: ef (v) =
∑

u f (u, v). Its negative is called the
de�cit.

• Each edge (u, v) imposes a capacity c(u, v) ≥ 0 on the �ow:
f (u, v) ≤ c(u, v). (We may have c(u, v) , c(v, u).)

9/16

12/12

12/20

3/13

14

4

3/4 9 7s t

v1

v2

v3

v4

The notation f /c means �ow f along an edge with capacity c.
• The �ow function is called an s-t pre-�ow if all excesses other
than at s are nonnegative.
The value |f | of the pre-�ow is the excess ef (t).

• If ef (v) > 0 only for v = t then f is called an s-t �ow.
• Our goal is to maximize the value |f | of an s-t �ow.
(It is also the maximum s-t pre-�ow.)

Application to matching

s t

• n points on left, n on right. Edges directed to right, with unit
capacity from s to A and from B to t. and any capacity ≥ 1
(even ∞) between A and B.

• Perfect matching→ �ow of value n.
• Flow of value n→ perfect matching? Not always, but
fortunately (as will be seen), there is always an integer
maximum �ow.

Residual network, augmenting path

Given a pre-�ow f ,
residual capacity
cf (u, v) = c(u, v) − f (u, v). Makes
sense even with negative f (u, v).
The residual network Gf may
have edges (with positive
capacity) that were not in the
original network. An augmenting
path is an s-t path in Gf (with
some �ow along it). (How does it
change the original �ow?)

7

18

13

4

1 9
1s

t

v1

v2

v3

v4

9

3 2

4

10

9/16

12/12

18/20

13/13

10/14

4/4

3/4 9 6/7s t

v1

v2

v3

v4

12

6

Gf has the edges along which �ow can still be sent.
If f (u, v) > 0 then sending from v to u means decreasing f (u, v).

We obtained:

10/16

12/12

19/20

13/13

11/14

4/4

2/4 9 7/7
s t

v1

v2

v3

v4

This cannot be improved: look at the cut (S, T) with T = {v3, t}.

Cuts

Cut (S, T) is a partition of V with s ∈ S, t ∈ T.
Net �ow f (S, T) =

∑
u∈S,v∈T f (u, v).

Capacity c(S, T) =
∑

u∈S,v∈T c(u, v). Obviously, f (S, T) ≤ c(S, T).

9/16

12/12

12/20

3/13

14

4

3/4 9 7s t

v1

v2

v3

v4

S T

In this example, c(S, T) = 26, f (S, T) = 12.

Lemma 2.9 f (S, T) = |f |, the value of the �ow.

Corollary 2.10 The value of any �ow is bounded by the
capacity of any cut.

Theorem 2.11 (Max-�ow, min-cut) The following properties
of a �ow f are equivalent.

1 |f | = c(S, T) for some cut (S, T).

2 f is a maximum �ow.

3 There are no augmenting paths to f .

The equivalence of the �rst two statements says that the size of the
maximum �ow is equal to the size of the minimum cut.
Proof: 1⇒ 2 and 2⇒ 3 are obvious. The crucial step is 3⇒ 1 .
Given f with no augmenting paths, we construct (S, T): let S be the
nodes reachable from s in the residual network Gf .

Cut to vertex cover

• Edges from T ∩ L meet cut
({s}, T).

• Edges to N(S ∩ L) ∩ T in cut
(S ∩ L, T).

• Edges to S ∩ R meet cut
(S, {t}).

S \ L

S \ R

N(S \ L)

s t

So (T ∩ L) ∪N(S ∩ L) ∪ (S ∩ R) is a vertex cover, size is
≤ c({s}, T) + c(S ∩ L, T) + c(S ∩ R, {t}) = c(S, T).

Dinic-Edmonds-Karp algorithm

• Does the Ford-Fulkerson algorithm terminate? Not necessarily
(if capacities are not integers), unless we choose the augmenting
paths carefully.

• Integer capacities: always terminates, but may take
exponentially long.
Network derived from the bipartite matching problem: each
capacity is 1, so we terminate in polynomial time.

• Dinic-Edmonds-Karp: use breadth-�rst search for the
augmenting paths. Why should this terminate?

Lemma 2.12 In the Edmonds-Karp algorithm, the
shortest-path distance δf (s, v) increases monotonically with each
augmentation.

Proof: Let δf (s, u) be the distance of u from s in Gf , and let f ′ be the
augmented �ow. Assume, by contradiction δf ′(s, v) < δf (s, v) for
some v: let v be the one among these with smallest δf ′(s, v). Let
u→ v be be a shortest path edge in Gf ′ , and

d := δf (s, u)(= δf ′(s, u)), then δf ′(s, v) = d + 1.

Edge (u, v) is new in Gf ′; so (v, u) was a shortest path edge in Gf ,
giving δf (s, v) = d − 1. But δf ′(s, v) = d + 1 contradicts
δf ′(s, v) < δf (s, v).

An edge is said to be critical, when it has just been �lled to capacity.

Lemma 2.13 Between every two times that an edge (u, v) is
critical, δf (s, u) increases by at least 2.

Proof: When it is critical, δf (s, v) = δf (s, u) + 1. Then it disappears
until some �ow f ′. When it reappears, then (v, u) is critical, so

δf ′(s, u) = δf ′(s, v) + 1 ≥ δf (s, v) + 1 = δf (s, u) + 2.

Corollary 2.14 We have a polynomial algorithm.

Proof: Just bound the number of possible augmentations, noticing
that each augmentation makes some edge critical.

Let n = |V |, m = |E|. Each edge becomes critical at most n/2 times.
Therefore there are at most m · n/2 augmentations. Each
augmentation may take O(m) steps: total bound is

O(m2n).

There are better algorithms: Goldberg’s push-relabel algorithm
achieves O(n3).

Goldberg algorithm

This algorithm works with pre-�ows f with the property that
• No augmenting path exists for f .

It keeps adjusting the pre-�ows repeatedly while preserving this
property, until all excess in nodes other than t is eliminated.
Auxiliary integer labeling function called the height h(v) of nodes.
The following requirements imply that there is no augmenting
path: let n be the number of nodes.

Source and sink heights h(s) ≥ n, h(t) = 0.

Steepness bound If an edge (u, v) is in the residual network Gf
then h(u) ≤ h(v) + 1.

The algorithm keeps adjusting both the pre-�ow f and the height
function h.

It works as follows.

Initialization h(s) ← n, and h(v) ← 0 for all v , s.
f (e) ← c(e) for every edge leaving s, and f (e) ← 0 for all other e.

Pushing or relabeling Apply one of the following steps, whichever
is applicable:
Choose a node u with u , s, t and ef (u) > 0. (For additional
e�ciency choose the one with the highest h(u).)

if there is an edge (u, v) in the residual network Gf with
h(u) > h(v) then

push as much of the excess into f (u, v) as c(u, v) allows
else

h(u) ← h(u) + 1

These steps maintain the source and sink heights and the steepness
bound.
We will prove that the algorithm terminates in O(n3) steps.

Push-relabel on the example

(Looks better in presentation mode.)

16/16

12

20

13/13

14

4

4 9 7s t

v1

v2

v3

v4

6

0(16)

0(13)

0

0

0

Push-relabel on the example

(Looks better in presentation mode.)

16/16

12/12

20

13/13

14

4

4 9 7s t

v1

v2

v3

v4

6

1(4)

0(13)

0(12)

0

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

20

13/13

14

4

4 9 7s t

v1

v2

v3

v4

6

7

0(13)

0(12)

0

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

20

13/13

13/14

4

4 9 7s t

v1

v2

v3

v4

6

7

1

0(12)

0(13)

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

12/20

13/13

13/14

4

4 9 7s t

v1

v2

v3

v4

6

7

1

1

0(13)

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

12/20

13/13

13/14

4/4

4 9 7s t

v1

v2

v3

v4

6

7

1

1

1(9)

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

12/20

13/13

11/14

4/4

4 9 7/7s t

v1

v2

v3

v4

6

7

1(2)

1(7)

2

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

19/20

13/13

11/14

4/4

4 9 7/7s t

v1

v2

v3

v4

6

7

1(2)

1

2

0

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

19/20

13/13

11/14

4/4

4 9 7/7s t

v1

v2

v3

v4

6

7

7(2)

1

8

0

(After several back-and-forths between v2 and v4.)

Push-relabel on the example

(Looks better in presentation mode.)

12/16

12/12

19/20

11/13

11/14

4/4

4 9 7/7s t

v1

v2

v3

v4

6

7

7

1

8

0

Claim 2.15 If ef (u) > 0 then there is an augmenting path from
u to s.

Indeed, all the excess in u could only have come in �ows from s. (A
detailed accounting con�rms this.)

• The claim and the steepness bound imply h(u) ≤ h(s) + n − 1,
hence h(u) ≤ 2n − 1. Hence the number of relabeling
operations is bounded by (n − 2)(2n − 1) ≤ 2n2.

• A push operation on edge (u, v) is saturating if it results in
f (u, v) = c(u, v).

Claim 2.16 On each edge (u, v) there are at most n saturating
pushes. So the total number of saturating pushes is ≤ 2mn.

Indeed, between each two saturating pushes, the height must
increase by at least 2 (at the push in the opposite direction
h(v) > h(u)). Now recall the bound 2n − 1 on maximum height.

• We will bound by 4n3 the number of non-saturating pushes.

Claim 2.17

a At each value H of the maximum height of nodes with excess,
from each node u of height H there is at most one
non-saturating push.

b H changes at most 4n2 times.

To prove a : a nonsaturating push eliminates the excess of u, and u
can get a new excess only from a neighbor with height above h(u).
To prove b : H can also decrease; however, it can increase only by a
relabel operation, of which there are < 2n2.

• More sophisticated analysis shows a bound O(n2
√
m) in place of

O(n3).

Project selection

Network �ow theory has many applications. Sometimes it takes
ingenuity to apply it: see the following example.

• Set of possible projects to choose from: P = {1, 2, . . . , n}.
Project i brings pro�t pi: positive or negative (then it is a cost).

• Dependencies: acyclic directed graph G = (P, E).
Edge (i, j): project i requires project j, too.

• Not a time ordering. Example:
4: a wedding shower in which we could collect p4 = 1000
dollars, but then we have to:
• 5: buy food beforehand for −p5 = 200 dollars, and
• 8: clean up afterwards for −p8 = 250 dollars.

Goal: A subset S ⊆ P is feasible if with every project in it, it
contains all others on which it depends: u ∈ S, (u, v) ∈ E⇒
v ∈ S.
Find a feasible set S with maximum total pro�t p(S) =

∑
i∈S pi.

Idea: Flow network. Add source and sink s, t. Capacities:

1 Edges (i, j) ∈ E have capacity c(i, j) = ∞.
2 Edges (s, i) with pi > 0 have capacity c(s, i) = pi.
3 Edges (j, t) with pj < 0 have capacity c(j, t) = −pj.

A cut S, T has �nite capacity if and only if S′ = S \ {s} is
feasible.

If S is feasible:

c(S, T) =
∑

i∈T:pi>0

pi −
∑

j∈S:pj<0

pj . (2.1)

Obvious upper bound on the total pro�t: C =
∑

i:pi>0 pi.

Claim 2.18 p(S′) = C − c(S, T).

Indeed: the �rst sum of (2.1) is the amount of pro�ts we lose, and
the second sum is the amount of the costs we incur.

• To maximize the pro�t, �nd a minimum cut.

Vectors

For us, a vector is always given by a �nite sequence of numbers.
Row vectors, column vectors, matrices.
Notation:
• Z: integers,
• Q: rationals,
• R: reals,
• C: complex numbers,
• Fp: residues modulo the prime number p.

Q, R, C, Fp are �elds (allowing division as well as multiplication).
(We may get to see also some other �elds later.)
Addition: componentwise. Over a �eld, multiplication of a vector
by a �eld element is also de�ned (componentwise).
Linear combination.

Vector spaces

Vector space over a �eld: a set M of vectors closed under linear
combination.
Elements of the �eld will be also called scalars.

Examples 3.1

• The set C of complex numbers is a vector space over the �eld R

of real numbers (2 dimensional, see later).
• It is also a vector space over the complex numbers (1
dimensional).

• { (x, y, z) : x + y + z = 0 }.
• { (2t + u, u, t − u) : t, u ∈ R }.

Linear dependence

Subspace. Generated subspace.
Two equivalent criteria of dependence:
• one of them depends on the others (is in the subspace generated
by the others)

• a nontrivial linear combination is 0.

Examples 3.2

• {(1, 2), (3, 6)}. Two vectors are dependent when one is a scalar
multiple of the other.

• {(1, 0, 1), (0, 1, 0), (1, 1, 1)}.

Basis in a subspace M: a maximal lin. indep. set.

Theorem 3.3 A set is a basis i� it is a minimal generating set.

Examples 3.4

• A basis of { (x, y, z) : x + y + z = 0 } is {(0, 1, −1), (1, 0, −1)}.
• A basis of { (2t + u, u, t − u) : t, y ∈ R } is {(2, 0, 1), (1, 1, −1)}.

Theorem 3.5 All bases have the same number of elements.

Proof. Via the exchange lemma. �

Dimension of a vector space: this number.

Example 3.6 The set of all n-tuples of real numbers with the
property that the sum of their elements is 0 has dimension n − 1.

Let M be a vector space. If bi is an n-element basis, then each
vector x in M in has a unique expression as

x = x1b1 + · · · + xnbn .

The xi are called the coordinates of x with respect to this basis.

Example 3.7 If M is the set Rn of all n-tuples of real numbers
then the n-tuples of form ei = (0, . . . , 1, . . . , 0) (only position i has
1) form a basis. Then (x1, . . . , xn) = x1e1 + · · · + xnen.

Example 3.8 If A is the set of all n-tuples whose sum is 0 then
the n − 1 vectors

(1, −1, 0, . . . , 0)
(0, 1, −1, 0, . . . , 0)
. . .

(0, 0, 0, 0, . . . , 0, 1, −1)

form a basis of A (prove it!).

Matrices

• (aij). Dimensions. m × n
• Diagonal matrix diag(a11, . . . , ann)
• Identity matrix.
• Triangular (unit triangular) matrices.
• Permutation matrix.
• Transpose AT . Symmetric matrix.

Matrix representing a linear map

A p × q matrix A can represent a linear map Rq → Rp as follows:

x1 = a11y1 + · · · + a1qyq
...

. . .

xp = ap1y1 + · · · + apqyq

With column vectors x = (xi), y = (yj) and matrix A = (aij), this can
be written as

x = Ay.

This is taken as the de�nition of matrix-vector product.
General de�nition of a linear transformation F : V →W . Every
such transformation can be represented by a matrix, after we �x
bases in V and W .

Matrix multiplication

Let us also have

y1 = b11z1 + · · · + b1rzr
...

. . .

yq = bq1z1 + · · · + bqrzr

writeable as y = Bz. Then it can be computed that

x = Cz where C = (cik),

cik = ai1b1k + · · · + aiqbqk (i = 1, . . . , p, k = 1, . . . , r).

We de�ne the matrix product

AB = C

from above, which makes sense only for compatible matrices (p × q
and q × r). Then

x = Ay = A(Bz) = Cz = (AB)z.

From this we can infer also that matrix multiplication is associative.

Example 3.9 For A =
(0 1
0 0

)
, B =

(0 0
1 0

)
we have AB , BA.

Transpose of product

Easy to check: (AB)T = BTAT .

Inner product

If a = (ai), b = (bi) are vectors of the same dimension n taken as
column vectors then

aTb = a1b1 + · · · + anbn

is called their inner product: it is a scalar. The Euclidean norm
(length) of a vector v is de�ned as√

vTv = (
∑
i

v2i)
1/2 .

The (less frequently used) outer product makes sense for any two
column vectors of dimensions p, q, and is the p × q matrix
abT = (aibj).

Inverse, rank

Example 3.10 (
1 1
1 0

)−1
=

(
0 1
1 −1

)
.

(AB)−1 = B−1A−1.
(AT)−1 = (A−1)T .
A square matrix with no inverse is called singular. Nonsingular
matrices are also called regular.

Example 3.11 The matrix
(1 0
1 0

)
is singular.

Im(A) = set of image vectors of A. If the colums of matrix A are
a1, . . . , an, then the product Ax can also be written as

Ax = x1a1 + · · · + xnan .

This shows that Im(A) is generated by the column vectors of the
matrix, moreover

aj = Aej, with e1 =

©«

1
0
0
...

0

ª®®®®®®¬
, e2 =

©«

0
1
0
...

0

ª®®®®®®¬
, and so on.

Ker(A) = the set of vectors x with Ax = 0.
The sets Im(A) and Ker(A) are subspaces.
Null vector of a matrix: non-0 element of the kernel.

Theorem 3.12 If A : V →W then

dimKer(A) + dim Im(A) = dim(V).

Theorem 3.13 A square matrix A is singular i� KerA , {0}.

More generally, a non-square matrix A will be called singular, if
KerA , {0}.

• The rank of a set of vectors: the dimension of the space they
generate.

• The column rank of a matrix A is dim(ImA).
• The row rank is the dimension of the vector space of linear
functions over ImA (the dual space of ImA).

Theorem 3.14 The two ranks are the same (in general, the dual
of a vector space V has the same dimension as V). Also, rank(A) is
the smallest r such that there is an m × r matrix B and an r × n
matrix C with A = BC.

Interpretation: going through spaces with dimensions m→ r→ n.
We will see later a proof based on computation.

A special case is easy:

Proposition 3.15 A triangular matrix with only r rows (or only r
columns) and all non-0 diagonal elements in those rows, has row
rank and column rank r.

Example 3.16 The outer product A = bcT of two vectors has
rank 1, and this product is the decomposition.

The following is immediate:

Proposition 3.17 A square matrix is nonsingular i� it has full
rank.

• Minors.

Determinant

De�nition 3.18

• A permutation: an invertible map σ : {1, . . . , n} → {1, . . . , n}.
• The product of two permutations σ, τ is their consecutive
application: (στ)(x) = σ(τ(x)).

• A transposition is a permutation that interchanges just two
elements.

• An inversion in a permutation: a pair of numbers i < j with
σ(i) > σ(j). We denote by Inv(σ) the number of inversions in
σ.

• A permutation σ is even or odd depending on whether Inv(σ)
is even or odd.

Proposition 3.19

a A transposition is always an odd permutation.

b Inv(στ) ≡ Inv(σ) + Inv(τ) (mod 2).

It follows from these that multiplying a permutation with a
transposition always changes its parity.

De�nition 3.20 Let A = (aij) an n × n matrix. Then

det(A) =
∑
σ

(−1)Inv(σ)a1σ(1)a2σ(2) · · · anσ(n) . (3.1)

Geometrical interpretation the absolute value of the determinant
of a matrix A over R with column vectors a1, . . . , an is the
volume of the parallelepiped spanned by these vectors in
n-space.

Recursive formula Let Aij be the submatrix (minor) obtained by
deleting the ith row and jth column. Then

det(A) =
∑
j

(−1)i+jaij det(Aij).

Computing det(A) using this formula is just as ine�cient as
using the original de�nition (3.1).

Properties

• detA = det(AT).
• det(v1, v2, . . . , vn) is multilinear, that is linear in each argument
separately. For example, in the �rst argument:

det(αu + βv, v2, . . . , vn) = α det(u, v2, . . . , vn) + β det(v, v2, . . . , vn).

Hence det(0, v2, . . . , vn) = 0.
• Antisymmetric: changes sign at the swapping of any two
arguments. For example for the �rst two arguments:

det(v2, v1, . . . , vn) = − det(v1, v2, . . . , vn).

Hence det(u, u, v2, . . . , vn) = 0.

It follows that any multiple of one row (or column) can be added to
another without changing the determinant. From this it follows:

Theorem 3.21 A square matrix is singular i� its determinant is
0.

The following is also known.

Theorem 3.22 det(AB) = det(A) det(B).

Determinants for equations

Given an n × n square matrix A and an n-vector b, let A[i]b be the
matrix obtained by replacing the ith column of A with b. Then the
following theorem of linear algebra will be used frequently:

Theorem 3.23 (Cramer’s rule) If the matrix A is nonsingular
then the solution of equation Ax = b is a vector x whose coordinate
xi is

det(A[i]b)
det(A)

.

For example, if A is 2 × 2 matrix then

x2 =
a11b2 − a21b1
a11a22 − a21a12

=

����a11 b1
a21 b2

��������a11 a12
a21 a22

���� .

We will use Cramer’s rule to estimate the size of solutions. It is not
helpful for actual computations: for computing the determinant,
the e�cient way is still to use Gaussian elimination, the same as for
equations.

Positive de�nite matrices

An n × n matrix A = (aij) is symmetric if aij = aji (that is, A = AT).
To each symmetric matrix, we associate a function Rn → R called a
quadratic form and de�ned by

x 7→ xTAx =
∑
ij

aijxixj .

The matrix A is positive de�nite if xTAx ≥ 0 for all x and equality
holds only with x = 0.

For example, if B is a nonsingular matrix then A = BTB is always
positive de�nite. Indeed,

xTBTBx = (Bx)T(Bx),

the squared length of the vector Bx, and since B is nonsingular, this
is 0 only if x is 0.

Theorem 3.24 A is positive de�nite i� A = BTB for some
nonsingular B.

Linear equations
Informal treatment �rst

a11x1 + · · · + a1nxn = b1,
. . .

...

am1x1 + · · · + amnxn = bm .

How many solutions? Undetermined and overdetermined systems.

For simplicity, let us count just multiplications again.
Jordan elimination: eliminating �rst x1, then x2, and so on.

n · n · (n + (n − 1) + · · ·) ≈ n3/2.

Gauss elimination: eliminating xk only from equations
k + 1, k + 2, Then solving a triangular set of equations.
Elimination:

n(n − 1) + (n − 1)(n − 2) + · · · ≈ n3/3.

Triangular set of equations:

1 + 2 + · · · + (n − 1) ≈ n2/2.

Sparsity and �ll-in

Example 4.1 A sparse system that �lls in.

x1 + x2 + x3 + x4 + x5 + x6 = 4,
x1 + 6x2 = 5,
x1 + 6x3 = 5,
x1 + 6x4 = 5,
x1 + 6x5 = 5,
x1 + 6x6 = 5.

Eliminating x1 �lls in everything. There are some guidelines that
direct us to eliminate x2 �rst, which leads to no such �ll-in.

Outcomes of Gaussian elimination

(Possibly changing the order of equations and variables.)
• Contradiction: no solution.
• Triangular system with nonzero diagonal: 1 solution.
• Triangular system with k lines: the solution contains n − k
parameters xk+1, . . . , xn.

a11x1 + · · · + a1,k+1xk+1 + · · · + a1nxn = b1,
a22x2 + · · · + a2,k+1xk+1 + · · · + a2nxn = b2,

. . .
...

akkxk + · · · + ak,k+1xk+1 + · · · + aknxn = bk,

where a11, . . . , akk , 0. Then dimKer(A) = n − k,
dim Im(A) = k.

• The operations performed do not change row and colum rank,
so we �nd (row rank) = (column rank) = k.

Duality

The original system has no solution if and only if a certain other
system has solution. This other system is the one we obtain trying
to form a contradiction from the original one, via a linear
combination with coe�cients y1, . . . , ym:

y1 · a11x1 + · · · + a1nxn = b1
+ y2 · a21x1 + · · · + a2nxn = b2

...
. . .

...

+ ym · am1x1 + · · · + amnxn = bm
= 0 · x1 + · · · + 0 · xn = b′ (, 0)

We can always make b′ = 1 by scaling the coe�cients yi accordingly.

This gives the equations

a11y1 + · · · + am1ym = 0,
. . .

...

a1ny1 + · · · + amnym = 0,
b1y1 + · · · + bmym = 1.

Concisely: Ax = b is unsolvable if and only if (yTA = 0, yTb = 1) is
solvable.
Gives an easy way to prove that the system is unsolvable. The set of
coe�cients yi can be called a witness, or certi�cate of the
unsolvability of the original system.
Why is this true? If the equation is unsolvable, Gaussian
elimination produces an equation “0 = b′” where b′ , 0. And it
only combines equations linearly.

LUP decomposition

Permutation matrix. PA interchanges the rows, AP the columns.

Example 4.2 The following matrix represents the permutation
(2, 3, 1) since its rows are obtained by this permutation from the
unit matrix:

©«
0 0 1
1 0 0
0 1 0

ª®¬

LUP decomposition of matrix A:

PA = LU

Using for equation solution:

Pb = PAx = LUx.

From here, forward and back substitution.

Computing the LU decomposition
Zeroing out one column

The following operation adds λ i times row 2 to rows 3, 4, . . . of A:

L2A =

©«

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 λ3 1 0 0 . . . 0
0 λ4 0 1 0 . . . 0
...

...
...

...
...

. . .
...

ª®®®®®®¬
A.

L−12 =

©«

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 −λ3 1 0 0 . . . 0
0 −λ4 0 1 0 . . . 0
...

...
...

...
...

. . .
...

ª®®®®®®¬
.

Similarly, a matrix L1 might add multiples of row 1 to rows
2, 3,

Repeating:

B3 = L−12 L−11 A,

A = L1L2B3 =

©«

1 0 0 0 . . . 0
λ2 1 0 0 . . . 0
λ3 µ3 1 0 . . . 0
λ4 µ4 0 1 . . . 0
...

...
...

...
. . .

...

ª®®®®®®¬

©«

a11 a12 a13 . . .

0 a(1)22 a(1)23 . . .

0 0 a(2)33 . . .

0 0 a(2)43 . . .
...

...
...

. . .

ª®®®®®®®®¬

If

A =
(
a11 wT

v A′

)
then setting

L1 =

(
1 0

v/a11 In−1

)
, L−11 =

(
1 0

−v/a11 In−1

)
,

we have L−11 A = B2, A = L1B2 where

B2 =

(
a11 wT

0 A′ − vwT/a11

)
.

The matrix A2 = A′ − vwT/a11 is the Schur’s complement of A.
If A2 is singular then so is A (look at row rank).

Positive (semi)de�nite matrix

If A is symmetric, it can be written as A =
(
a11 vT

v A′

)
. Positive

de�niteness implies a11 > 0, positive semide�niteness implies
a11 ≥ 0. Moreover, it implies that if a11 = 0 then a1j = aj1 = 0 for
all j (exercise!). Assuming a11 > 0, with U1 = LT

1

L−11 AU−11 =
(
a11 0
0 A2

)
, A2 =

(
0 In−1

)
L−11 AU−11

(
0

In−1

)
,

with Schur’s complement A2 = A′ − vvT/a11.

Proposition 4.3 If A is positive (semi)de�nite then

A2 = A′ − vvT/a11 is also.

Proof. We have yTA2y = xTAx, with

x = U−11

(
0

In−1

)
y =:M1y.

If y is a witness for A2 not being positive (semi)de�nite by
yTA2y ≤ 0 then x =M1y is a witness for A not being positive
(semi)de�nite. �

Let A2 = (a
(2)
ij)

n
i, j=2, suppose it is positive semide�nite. This implies

a(2)ii ≥ 0. Take the �rst i with a(2)ii > 0. Then all rows and columns
of A2 with indices < i are 0. Continuing the decomposition using
a(2)ii we either arrive at A = LDLT with diagonal D ≥ 0 or get a
witness against positive semide�niteness.

Passing through a permutation

Suppose that having A = L1L2B3 = LB3, we want to permute the
rows 3, 4, . . . using a permutation π before applying some L−13 to
L−1A (say because position (3, 3) in this matrix is 0). Let P be the
permutation matrix belonging to π:

PL−1A = L3B4,

PA = PLP−1L3B4 = L̂L3B4 where

L̂ = PLP−1 =

©«

1 0 0 0 . . . 0
λ2 1 0 0 . . . 0
λ π(3) µπ(3) 1 0 . . . 0
λ π(4) µπ(4) 0 1 . . . 0
...

...
...

...
. . .

...

ª®®®®®®¬
,

assuming L1 was formed with λ2, λ3, . . ., and L2 with µ3, µ4,

• Organizing the computation: In the kth step, we have a
representation

PA = LBk+1,

where the �rst k columns of Bk+1 are 0 below the diagonal.
• During the computation, only one permutation π needs to be
maintained, in an array.

• Pivoting (see later).
• Positive de�nite matrices do not require it (see later).
• Putting it all in a single matrix: Figure 28.1 of CLRS.

LUP decomposition, in a single matrix

for i = 1 to n do π[i] ← i
k, l← 1 // Pivot is (k, l).
while k, l ≤ n do

k′← k, p← 0
while l ≤ n do

for i = k to n do
if |ail | > p then

p← |ail |, k′← i, break
if p > 0 then break
else l← l + 1 // singular

if l ≤ n then exchange π[k] ↔ π[k′] else break
for j = 1 to n do exchange akj ↔ ak′j
for i′ = k + 1 to n do

ai′l ← ai′l/akl
for j′ = l + 1 to n do ai′j′ ← ai′j′ − ai′lakj′

k← k + 1, l← l + 1

Proposition 4.4 For an n × n matrix A, the row rank is the same
as the column rank.

Proof. Let PA = LU. If U has only r rows then L needs to have
only r columns, and vice versa, so L: n × r and U: r × n.
Let us see that r is the row rank of A. Indeed, A has a column rank
r since U maps onto Rr and the image of L is also r-dimensional.
By transposition, the same is true for AT = UTLT , and hence the
row rank is the same as the colum rank. �

Inverting matrices

• Computing matrix inverse from an LUP decomposition:
solving equations

AXi = ei, i = 1, . . . , n.

• Inverting a diagonal matrix: (d1, . . . , dn)−1 = (d−11 , . . . , d−1n).

• Inverting a matrix L =
(B 0
C D

)
=

(B 0
0 D

) (
I 0

D−1C I

)
: We have

L−1 =
(

I 0
−D−1C I

) (
B−1 0
0 D−1

)
=

(
B−1 0

−D−1CB−1 D−1

)
.

• For an upper triangular matrix U =
(B C
0 D

)
we get similarly

U−1 =
(
B−1 −B−1CD−1
0 D−1

)
.

Theorem 5.1 Multiplication is no harder than inversion.

Proof. Let

D = L1L2 =
©«
I 0 0
A I 0
0 B I

ª®¬ = ©«
I 0 0
A I 0
0 0 I

ª®¬ ©«
I 0 0
0 I 0
0 B I

ª®¬ .
Its inverse is

D−1 = L−12 L−11 =
©«
I 0 0
0 I 0
0 −B I

ª®¬ ©«
I 0 0
−A I 0
0 0 I

ª®¬ = ©«
I 0 0
−A I 0
AB −B I

ª®¬ .
�

Theorem 5.2 Inversion is no harder than multiplication.

Let n be power of 2. Assume �rst that A is symmetric, positive
de�nite, A =

(
B CT

C D

)
. Trying a block version of the LU

decomposition:

A =
(

I 0
CB−1 I

) (
B CT

0 D −CB−1CT

)
.

De�ne Q = B−1CT , and de�ne the Schur complement as
S = D −CQ. We will see later that it is positive de�nite, so it has an
inverse.

We have A =
(

I 0
QT I

) (
B CT

0 S

)
. By the inversion of triangular

matrices learned before:(
B CT

0 S

)−1
=

(
B−1 −B−1CTS−1

0 S−1

)
=

(
B−1 −QS−1

0 S−1

)
,

A−1 =
(

I 0
−QT I

) (
B−1 −QS−1

0 S−1

)
=

(
B−1 +QS−1QT −QS−1

−S−1QT S−1

)
.

4 multiplications of size n/2 matrices

Q = B−1CT, QTCT, S−1QT, Q(S−1QT),

further 2 inversions and c · n2 additions:

I(2n) ≤ 2I(n) + 4M(n) + c1n2 = 2I(n) + F(n),

I(4n) ≤ 4I(n) + F(2n) + 2F(n),

I(2k) ≤ 2kI(1) + F(2k−1) + 2F(2k−2) + · · · + 2k−1F(1).

Assume F(n) ≤ c2nb with b > 1. Then

F(2k−i)2i ≤ c22bk−bi+i = 2bk2−(b−1)i .

So,

I(2k) ≤ 2kI(1) + c22b(k−1)(1 + 2−(b−1) + 2−2(b−1) + · · ·)

< 2k + c22b(k−1)/(1 − 2−(b−1)).

Inverting an arbitrary matrix: A−1 = (ATA)−1AT .

Least squares approximation (reading)

Data: (x1, y1), . . . , (xm, ym).
Fitting F(x) = c1f1(x) + · · · + cnfn(x).
It is reasonable to choose n much smaller than m (noise).

A =
©«
f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)
...

...
. . .

...

f1(xm) f2(xm) . . . fn(xm)

ª®®®®¬
.

Equation Ac = y, generally unsolvable in the variable c. We want to
minimize the error η = Ac − y. Look at the subspace V of vectors
of the form Ac. In V , we want to �nd c for which Ac is closest to y.

Then Ac is the projection of y to to V , with the property that
Ac − y is orthogonal to every vector of the form Ax:

(Ac − y)TAx = 0 for all x, so

(Ac − y)TA = 0

AT(Ac − y) = 0

The equation ATAc = ATy is called the normal equation, solvable
by LU decomposition.
Explicit solution: Assume that A has full column rank, then ATA is
positive de�nite.
c = (ATA)−1ATy. Here (ATA)−1AT is called the pseudo-inverse of
A.

Working with exact fractions

• A single addition or subtraction may double the number of
digits needed, even if the size of the numbers does not grow.

a
b
+

c
d
=

ad + bc
bd

.

• If we are lucky, we can simplify the fraction.
• It turns out that with Gaussian elimination, we will be lucky
enough.

Solving linear equations exactly

Computing the determinant of an integer matrix is a task that can
stand for many similar ones, like the LU decomposition, inversion
or equation solution. The following considerations apply to all.

• How large is the determinant? Interpretation as volume: if
matrix A has rows aT1 , . . . , a

T
n then

detA ≤ |a1 | · · · |an | =
n∏
i=1

(

n∑
j=1

a2ij)
1/2 .

This is known as Hadamard’s inequality.
• So if the inputs are integers then the length of the result in bits
is polynomial in the length of the inputs.

The paradox of the determinant

• det(A) is a polynomial of the elements aij. But it has n! terms,
and this is the number of operations needed in the usual
formulas for computing it.

• As seen, the length of the output does not require so many
operations.

• Computing det(A) by Gaussian elimination uses only O(n3)
operations, but these involve divisions.

• Divisions create a dilemma.
• Rounding introduces errors that may accumulate.
• Computing exactly with fractions might increase the bit length of
the intermediate fractions a/b to exponential size.

• Below we will show that Gaussian elimination is special: it is
possible to keep the bit length of the intermediate fractions to
polynomial size.

Theorem 7.1 Assume that Gaussian elimination on an integer
matrix A succeeds without pivoting. Every intermediate term in
the Gaussian elimination is a fraction whose numerator and
denominator are some subdeterminants of the original matrix.

(By the Hadamard inequality, these are not too large.)
More precisely, let
• A(k) = be the matrix after k stages of the elimination.
• D(k) = the minor determined by the �rst k rows and columns of
A.

• D(k)ij =, for k + 1 ≤ i, j ≤ n, the minor determined by the �rst k
rows and the ith row and the �rst k columns and the jth column.

Then for i, j > k we have a(k)ij =
detD(k)ij
detD(k)

.

Proof. In the process of Gaussian elimination, the determinants of
the matrices D(k) and D(k)ij do not change: they are the same for A(k)

as for A. But in A(k), both matrices are upper triangular. Denoting
the elements on their main diagonal by d1, . . . , dk+1, a

(k)
ij , we have

detD(k) = d1 · · · dk+1,

detD(k)ij = d1 · · · dk+1 · a
(k)
ij .

Divide these two equations by each other. �

• A similar argument leads to the theorem called Cramer’s Rule,
announced earlier.

• The theorem shows that if we always reduce fractions (using the
Euclidean algorithm) our algorithm is polynomial.

• There is a cheaper way than doing complete cancellation (see
exact-Gauss.pdf).

• There is also a way to avoid working with fractions altogether:
modular computation. See for example exact-Gauss.pdf.

When rounding is unavoidable (reading)

Floating point: 0.235 · 105 (3 digits precision)
Complete pivoting: experts generally do not advise it.
Considerations of �ll-in are typically given preference over
considerations of round-o� errors, since if the matrix is huge and
sparse, we may not be able to carry out the computations at all if
there is too much �ll-in.

Example 7.2

0.0001x + y = 1
0.5x + 0.5y = 1

(7.1)

Eliminate x : −4999.5y = −4999.
Rounding to 3 signi�cant digits:

−5000y = −5000
y = 1
x = 0

True solution: y = 0.999899, rounds to 1, x = 1000.1, rounds to 1.
We get the true solution by choosing the second equation for
pivoting, rather than the �rst equation.

Forward error analysis: comparing the solution with the true
solution.
We can make our solutions look better introducing backward error
analysis: showing that our solution solves precisely a system that
di�ers only a little from the original.

Frequently, partial pivoting (choosing the pivot element just in the
k-th column) is su�cient to �nd a good solution in terms of forward
error analysis. However:

Example 7.3

x + 10, 000y = 10, 000
0.5x + 0.5y = 1

(7.2)

Choosing the �rst equation for pivoting seems OK. Eliminate x
from the second eq:

−5000.5y = −4, 999
y = 1 after rounding
x = 0

This is wrong even if we do backward error analysis: every system

a11x + a12y = 10, 000
a21x + a22y = 1

satis�ed by x = 0, y = 1 must have a22 = 1.

The problem is that our system is not well scaled. Row scaling and
column scaling: ∑

ij

riaijsjxj = ribi

where ri, sj are powers of 10. Equilibration: we can always achieve

0.1 < max
j
|riaijsj | ≤ 1,

0.1 < max
i
|riaijsj | ≤ 1.

Example 7.4 In (7.2), let r1 = 10−4, all other coe�s are 1: We
get back (7.1), which we solve by partial pivoting as before.

Sometimes, like here, there are several ways to scale, and not all are
good.

Example 7.5 Choose s2 = 10−4, all other coe�s 1:

x + y′ = 10, 000
0.5x + 0.00005y′ = 1

(We could have gotten this system to start with. . ..) Eliminate x
from the second equation:

−0.49995y′ = −4999
y′ = 10000 after rounding
x = 0

so, we again got the bad solution.

Fortunately, such pathological systems are rare in practice.

Linear programming
Problem de�nition

How about solving a system of linear inequalities?

Ax ≤ b.

We will try to solve a seemingly more general problem:

maximize cTx
subject to Ax ≤ b.

This optimization problem is called a linear program. (Not
program in the computer programming sense.)
• Objective function, constraints, feasible solution, optimal
solution.

• Unbounded: if the optimal objective value is in�nite.
• A feasible solution makes a constraint tight if satis�es it with
equality.

Example 8.1 Three voting districts: urban, suburban, rural.
Votes needed: 50,000, 100,000, 25,000.
Issues: build roads, gun control, farm subsidies, gasoline tax.
Votes gained, if you spend $ 100 on advertising on any of these
issues:

adv. spent policy urban suburban rural
x1 build roads −2 5 3
x2 gun control 8 2 −5
x3 farm subsidies 0 0 10
x4 gasoline tax 10 0 −2

votes needed 50, 000 100, 000 25, 000

Minimize the advertising budget (x1 + · · · + x4) · 100.

The linear program:

minimize x1 + x2 + x3 + x4
subject to −2x1 + 8x2 + 10x4 ≥ 50, 000

5x1 + 2x2 ≥ 100, 000
3x1 − 5x2 + 10x3 − 2x4 ≥ 25, 000

Implicit inequalities: xi ≥ 0.

• Solutions form a convex polyhedron (intersection of
half-spaces).

• A vertex is a feasible solution that is the unique solution of the
sytem of equations obtained from the constraints that it makes
tight (equality).

• Extremal points of the polyhedron: points that are not the
middle of any segment of positive length that is in in the
polyhedron.

• Homework: the extremal points are the vertices, (and vice
versa).

Solution idea

Two-dimensional example

maximize x1 + x2
subject to 4x1 − x2 ≤ 8

2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2
x1, x2 ≥ 0

Graphical representation, see book.
The simplex algorithm: moving from a vertex to a nearby one
(changing only two inequalities) in such a way that the objective
function keeps increasing.

Worry: there may be too many vertices. For example, the set of 2n
inequalities

0 ≤ xi ≤ 1, i = 1, . . . , n

has 2n extremal points.

Formulating problems as linear programs
Maximum error minimization

Solving an unsolvable system of equations Ax = b, we have seen
that we can minimize Ax − b in a least-square sense. Another
possibility is to minimize the maximum di�erence:

min
x
max

i
|aTi x − bi |.

Linear programming can solve this:

minimize y
subject to −y ≤ aTi x − bi ≤ y, i = 1, . . . , m.

Single-source shortest paths

(Maximization is counter-intuitive, but correct.)

maximize d[t]
subject to d[v] ≤ d[u] + w(u, v) for each edge (u, v)

d[s] ≥ 0

Maximum �ow

Capacity c(u, v) ≥ 0.

maximize
∑

v f (s, v)
subject to f (u, v) ≤ c(u, v)

f (u, v) = −f (v, u)∑
v f (u, v) = 0 for u ∈ V − {s, t}

The matching problem.
Given m workers and n jobs, and a graph connecting each worker
with some jobs he is capable of performing. Goal: to connect the
maximum number of workers with distinct jobs.
This can be reduced to a maximum �ow problem (see homework
and book). Using the fact that if the capacities are integer then there
is an integer optimal solution to the �ow problem.

Minimum-cost �ow
Edge cost a(u, v). Send d units of �ow from s to t and minimize the
total cost ∑

u,v

a(u, v)f (u, v).

Multicommodity �ow
k di�erent commodities Ki = (si, ti, di), where di is the demand. The
capacities constrain the aggregate �ow. There is nothing to
optimize: just determine the feasibility.

Games

A zero-sum two-person game is played between player 1 and
player 2 and de�ned by an m × n matrix A. We say that if player 1
chooses a pure strategy i ∈ {1, . . . , m} and player 2 chooses pure
strategy j ∈ {1, . . . , n} then there is payo�: player 2 pays amount aij
to player 1.

Example 8.2 m = n = 2, pure strategies {1, 2} are called “attack
left”, “attack right” for player 1 and “defend left”, “defend right” for
player 2. The matrix is

A =
(
−1 1
1 −1

)
.

Player 1 can achieve maximinj aij. Player 2 can achieve
minjmaxi aij. Clearly, maximinj aij ≤ minjmaxi aij. Typically the
inequality is strict.

Both players may improve their achievable values by
randomization. Mixed strategy: a probability distribution over pure
strategies. p = (p1, . . . , pm) for player 1 and q = (q1, . . . , qm) for
player 2. Expected payo�:

∑
ij aijpiqj. Can be viewed as extension of

both sets of strategies to the in�nite sets of distributions p, q. The
big result will be that now maxpminq = minqmaxp.
Translation into linear programming: If player 1 knows the mixed
strategy q of player 2, he will want to achieve

max
p

∑
i

pi
∑
j

aijqj = max
i

∑
j

aijqj

since a pure strategy always achieves the maximum. Player 2 wants
to minimize this and can indeed achieve

min
q
max

i

∑
j

aijqj .

Rewritten as a linear program:

minimize t
subject to t ≥

∑
j aijqj, i = 1, . . . , m

qj ≥ 0, j = 1, . . . , n∑
j qj = 1.

Standard and slack form

Standard form

maximize cTx
subject to Ax ≤ b

x ≥ 0

Nonnegativity constraints. Unbounded: if the optimal objective
value is in�nite.
Converting into standard form:

xj = x′j − x
′′
j , subject to x′j , x

′′
j ≥ 0.

Handling equality constraints.

Slack form
In the slack form, the only inequality constraints are nonnegativity
constraints. For this, we introduce slack variables on the left:

xn+i = bi −
n∑
j=1

aijxj .

In this form, they are also called basic variables. The objective
function does not depend on the basic variables. We denote its
value by z.

Example for the slack form notation:

z = 2x1 − 3x2 + 3x3
x4 = 7 − x1 − x2 + x3
x5 = −7 + x1 + x2 − x3
x6 = 4 − x1 + 2x2 − 2x3

More generally: B = set of indices of basic variables, |B| = m.
N = set of indices of nonbasic variables, |N | = n,
B ∪N = {1, . . . , m + n}. The slack form is given by
(N, B, A, b, c, v):

z = v +
∑

j∈N cjxj
xi = bi −

∑
j∈N aijxj for i ∈ B.

Note that these equations are always independent.

Lemma 8.3 The slack form is uniquely determined by the set of
basic variables.

Proof. Simple, using the uniqueness of linear forms. �

This is useful, since the matrix is therefore only needed for
deciding how to continue. We might have other ways to decide this.

The simplex algorithm

• A basic solution: set each nonbasic variable to 0.
• Assume that there is a basic feasible solution, that is where all bi
are positive.
See later how to �nd one.

Example:

z = 3x1 + x2 + 2x3
x4 = 30 − x1 − x2 − 3x3
x5 = 24 − 2x1 − 2x2 − 5x3
x6 = 36 − 4x1 − x2 − 2x3

• Iteration step: Increase x1 until one of the constraints becomes
tight: now, this is x6 since bi/ai1 is minimal for i = 6.

• Pivot operation: exchange x6 for x1.

x1 = 9 − x2/4 − x3/2 − x6/4

Here, x1 is the entering variable, x6 the leaving variable.
• If not possible, are we done? See later.

Rewrite all other equations, substituting this x1:

z = 27 + 1
4x2 +

1
2x3 −

3
4x6

x1 = 9 − 1
4x2 −

1
2x3 −

1
4x6

x4 = 21 − 3
4x2 −

5
2x3 +

1
4x6

x5 = 6 − 3
2x2 − 4x3 + 1

2x6

Formal pivot algorithm: no surprise.

Cases with no increase by pivoting

Let z = v +
∑

j∈N cjxj at some intermediate stage. Cases:

1 All cj are ≤ 0: then we are at the optimum.

2 There is a cj > 0 with aij > 0 for all i: then the optimum is ∞,
this is the unbounded case.

3 There are j with cj > 0, but for each such j, there are i with
aij < 0, and for such i we have bi = 0. Pivoting does not
increase the objective function: danger of cycling.

The problem of cycling: Can be solved, though you will not
encounter it in practice.
• Bland’s Rule: choose entering variable with the smallest, then
leaving variable with smallest index. (See handout for proof of
termination.)

• Geometry: several minimal sets of constraints de�ne the same
vertex—must �nd one from which we can leave on an edge and
increase the objective.

Initial basic feasible solution

Solve the following auxiliary problem, with an additional variable
x0:

minimize x0
subject to aTi x − x0 ≤ bi i = 1, . . . , m,

x, x0 ≥ 0

If the optimal x0 is 0 then the optimal basic feasible solution is a
basic feasible solution to the original problem.

Slack form:

z = − x0,
xn+i = bi + x0 −

∑n
j=1 aijxj i = 1, . . . , m.

The basic solution for this basis is not feasible (otherwise we would
not need x0). Still, perform the operation of bringing x0 into the
basis, using an i with smallest bi (which is negative). Assuming b1 is
this:

z = b1 −
∑n

j=1 a1jxj − xn+1,
x0 = −b1 +

∑n
j=1 a1jxj + xn+1,

xn+i = (bi − b1) −
∑n

j=1(aij − a1j)xj + xn+1, i = 2, . . . , m.

The basic solution of this system is feasible. Carry out the simplex
method starting from it. Eventually (if the optimum is x0 = 0),
bring out x0 from the basis again (any way you want, will not
change the solution as b0 = 0 now). Now you have got a basic
feasible solution of the original program.

Complexity of the simplex method

• Each pivot step takes O(mn) algebraic operations.
• How many pivot steps? Can be exponential.
Does not occur in practice, where the number of needed
iterations is rarely higher than 3max(m, n). Does not occur on
“random” problems, but mathematically random problems are
not typical in practice.

• Spielman-Teng: on a small random perturbation of a linear
program (a certain version of) the simplex algorithm terminates
in polynomial time (on average).

Polynomial algorithm

Is there a polynomial algorithm for linear programming? Two ways
to make the question precise:
• Is there an algorithm with number of algebraic operations and
comparisons polynomial in m + n? The answer is not known.

• Is there an algorithm with number of bit operations polynomial
in the length of input (measured in bits)? The answer is yes. We
will see such an algorithm; however, it is rarely competitive in
practice.

Duality

Primal (standard form): maximize cTx subject to Ax ≤ b and
x ≥ 0. Value of the optimum (if feasible): z∗. Dual:

ATy ≥ c yTA ≥ cT

y ≥ 0 yT ≥ 0
min bTy min yTb

Value of the optimum if feasible: t∗.

Proposition 8.4 (Weak duality) z∗ ≤ t∗, moreover for every
pair of feasible solutions x, y of the primal and dual:

cTx ≤ yTAx ≤ yTb = bTy. (8.1)

Use of duality. If somebody o�ers you a feasible solution to the
dual, you can use it to upperbound the optimum of the primal (and
for example decide that it is not worth continuing the simplex
iterations).

Inequality interpretation

a11x1 + . . . + a1nxn ≤ b1
. . .

am1x1 + . . . + amnxn ≤ bm
−x1 ≤ 0
. . .

−xn ≤ 0

(8.2)

If a nonnegative linear combination of (8.2) gives

c1x1 + . . . + cnxn ≤ µ. (8.3)

then the optimum is ≤ µ. Let y1, . . . , ym, z1, . . . , zn be the
coe�cients of such a linear combination, then

y1a1j + . . . + ymamj + zj = cj, j = 1, . . . , m,
y1b1 + . . . + ymbm = µ,

that is yTA ≥ cT , yTb = µ. The dual asks for the smallest µ.

Economical interpretation

• bi = the total amount of resource i that you have (kinds of
workers, land, machines).

• aij = the amount of resource i needed for activity j.
• cj = the income from a unit of activity j.
• xj = amount of activity j.

Ax ≤ b says that you can use only the resources you have.
Primal problem: maximize the income cTx achievable with the
given resources.

Suppose that resources i have prices yi ≥ 0 with the property that∑
i

yiaij ≥ cj, j = 1, . . . , n.

Then selling the resources for product j you get at least as much as
the income cj from selling the product j: so we can call these
discouraging prices. For such a set of prices, the total income

∑
i biyi

from selling all your resouces upperbounds any possible income∑
j cjxj from production.

Dual problem: Minimize
∑

i biyi obtainable from discouraging
prices.
The optimal discouraging prices are called shadow prices.

You can skip this slide

Suppose that you can buy lacking resources and sell unused
resources. Total income:

L(x, y) = cTx + yT(b − Ax) = (cT − yTA)x + yTb.

Let

f (x̂) = inf
y≥0

L(x̂, y) ≤ L(x̂, ŷ) ≤ sup
x≥0

L(x, ŷ) = g(ŷ).

Then f (x) > −∞ needs Ax ≤ b. Hence if the primal is feasible then
for the optimal x∗ (choosing y to make yT(b − Ax∗) = 0) we have

sup
x

f (x) = cTx∗ = z∗ .

Similarly g(y) < ∞ needs cT ≤ yTA, hence if the dual is feasible
then we have

z∗ ≤ inf
y
g(y) = (y∗)Tb = t∗ .

Complementary slackness conditions:

yT(b − Ax) = 0, (yTA − cT)x = 0.

Proposition 8.5 Equality of the primal and dual optima implies
complementary slackness.

Interpretation:
• Inactive constraints have shadow price yi = 0.
• Activities that do not yield the income required by shadow
prices have level xj = 0.

Theorem 8.6 (Strong duality) The primal problem has an
optimum if and only if the dual is feasible, and we have

z∗ = max cTx = min yTb = t∗ .

This surprising theorem says that at the shadow prices, the total
value of your resources is equal to the income from optimal
production.
Many interesting uses and interpretations, and many proofs. The
handout gives a geometric proof not dependent on the simplex
algorithm. But the simplex algorithm gives an explicit solution to
the dual.

Our proof of strong duality uses the following result of the analysis
of the simplex algorithm.

Theorem 8.7 If there is an optimum v then there is a basis
B ⊂ {1, . . . , m + n} belonging to a basic feasible solution, and
coe�cients c̃i ≤ 0 such that

cTx = v + c̃Tx,

is an identity for the variable x, where c̃i = 0 for i ∈ B.

For the proof, de�ne the nonnegative variables

ỹi = −c̃n+i i = 1, . . . , m.

For any x, the following transformation holds, where i = 1, . . . , m,
j = 1, . . . , n:∑

j

cjxj = v +
∑
j

c̃jxj +
∑
i

c̃n+ixn+i

= v +
∑
j

c̃jxj +
∑
i

(−ỹi)(bi −
∑
j

aijxj)

= v −
∑
i

biỹi +
∑
j

(c̃j +
∑
i

aijỹi)xj .

This is an identity for x, so the coe�cients of the two sides must
match: 0 = v −

∑
i biỹi, and also cj = c̃j +

∑
i aijỹi.

Optimality implies c̃j ≤ 0, which implies that ỹi is a feasible solution
of the dual.

Linear programming and linear inequalities

Any feasible solution of the set of inequalities

Ax ≤ b
ATy ≥ c

cTx − bTy = 0
x, y ≥ 0

gives an optimal solution to the original linear programming
problem.

Theory of alternatives

Theorem 8.8 (Farkas Lemma, not as in the book) A set of
inequalities Ax ≤ b is unsolvable if and only if a positive linear
combination gives a contradiction: there is a solution y ≥ 0 to the
inequalities

yTA = 0,
yTb = −1.

For proof, translate the problem to �nding an initial feasible
solution to standard linear programming.

We use the homework allowing variables without nonnegativity
constraints:

maximize z
subject to Ax + z · e ≤ b

(8.4)

Here, e is the vector consisting of all 1’s. The dual is

minimize yTb
subject to yTA = 0

yTe = 1
yT ≥ 0

(8.5)

The original problem has no feasible solution if and only if
max z < 0 in (8.4). In this case,min yTb < 0 in (8.5). Condition
yTe = 1 is not needed. If we drop it then we can scale y to have
yTb = −1.

Separating hyperplane

Vectors u1, . . . , um in an n-dimensional space. Let L be the set of
convex linear combinations of these points: v is in L if∑

j

yiui = v,
∑
i

yi = 1, y ≥ 0.

Using matrix U with rows uTi :

yTU = vT,
∑
i

yi = 1, y ≥ 0. (8.6)

If v < L then we can put between L and v a hyperplane with
equation dTv = c. Writing x in place of d and z in place of c, this
says that the following set of inequalities has a solution for x, z:

uTi x ≤ z (i = 1, . . . , m), vTx > z.

Can be derived from the Farkas Lemma.

Complementary slackness, geometrically

Assume that the hyperplane dTv = c actually touches the set L, that
is c is as small as possible (supporting hyperplane). Then there are
d, y, c with the properties

dTui ≤ c

dT(
∑
i

yiui) = c,∑
i

yi = 1,

y ≥ 0.

Then for all those constraints dTui ≤ c that are not tight, the
coe�cient yi is 0. In other words, the optimal solution is already a
convex combination of those extremal elements of L that are on the
hyperplane dTv = c.

Application to games

Primal, with dual variables written in parentheses at end of lines:

minimize t
subject to t −

∑
j aijqj ≥ 0 i = 1, . . . , m (pi)∑

j qj = 1, (z)
qj ≥ 0, j = 1, . . . , n

Dual:

maximize z
subject to

∑
i pi = 1,

−
∑

i aijpi + z ≤ 0, j = 1, . . . , n
pi ≥ 0 i = 1, . . . , m.

Dual for max-�ow: min-cut

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v), u, v ∈ V ,

f (u, v) = −f (v, u), u, v ∈ V ,∑
v∈V f (u, v) = 0, u ∈ V \ {s, t}.

Two variables associated with each edge, f (u, v) and f (v, u).
Simplify. Order the points arbitrarily, but starting with s and
ending with t. Leave f (u, v) when u < v: whenever f (v, u) appears
with u < v, replace with −f (u, v).

maximize
∑

v>s f (s, v)
subject to f (u, v) ≤ c(u, v), u < v,

−f (u, v) ≤ c(v, u), u < v,∑
v>u f (u, v) −

∑
v<u f (v, u) = 0, u ∈ V \ {s, t}.

Some constraints disappeared but others appeared, since in case of
u < v the constraint f (v, u) ≤ c(v, u) is written now −f (u, v) ≤ c(u, v).
A dual variable for each constraint. For f (u, v) ≤ c(u, v), call it
y(u, v), for −f (u, v) ≤ c(v, u), call it y(v, u). For∑

v>u

f (u, v) −
∑
v<u

f (v, u) = 0

call it y(u).

Dual constraint for each primal variable f (u, v), u < v. Since f (u, v)
is not restricted by sign, the dual constraint is an equation. If
u, v , s then f (u, v) has coe�cient 0 in the objective function. The
equation for u , s, v , t is y(u, v) − y(v, u) + y(u) − y(v) = 0.
For u = s, v , t: y(s, v) − y(v, s) − y(v) = 1.
For u , s but v = t, y(u, t) − y(t, u) + y(u) = 0.
For u = s, v = t: y(s, t) − y(t, s) = 1.
Setting y(s) = −1, y(t) = 0, all these equations can be summarized in

y(u, v) − y(v, u) = y(v) − y(u).

The objective function to minimize is
∑

u,v c(u, v)y(u, v)

=
∑
u<v

y(v, u)(c(u, v) + c(v, u)) + c(u, v)(y(v) − y(u))

=
∑
u<v

y(u, v)(c(u, v) + c(v, u)) + c(v, u)(y(u) − y(v)).

For each u < v, minimize the corresponding term while keeping
y(v) − y(u) �xed. If y(v) ≥ y(u) then making y(v, u) = 0 still leaves
y(u, v) ≥ 0. The term becomes c(u, v)(y(v) − y(u)).
If y(v) < y(u) then make y(u, v) = 0 to get c(v, u)(y(u) − y(v)). The
objective becomes ∑

u,v

c(u, v)|y(v) − y(u)|+

where |x|+ = max(x, 0), subject to y(s) = −1 y(t) = 0. Require
y(s) = 0, y(t) = 1 instead; the problem remains the same.

Claim 8.9 There is an optimal solution in which each y(u) is 0
or 1.

Proof. Assume that there is an y(u) that is not 0 or 1. If it is outside
the interval [0, 1] then moving it towards this interval decreases the
objective function, so assume they are all inside. If there are some
variables y(u) inside this interval then move them all by the same
amount either up or down until one of them hits 0 or 1. One of
these two possible moves will not increase the objective function.
Repeat these actions until each y(u) is 0 or 1. �

Let y be an optimal solution in which each y(u) is either 0 or 1. Let

S = { u : y(u) = 0 }, T = { u : y(u) = 1 }.

Then s ∈ S, t ∈ T. The objective function is∑
u∈S,v∈T

c(u, v).

This is the value of the “cut” (S, T). So the dual problem is about
�nding a minimum cut, and the duality theorem implies the
max-�ow/min-cut theorem.

The ellipsoid algorithm
The problem

• The simplex algorithm may take an exponential number of
steps, as a function of m + n.

• Consider just the problem of deciding the feasibility of a set of
inequalities

aTi x ≤ bi, i = 1, . . . , m

for x ∈ Rn. If each entry has at most k digits then the size of the
input is

L = m · n · k.

We want a decision in a number of steps polynomial in L, that
is O(Lc) for some constant c.

Ellipsoids

In space Rn, for all r > 0 the set

B(c, r) = { x : (x − c)T(x − c) ≤ r2 }

is a ball with center c and radius r. A nonsingular linear
transformation L transforms B(0, 1) into an ellipsoid

E = {Lx : xTx ≤ 1 } = { y : yTA−1y ≤ 1 },

where A = LLT is positive de�nite. A general ellipsoid E(c, A) with
center c has the form

{ x : (x − c)TA−1(x − c) ≤ 1 }

where A is positive de�nite.

Though we will not use it substantially, the following theorem
shows that ellipsoids can always be brought to a simple form. A
basis b1, . . . , bn of the vector space Rn is called orthonormal if
bTi bj = 0 for i , j and 1 for i = j.

Theorem 9.1 (Principal axes) Let E be an ellipsoid with center
0. Then there is an orthonormal basis such that if vectors are
expressed with coordinates in this basis then

E = { x : xTA−2x ≤ 1 },

where A is a diagonal matrix with positive elements a1, . . . , an on
the diagonal.

In other words, E =
{
x :

x21
a21
+ · · · +

x2n
a2n
≤ 1

}
.

In 2 dimensions this gives the familiar equation of the ellipse

x2

a2
+
y2

b2
= 1.

The numbers a, b are the lengths of the principal axes of the ellipse,
measured from the center. When they are all equal, we get the
equation of a circle (sphere in n dimensions).

Volume of an ellipsoid

Let Vn be the volume of a unit ball in n dimensions. It is easy to see
that the volume of the ellipsoid

E =
{
x :

x21
a21
+ · · · +

x2n
a2n
≤ 1

}
.

is Vol(E) = Vna1a2 · · · an. More generally, if E = { x : xTA−1x ≤ 1 }
then Vol(E) = Vn

√
detA.

Bounding the set of solutions

The set of solutions is a (possibly empty) polyhedron P. Let

N = nn/2102kn, δ =
1

2mN
, ε =

δ

10kn
,

b′i = bi + δ.

In preparation, we will show

Theorem 9.2

a There is a ball E1 of radius ≤ N
√
n and center 0 with the

property that if there is a solution then there is a solution in E1.

b Ax ≤ b is solvable if and only if Ax ≤ b′ is solvable and its set
of solutions contains a cube of size 2ε.

Consider the upper bound �rst. We have seen in homework the
following:

Lemma 9.3 If there is a solution that is a vertex then there is
one with |xj | ≤ N for all j.

Now, suppose there is a solution z. For each j, if zj ≥ 0 let us
introduce a new constraint xj ≥ 0, while if zj < 0 then introduce a
constraint xj ≤ 0. It is easy to see that this new system has a solution
that is a vertex. This proves a of the theorem.
Now for the lower bound. One of your homeworks has a problem
showing the following:

Lemma 9.4 If Ax ≤ b has no solution then de�ning b′i = bi + δ,
the system Ax ≤ b′ has no solution either.

The following clearly implies b of the theorem:

Corollary 9.5 If Ax ≤ b′ is solvable then its set of solutions
contains a cube of size 2ε.

Proof. If Ax ≤ b′ is solvable then so is Ax ≤ b. Let x be a solution
of Ax ≤ b. Then changing each xj by any amount of absolute value
at most ε changes

aTi x =
n∑
j=1

aijxj

by at most 10knε ≤ δ, so each inequality aTi x ≤ b′i still holds. �

The algorithm

• The algorithm will go through a series x(1), x(2), . . . of trial
solutions, and in step t learn P ⊆ Et where our wraps E1, E2, . . .

are ellipsoids.
• We start with x(1) = 0, the center of our ball. Is it a solution? If
not, there is an i with aTi x

(1) > bi. Then P is contained in the
half-ball

H1 = E1 ∩ { x : aTi x ≤ aTi x
(1) }.

Shrinking rate

To keep our wraps simple, we enclose H1 into an ellipsoid E2 of
possibly small volume.

x(1) x(2)

Lemma 9.6 There is an
ellipsoid E2 containing H1 with

Vol(E2) ≤ e−
1

2(n+1)Vol(E1). This is
true even if E1 was also an
ellipsoid.

Note e−
1

2(n+1) ≈ 1 − 1
2(n+1) .

Proof

Assume without loss of generality
• E1 is the unit ball E1 = { x : xTx ≤ 1 },
• ai = −e1, bi < 0.

Then the half-ball to consider is { x ∈ E1 : x1 ≥ 0 }. The best
ellipsoid’s center has the form (d, 0, . . . , 0)T . The axes will be
(1 − d), b, b, . . . , b, so

E2 =
{
x :
(x1 − d)2

(1 − d)2
+ b−2

∑
j≥2

x2j ≤ 1
}
.

It touches the ball E1 at the circle x1 = 0,
∑

j≥2 x2j = 1:

d2

(1 − d)2
+ b−2 = 1.

Hence

b−2 = 1 −
d2

(1 − d)2
=

1 − 2d
1 − 2d + d2

,

b2 = 1 + d2
1−2d . Using 1 + z ≤ ez:

Vol(E2) = Vn(1 − d)bn−1 ≤ Vne
−d+ (n−1)d

2

2(1−2d) = Vne
−d 2−(n+3)d

2(1−2d) .

Choose d = 1
n+1 to make the fraction 1/2, then this is Vne

− 1
2(n+1) .

This proves the Lemma for the case when E1 is a ball. When E1 is
an ellipsoid, transform it linearly into a ball, apply the lemma and
then transform back. The transformation takes ellipsoids into
ellipsoids and does not change the ratio of volumes.

Bounding the number of iterations

Now the algorithm constructs E3 from E2 in the same way, and so
on. If no solution is found, then r steps diminish the volume by a
factor

e−
r

2(n+1) .

We know Vol(E1) ≤ Vn(N
√
n)n, while if there is a solution then the

set of solutions contains a ball of volume ≥ Vnε
n. But if r is so large

that

e−
r

2(n+1) <

(
ε

N
√
n

)n
then Vol(Er+1) is smaller than the volume of this small ball, so there
is no solution.
It is easy to see from here that r can be chosen to be polynomial in
m, n, k.

Swept under the rug

Formula for computing the ellipsoids: Let Bk be the matrix of the
kth ellipsoid Ek, with center x(k):
Ek = { x : (x − x(k))TB−1k (x − x

(k)) ≤ 1 }. Let aTi x ≤ bi be the violated
constraint. De�ne

bk =
Bkai√
aTi Bkai

, x(k+1) = x(k) +
bk

n + 1
,

Bk+1 =
n2

n2 − 1

(
Bk −

2
n + 1

bkbTk

)
.

It can be shown that this formula is su�cient to compute with a
precision that does not ruin the polynomiality of the algorithm.

Even if an exact solution exists, we only found an approximate
solution. To �nd an exact solution (if exists) in polynomial time, ask
one-by-one about each of the constraints whether it can be tight
(introduce the opposite inequality), until a vertex is found (add
possibly some more of constraints, of the type xj ≥ 0, xj ≤ 0). Then
solve the equations.

Convex programming
Convexity

Many methods and results of linear programming generalize to the
case when the set of feasible solutions is convex and there is a
convex function to minimize.

De�nition 10.1 A function f : Rn → R is convex if the set
{ (x, y) : f (x) ≤ y } is convex. It is concave if −f (x) is convex.

Equivalently, f is convex if

f (λa + (1 − λ)b) ≤ λ f (a) + (1 − λ)f (b)

holds for all 0 ≤ λ ≤ 1.

Examples 10.2

• Each linear function aTx + b is convex.
• If a matrix A is positive semide�nite then the quadratic function
xTAx is convex.

• If f (x), g(x) are convex and α, β ≥ 0 then αf (x) + βg(x) is also
convex.

If f (x) is convex then for every constant c the set { x : f (x) ≤ c } is a
convex set.

De�nition 10.3 A convex program is an optimization problem
of the form

min f0(x)
subject to fi(x) ≤ 0 for i = 1, . . . , m,

where all functions fi for i = 0, . . . , m are convex.
More generally, we also allow constraints of the form

x ∈ H

for any convex set H given in some e�ective way.

Example: Support vector machine

• Vectors u1, . . . , uk represent persons known to have ADD
(attention de�cit disorder). uij = measurement value of the jth
psychological or medical test of person i. v1, . . . , vl ∈ Rn

represent persons known not to have ADD.
• Separate the two groups, if possible, by a linear test: �nd vectors
z, x < y with

zTui ≤ x for i = 1, . . . , k,

zTvi ≥ y for i = 1, . . . , l.

• For z, x, y to maximize the width of the gap y−x
(zTz)1/2 , solve the

convex program:

maximize y − x
subject to uTi z ≤ x, i = 1, . . . , k,

vTi z ≥ y, i = 1, . . . , l,
zTz ≤ 1.

Separation oracle

For the de�nition of “given in an e�ective way”, take clue from the
ellipsoid algorithm:
• We were looking for a solution to a system of linear inequalities

aTi x ≤ bi, i = 1, . . . , n.

A trial solution x(t) was always the center of some ellipsoid Et. If
it violated the conditions, it violated one of these: aTi x

(t) > bi.
We could then use this to cut the ellipsoid Et in half and to
enclose it into a smaller ellipsoid Et+1.

• Now we are looking for an element of an arbitrary convex set
H. Assume again, that at step t, it is enclosed in an ellipsoid Et,
and we are checking the condition x(t) ∈ H. How to imitate the
ellipsoid algorithm further?

De�nition 10.4 Let a : Qn → Qn, b : Qn → Q be functions
computable in polynomial time and H ⊆ Rn a (convex) set. These
are a separating (hyperplane) oracle for H if for all x ∈ Rn, with
a = a(x), b = b(x) we have:
• If x ∈ H then a = 0.
• If x < H then a , 0, further aTy ≤ b for all y ∈ H and aTx ≥ b.

Example 10.5 For the unit ball H = { x : xTx ≤ 1 }, the

functions a = x · |xTx− 1|+, and b = xTx|xTx− 1|+ give a separation
oracle.
To �nd a separation oracle for an ellipsoid, transform it into a ball
�rst.

Suppose that the convex set H allows a separation oracle (a(·), b(·)).
If the goal is to �nd an element of H then we can proceed with the
ellipsoid algorithm, enclosing the convex set H into ellipsoids of
smaller and smaller volume. This sometimes leads to good
approximation algorithms.

Semide�nite programs

• If A, B are symmetric matrices then A � B denotes that B − A
is positive semide�nite, and A ≺ B denotes that B − A is
positive de�nite.

• Let the variables xij be arranged in an n × n symmetric matrix
X = (xij). The set of positive semide�nite matrices

{X : X � 0 }

is convex. Indeed, it is de�ned by the set of linear inequalities

aTXa ≥ 0, that is
∑
ij

(aiaj)xij ≥ 0

where a runs through all vectors in Rn.

Example: maximum cut

Recall the maximum cut problem in a graph G = (V , E, w(·)) where
we is the weight of edge e.
New idea:
• Assign a unit vector ui ∈ Rn to each vertex i ∈ V of the graph.
• Choose a random direction that is a random unit vector z. The
sign of the projection on z determines the cut:

S = { i : zTui ≤ 0 }.

• The probability that z cuts ui and uj is

arccos(uTi uj)/π

(draw a picture!).

Let α ≈ 0.87856 be the largest value with

arccos(y)/π ≥ α(1 − y)/2, −1 ≤ y ≤ 1.

Instead of maximizing
∑

i,j wij arccos(uTi uj)/π, we will just
maximize its lower bound

α
∑
i,j

wij(1 − uTi uj)/2.

This is at least α times the value of the max cut, since if (S, T) is a
cut, then setting ui = e for i ∈ S and ui = −e for i ∈ T we get exactly
the value ∑

i,j

wij(1 − uTi uj)/2.

minimize
∑

i,j wijuTi uj
subject to uTi ui = 1, i = 1, . . . , n.

It is more convenient to work with the variables xij = uTi uj. The
matrix X = (xij) is positive semide�nite, with xii = 1, if and only if it
can be represented as xij = uTi uj. We arrive at the semide�nite
program:

minimize
∑

i,j wijxij
subject to xii = 1, i = 1, . . . , n,

X � 0.

Separation oracle for semide�niteness

Please look up the the LU decomposition algorithm in these notes,
when applied to positive semide�nite matrices A (Cholesky
decomposition). We structured it in such a way that when it fails it
gives a witness z with

∑
ij zizjaij < 0. The vector (zizj)ni, j=1 is the

direction of the hyperplane separating the matrix A from the
positive semide�nite ones. Indeed, for any positive semide�nite
matrix B we have

∑
ij zizjbij ≥ 0.

Warning: All this is inexact without the estimation of the e�ect of
roundo� errors and degree of approximation, in the precise
analysis of the ellipsoid algorithm, in the context of convex
optimization problems.

Near-optimal set cover and duality

• Given set X = {1, . . . , m} and a family F = {S1, . . . , Sn} of
subsets of X, �nd a min-size subset of F covering X.

• Example: Smallest committee with people covering all skills.
• Generalization: Set Sj has cost cj > 0. We want a
minimum-cost set cover.

• Special case: vertex cover of a graph G = (V , E). X = E, and
vertex vj has cost cj.

Linear programming relaxation

• Let aij = 1 if i ∈ Sj, and 0 otherwise.
• Let xj = 1 mean that set Sj is chosen.
• Condition that i is covered:

∑
j aijxj ≥ bi where bi = 1.

minimize
∑n

j=1 cjxj
subject to

∑n
j=1 aijxj ≥ bi, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

Self-test: why don’t we need to require xj ≤ 1(= bi)?
This is a relaxation of the original problem (we relax the condition
that xj is integer). Any feasible solution is called a fractional set
cover.

The dual: prices for elements

maximize
∑n

i=1 biyi
subject to

∑n
i=1 aijyi ≤ cj, j = 1, . . . , n,

yi ≥ 0, i = 1, . . . , m.

Self-test: why don’t we need to require yi ≤ cj?

• View yi as the price of element i.
• Constraints: the cost of each set Sj is ≥ the total price of its
elements.

• Goal: maximize the total price (recall bi = 1).

Set-packing interpretation of the dual (can be skipped)

maximize
∑n

i=1 biyi
subject to

∑n
i=1 aijyi ≤ cj, j = 1, . . . , n,

yi ≥ 0, i = 1, . . . , m.

• Let Ti = { j : aij = 1 }. View bi as the worth of set Ti.
• Consider the special case cj = 1 for all j.
• If yi must be integer then it shows whether set Ti is chosen.
• The constraints say that the chosen sets Ti must be disjoint:
they form a packing.

• Goal: to maximize the total worth of the packing.

Feasible solutions are called a fractional packing.

Greedy optimization of the dual

Constraint
∑n

i=1 aijyi ≤ cj belonging to set Sj is tight if it is satis�ed
with equality.
Algorithm: Repeat while you can: pick a variable yj and increase it
until one of the constraints becomes tight.
The set cover: those sets whose constraints became tight.
How good? Multiplicity m(i) =

∑
j aij of an element i: the number of

sets Sj it belongs to. Let M = maxi m(i). By weak duality and the
tightness of sets with xj = 1:∑

i

yi ≤
∑
j

xjcj =
∑
j

xj
∑
i

aijyi =
∑
i

yi
∑
j

aijxj

≤
∑
i

yim(i) ≤ M
∑
i

yi .

So this solution is within factor M from the optimum.
Vertex cover: M = 2, we got a 2-optimal solution.

Unit-cost vertex cover

• The above algorithm for the unit-cost vertex cover (cj = 1) is
particularly simple:
Repeat while you can: pick an uncovered edge and add both
ends to the vertex cover.

• This algorithm is greedy for the dual problem (increasing edge
prices), but not greedy for the primal (choosing vertices).

Exercise What is the greedy algorithm for the primal?

Primal-dual schema (can be skipped)

The idea of the above algorithm can be generalized.
For some α, β ≥ 1, formally relax the complementary slackness:
Primal conditions: xj > 0⇒ cj/α ≤

∑
i aijyi ≤ cj.

Dual conditions: yi > 0⇒ bi ≤
∑

j aijxj ≤ βbi.

Proposition 11.1 If the primal and dual feasible solutions satisfy
these conditions, then

cTx ≤ α βbTy.

Proof straightforward:∑
j

cjxj ≤ α
∑
j

xj
∑
i

aijyi = α
∑
i

yi
∑
j

aijxj ≤ α β
∑
i

yibi .

The primal-dual schema:
• Start from an infeasible integer primal and a feasible dual
(typically x = 0, y = 0).

• Keep improving the feasibility of the primal, keeping it integral,
and the optimality of the dual.
The primal guides the improvements of the dual and vice versa.

We carried out this program for set cover.

Primal complementary slackness conditions for each S, with
factor α = 1:

xS > 0⇒
∑
e∈S

ye = cS .

Set S is tight when this holds. Plan: use only tight sets.

Dual complementary slackness conditions: worst possible factor,
the maximal number β of sets with a nonempty intersection.
Note that xS ≤ 1 will always hold for the optimum:

ye > 0⇒ 1 ≤
∑
S3e

xS ≤ β .

Greedy set cover

For set S = Sj write cS = cj, xS = xj.
Algorithm Greedy-Set-Cover(X, F)

U ← X
C← ∅ (same as saying xS = 0 for all S)
For the dual variables, initially let ye = 0 for all e
while U , ∅ do

select an cF that maximizes |S ∩ U |/cS
U ← U \ S
C← C ∪ {S} (same as saying xS ← 1)

If element e was covered by set S then let ye =
c(S)
|S∩U | be

its increased price.
return C

This way we cover each element at minimum price (at the
moment).
The total cost is

∑
S cSxS =

∑
e ye.

Analysis

The approximation ratio would be 1 (optimal solution) if the prices
ye de�ned above gave a dual feasible solution. But they may not be.
Let H(n) = 1 + 1/2 + · · · + 1/n(≈ ln n).

Theorem 11.2 Greedy-Set-Cover has a ratio bound
maxS∈F H(|S|).

The proof uses the next lemma, which bounds the degree to which
the prices can be dual infeasible.

Lemma 11.3 For all S in F we have
∑

e∈S ye ≤ cS ·H(|S|).

Proof. Let Fk be the set chosen at the kth step. Let
e ∈ S ∩ Fk \

⋃
l<k Fl, and Vk = S \

⋃
l<k Fl be the remaining part of S

before e will be covered in the greedy cover. By the greedy
property,

ye ≤ cS/|Vk |,

since S could also have been chosen. Let e1, . . . , e |S | be a list of
elements of S in the order in which they are covered (ties are
broken arbitrarily), with ej(k) the earliest element covered along with
ek. The above inequality gives

yek = yej(k) ≤
cS
|Vj(k) |

=
cS

|S| − j(k) + 1
≤

cS
|S| − k + 1

.

Summing for all k proves the lemma. �

Proof of the theorem. Let C∗ be the optimal set cover and C the
cover returned by the algorithm.∑

S

cSxS =
∑
e

ye ≤
∑
S∈C∗

∑
e∈S

ye ≤
∑
S∈C∗

cS ·H(|S|) ≤ H(|S∗ |)
∑
S∈C∗

cS

where S∗ is the largest set. �

Question 1 Is Θ(log n) the best possible factor for set cover?

Yes (by a deep theorem), if NP-complete problems are hard.

Exercise Construct an example graph where result of the
greedy vertex cover algorithm is indeed a factor Ω(log d) worse than
the optimum, and thus worse than our earlier algorithm which gave
a factor 2.

Approximation scheme

An algorithm that for every ε, gives an (1 + ε)-approximation.

• A problem is fully approximable if it has a polynomial-time
approximation scheme.
Example: see a version KNAPSACK below.

• It is partly approximable if there is a lower bound λmin > 1 on
the achievable approximation ratio.
Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.

• It is inapproximable if even this cannot be achieved.
Example: INDEPENDENT SET (deep result). The
approximation status of this problem is di�erent from
VERTEX COVER, despite the close equivalence between the
two problems.

Knapsack problem

Given: integers b ≥ a1, . . . , an, and integer weights w1 ≥ . . . ≥ wn.

maximize wTx
subject to aTx ≤ b,

xi = 0, 1, i = 1, . . . , n.

Dynamic programming: For 1 ≤ k ≤ n,

Ak(p) = min{ aTx : wTx ≥ p, xk+1 = · · · = xn = 0 }.

If the set is empty the minimum is ∞. Let W = w1 + · · · + wn. The
vector (Ak+1(0), . . . , Ak+1(w)) can be computed by a simple
recursion from (Ak(0), . . . , Ak(w)). Namely

Ak+1(p) = min{Ak(p), ak+1 + Ak(p − wk+1) }.

The optimum is max{ p : An(p) ≤ b }.
Complexity: roughly O(nW) steps.
Why is this not a polynomial algorithm?

Idea for approximation: break each wi into a smaller number of big
chunks, and use dynamic programming. Let r > 0, w′′i = bwi/rc.

maximize (w′′)Tx
subject to aTx ≤ b,

xi = 0, 1, i = 1, . . . , n.

For an optimal solution x′′ of the changed problem, estimate
OPT/wTx′′ = wTx∗/wTx′′. We have

wTx′′/r ≥ (w′′)Tx′′ ≥ (w′′)Tx∗ ≥ (w/r)Tx∗ − n,

wTx′′ ≥ OPT − r · n.

Let r = εw1/n, then

(w)Tx′′

OPT
≥ 1 −

εw1

OPT
≥ 1 − ε.

With w =
∑

i wi, the amount of time is of the order of

nw/r = n2w/(w1ε) ≤ n3/ε,

which is polynomial in n, (1/ε).

Look at the special case of knapsack, with wi = ai . Here, we just
want to �ll up the knapsack as much as we can. This is equivalent to
minimizing the remainder,

b −
∑
i

aTx.

But this minimization problem is inapproximable.

Polynomial time

We measure the time cost of an algorithm as a function of the
length of the input.

Examples 14.1

• The sieve algorithm to decide primality of an integer x is not
polynomial-time.

• Multiplying two numbers of length n in time O(n2).
• Greatest common divisor in polynomial time.
• Length of shortest path betweem two points in a graph with unit
edge-length: breadth-�rst search.

• Shortest path in a graph with integer edge lengths.
Simple-minded reduction to breadth-�rst search leads to an
exponential algorithm. Dijkstra’s algorithm does it in
polynomial time.

NP problems

Examples 14.2

• Shortest vs. longest simple paths
• Euler tour vs. Hamiltonian cycle
• 2-SAT vs. 3-SAT. Satis�ability for circuits and for conjunctive
normal form (SAT). Reducing sastis�ability for circuits to
3-SAT.
Use of reduction in this course: proving hardness.

• Ultrasound test of sex of fetus.

Decision problems vs. optimization problems vs. search problems.

Example 14.3 Given a graph G.

Decision Given k, does G have an independent subset of size ≥ k?

Optimization What is the size of the largest independent set?

Search Given k, give an independent set of size k (if there is one).

Optimization+search Give a maximum size independent set.

Abstract problems
Instance. Solution (witness, certi�cate).

Encodings
Concrete problems: encoded into strings.
Polynomial-time computable functions, polynomial-time decidable
sets.
Polynomially related encodings.
Language: a set of strings. Deciding a language.

Polynomial-time veri�cation

Example 14.4 Hamiltonian cycles.

• An NP problem is de�ned with the help of a function

V (x, w)

with yes/no values that veri�es, for a given input x and witness
(certi�cate) w whether w is indeed witness for x.

• It is required that V (x, w) is computable in time that is
polynomial as a function of the length of x. This implies that
the length of the witnesses w (taken into account) is bounded
polynomially in the length of x.

The same decision problem may belong to very di�erent
veri�cation functions (search problems).

Example 14.5 (Compositeness) Let the decision problem be
the question whether a number x is composite (nonprime). The
obvious veri�able property is

V1(x, w) ⇔ (1 < w < x) ∧ (w|x).

There is also a very di�erent veri�able property V2(x, w) for
compositeness such that, for a certain polynomial-time computable
b(x), if x is composite then at least half of the numbers 1 ≤ w ≤ b(x)
are witnesses. This can be used for probabilistic prime number
tests.

Satis�ability

• Let us use Boolean variables xi ∈ {0, 1}, where 0 stands for
false, 1 for true. A logic expression is formed using the
connectives ∧, ∨, ¬: for example

F(x1, x2, x3, x4) = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3 ∨ x4).

Other connectives: say x⇒ y = ¬x ∨ y.
• An assignment (say x1 = 0, x2 = 0, x3 = 1, x4 = 0) allows to
compute a value (in our example, F(0, 0, 1, 0) = 0).

• An assignment (a1, a2, a3, a4) satis�es F, if F(a1, a2, a3, a4) = 1.
The formula is satis�able if it has some satisfying assignment.

• Satis�ability problem: given a formula F(x1, . . . , xn) decide
whether it is satis�able.

Special cases:
• A conjunctive normal form (CNF) F(x1, . . . , xn) = C1 ∧ · · · ∧ Ck
where each Ci is a clause, with the form Ci = x̃j1 ∨ · · · ∨ x̃jr . Here
each x̃j is either xj or ¬xj, and is called a literal.
SAT: the satis�ability problem for conjunctive normal forms.

• A 3-CNF is a conjunctive normal form in which each clause
contains at most 3 literals—gives rise to 3-SAT.

• 2-SAT: as seen in class, this is solvable in polynomial time.

Logic formulas, can be generalized to logic circuits.

• Acyclic directed graph, where some nodes and edges have
labels. Nodes with no incoming edges are input nodes, each
labeled by some logic variable x1, . . . , xn.
Nodes with no outgoing edges are output nodes.

• Some edges have labels ¬. Non-input nodes are labeled ∨ or ∧.
• Assume just one output node: the circuit C de�nes some
Boolean function fC(x1, . . . , xn). Circuit satis�ability is the
question of satis�ability of this function.

• Assume also that every non-input node has exactly two
incoming edges.

Reducibility, completeness

Reduction of problem A1 to problem A2 in terms of the veri�cation
functions V1, V2 and a reduction (translation) function τ :

∃wV1(x, w) ⇔ ∃uV2(τ(x), u).

Example 14.6 Reducing linear programming to linear
programming in standard form.

NP-hardness.
NP-completeness.

Theorem 14.7 (Cook-Levin) Circuit satis�ability is
NP-complete.

In order to prove this theorem, we must formalize the notion of
computing time, and introduce a concrete machine model: the
random access machine.
In another course, we would take more time to argue that the
notion of polynomial-time computability remains the same also on
other reasonable machine models.

Random access machine

Memory: one-way in�nite tape: cell i contains natural number T[i]
of arbitrary size.
Program: a sequence of instructions, in the “program store”: a
(potentially) in�nite sequence of labeled registers containing
instructions. A program counter.
Instruction types:
T[T[i]] = T[T[j]] random access
T[i] = T[j] ± T[k] addition
if T[0] > 0 then jump to s conditional branching

The cost of an operation will be taken to be proportional to the
total length of the numbers participating in it. This keeps the cost
realistic despite the arbitrary size of numbers in the registers.

Computation with circuits

Theorem 14.8 If a random access machine computes a
function f (x) in time O(nc) then for each input length n there is a
logic circuit of size O(n2c) computing f (x) from input x.

The proof builds a separate circuit for each computation step of the
machine, and then concatenates these circuits. Each computation
step is either a simple addition, decision or table access: any basic
computer architecture course will teach you how to make a small
(polynomial-size) circuit for it.

Proof sketch for the Cook-Levin theorem. Consider a veri�cation
function V (x, w). For an x of length n, to a random access machine
program computing V (x, w), in cost t, construct a circuit C(x) of
polynomial size in n, t, that computes V (x, w) from any input string
w. (We translated x to C(x).) Now there is a witness w if and only if
C(x) is satis�able. �

Theorem 14.9 3-SAT is NP-complete.

Translating a circuit’s local rules into a 3-CNF.

Theorem 14.10 INDEPENDENT SET is NP-complete.

Reducing SAT to it.

Example 14.11

• Integer linear programming, in particular solving Ax = b,
where the m × n matrix A ≥ 0 and the vector b consist of
integers, and xj ∈ {0, 1}.
Case m = 1 is the subset sum problem.

• Reducing 3SAT to solving Ax = b.
• Reducing Ax = b to aTx = b (subset sum). Let
D = 1 +maxi |bi | +

∑
j |aij |. De�ne

Aj =
∑
i

Di−1aij, B =
∑
i

Di−1bi .

Then Ax = b⇔
∑

j Ajxj = B.

Example 14.12 Set cover ≥ vertex cover ∼ independent set.

Co-NP

• De�nition of the Co-NP class: L is in Co-NP if its complement
is in NP. Example: logical tautologies.

• The class NP∩Co-NP. Examples: duality theorems.
• Example of a class that is in NP∩Co-NP, and not known to be
in P: derived from the factorization problem.
Let L be the set of those pairs of integers x > y > 0 for which
there is an integer 1 < w < y with w|x. This is clearly in NP.
But the complement is also in NP. A witness that there is no w
with the given properties is a complete factorization

x = pα11 · · · p
αk
k

of x, along with witnesses of the primality of p1, . . . , pk. The
latter are known to exist, by an old—nontrivial—theorem that
primality is in NP.

Approximations
The setting

In case of problems di�cult to solve exactly, maybe something can
be said about how well we can approximate a solution. We will
formulate the question only for problems, where we maximize a
positive function. For object function f (x, y) for x, y ∈ {0, 1}n, the
optimum is

M(x) = max
y

f (x, y)

where y runs over the possible “witnesses”.
For 0 < λ , an algorithm A(x) is a λ-approximation if

f (x, A(x)) > M(x)/λ .

For minimization problems, with minimum m(x), we require
f (x, A(x)) < m(x)λ .

Greedy algorithms

Try local improvements as long as you can.

Example 15.1 (Maximum cut) Graph G = (V , E), cut S ⊆ V ,

S = V \ S. Find cut S that maximizes the number of edges in the
cut:

|{ {u, v} ∈ E : u ∈ S, v ∈ S }|.

Greedy algorithm:

Repeat: �nd a point on one side of the cut whose moving to
the other side increases the cutsize.

Theorem 15.2 If you cannot improve anymore with this
algorithm then you are within a factor 2 of the optimum.

The unimprovable cut contains at least half of all edges.

Randomized algorithms

Generalize maximum cut for the case where edges e have weights
we, that is maximize ∑

u∈S,v∈S

wuv .

• Question The greedy algorithm brings within factor 2 of the
optimum also in the weighted case. But does it take a
polynomial number of steps?

• New idea: decide each “v ∈ S?” question by tossing a coin. The
expected weight of the cut is 1

2

∑
e we, since each edge is in the

cut with probability 1/2.
• We will do better with semide�nite programming.

Less greed is sometimes better

Recall our earlier treatment of greedy set cover and vertex cover.

• The greedy set cover algorithm gave a logarithmic factor
approximation guarantee.

• This also applied to vertex cover. But a non-greedy algorithm
(greedy for the dual) gave a better guarantee (factor 2) for vertex
cover.

Counting problems: the class # P

De�nition 15.3 Function f is in #P if there is a
polynomial-time (veri�er) predicate V (x, y) and polynomial p(n)
such that for all x we have

f (x) = |{ y : |y| ≤ p(|x|) ∧ V (x, y) }|.

Reduction among #P problems. The #P-complete problems are all
obviously NP-hard.

Repeated tests

How to aproximate a #P function?
Repeated independent tests will work only if the probability of
success is not tiny. More formally, if it is not tiny compared to the
standard deviation. Look at Chebysev’s inequality, say. Let
X1, . . . , XN be i.i.d. random variables with variance σ2 and
expected value µ. Then the inequality says

P[|
∑
i

Xi/N − µ| > tσ] ≤ t−2/N .

Suppose we want to estimate µ within a factor of 2, so let tσ = µ/2,
then t = µ/(2σ),

P[|
∑
i

Xi/N − µ| > µ/2] ≤ (1/N)(2σ/µ)2 .

This will converge slowly if σ/µ is large.

Example 15.4 Xi = 1 with probability p and 0 otherwise. Then

σ2 = p(1 − p), our bound is 4(1 − p)/(pN), so we need N > 1/p if p
is small.

DNF satisfaction

Suppose we want to �nd the number of satisfying assignments of a
disjunctive normal form

C1 ∨ · · · ∨ Cm .

More generally, suppose we need to estimate |S| where

S = S1 ∪ · · · ∪ Sm .

Suppose that
• We can generate uniformly the elements of Si for each i.
• We know (can compute in polynomial time) |Si |.
• For each element x, we know

c(x) = |{ i : x ∈ Si }|.

Then we know M =
∑

i |Si |, but we want to know |S|.

Pick I ∈ {1, . . . , m} such that P[I = i] = |Si |/M. Pick an element
X ∈ SI uniformly. Then for each x we have

P[X = x] =
∑
Si3x

P[I = i]P[X = x|I = i] =
∑
Si3x

|Si |
M

1
|Si |
= c(x)/M.

Let Y = M/c(X), then

E(Y) =
∑
x∈S

M
c(x)

P[X = x] = |S|.

On the other hand, 0 ≤ Y ≤ M, so σ ≤ M ≤ m|S|, therefore
σ/µ ≤ m, so sampling will converge fast.
We found a FPRAS (fully polynomial randomized approximation
scheme) for counting the DNF solutions.

	Introduction
	Network flows
	Graphs
	Matchings
	Flow networks
	Dinic-Edmonds-Karp algorithm
	Goldberg algorithm
	Project selection

	Linear algebra
	Matrices and vectors
	Vector spaces
	Linear dependence
	Matrices
	Inverse, rank
	Determinant
	Positive definite matrices

	Linear equations
	Elimination
	LUP decomposition

	Inverting matrices
	Least squares approximation
	Issues of rounding
	Solving linear equations exactly
	Pivoting and scaling

	Linear Programming
	Problem definition
	Solution idea
	Formulating problems as linear programs
	Standard and slack form
	The simplex algorithm
	Duality
	Alternatives
	Applications of duality

	The ellipsoid algorithm
	The problem
	Ellipsoids
	Upper and lower bounds
	The algorithm
	Shrinking rate
	Bounding the number of iterations
	Swept under the rug

	Convex programming
	Convexity
	Separation oracle
	Semidefinite programs

	Set cover and duality
	Set cover
	Primal-dual schema
	Greedy set cover

	Approximation schemes
	Knapsack problem
	NP-completeness
	Polynomial time
	NP problems
	Polynomial-time verification
	Satisfiability
	Reducibility, completeness

	Approximate algorithms
	Greedy algorithms
	Counting
	Repeated tests

