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Class structure: please, refer to the course homepage.



What	is	probability?

Mathematically, we will define mathematical probability rigorously;
however, how it corresponds to real-life situations is a complex
question. However, there are a lot of important situations where the
correspondence is easy to understand.
• “This back operation has a 30% success probability”.

We expect that the patient will be satisfied in about 30% of similar
cases.

This kind of interpretation is the easiest to think of.
But probability is also used in many non-repeating situations.

• “Trump will become president with 10% probability.”
We expect the speaker to accept as a fair bet the following: “Pay
$9 if Trump wins, and get $1 if he loses.”



Prerequisites

Discrete	mathematics	course or equivalent. Sets, simple
combinatorics, graphs, and so on.
Set operations and operations on events are essentially the same.
Combinatorics (counting) is important for the computation of
many simple kinds of probability.

Calculus	course Limits, differentiation, integration. Interesting
probability questions almost always involve many events, and the
estimation of the complex probabilities arising uses the tools of
calculus.



The	birthday	(twin)	paradox

There are 50 students in a class. What is the probability that no two of
them have the same birthday?
Assume a fixed (say alphabetic) order of the students. There are 36550
possible arrangements of birthdays (ignore the problem of February
29). It is reasonable to assume that these are all equally probable.
There are 365 · 364 · · · 316 possible arrangements with no two equal
birthdays. So the probability is

365 · 364 · · · 316
36550

.



It sounds daunting to compute this exactly, though nowadays the the
program Mathematica spits back the answer 0.0296264 in no time:

In[6]:= Binomial@365, 50D *50! �365^50
Out[6]= 216450947969980945018737813684477840905760489196842�

126408358251528094692173081574234555525510294790�

233562316563021824�

7306010813549515310358093277059651246342214174497�

508156711617142094873581852472030624097938198246�

993124485015869140625

In[7]:= % �� N

Out[7]= 0.0296264

An ordinary program will also compute it well, since the round-offs in
the floating-point operations behave well here. But we want more
insight than what is given by just a number.



More generally, we want to approximate
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n(n − 1) · · · (n − k + 1)
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A useful trick when estimating products: take logarithm, then we will
work with sums:
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)
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In analysis, it is always more practical to use natural logarithm ln, that
is logarithm with base e = 2.718 . . .: lnx = loge x .



Later we will prove the estimate: x
1+x ≤ ln(1 + x) ≤ x . Applying it

here:
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The other side, using −i/n
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.



So we have, with n = 365, k = 50:

0.0207215 ≈ e
− k(k−1)

2(n−k+1) ≤ p ≤ e−
k(k−1)

2n ≈ 0.0348687.

By this approximation, the probability of not having a common
birthday is at most 3.5%.
This form is much more useful than the exact formula: it shows that
the probability becomes ≈ 1/e when

k ≈
√
n.

So if there are n days in a year then among
√
n people it is already

likely to have a common birthday.



Estimating	the	logarithm

The inequality 1 + x ≤ ex , or equivalently, ln(1 + x) ≤ x , is very
important and comes from the concavity of the logarithm function:



This same inequality can be used to get a bound from the other side:

− ln(1 + x) = ln 1

1 + x
= ln

(
1 − x

1 + x

)
≤ − x

1 + x
,

ln(1 + x) ≥ x

1 + x
.

Combining the two estimates:

x

1 + x
≤ ln(1 + x) ≤ x .

In exponential form:

e
x

1+x ≤ 1 + x ≤ ex .



Experiment, sample	space

The mathematical model in which we will talk about proabilites is
called an experiment, even if we do not refer to a laboratory. Rather,
an experiment is a situation in which there is a (possibly infinite)
number distinct outcomes.

Example We toss a 6-headed die. The outcomes are the 6 possible
ways that the die can land, with 1,2,…,6 dots on top.

The set of possible outcomes is called the sample space, denoted
generally by the letter Ω. In the example, we can take
Ω = {1, 2, 3, 4, 5, 6}.
In a proper model, the an experiment must always produce exacty one
element of this set.



We always simplify the world when setting up the sample space, but
should not oversimplify!

Examples Ten coin tosses.
1 $ 1 is paid every time a head comes up.
2 We receive $1 for every coin toss in the first “run of heads”.

In the first case, the sample space may consist of the number of heads
in the sequence: Ω = {0, 1, . . . , 10}
In the second case, it is better if the sample space consists of all the
possible sequences of heads and tails of length 10 (could also be used
in the first case):

Ω = {TTTTTTTTTT ,TTTTTTTTTH ,TTTTTTTTHT . . . ,
HHHHHHHHHT ,HHHHHHHHHH}.



Infinite	discrete	sample	space

Example We keep tossing a coin until head comes up. Let the
outcome be the number of tosses needed. Then Ω = {1, 2, 3, 4, . . . }.



Events

Probabilities will be assigned to events. An event is some property of
the outcome of an experiment – or, equivalently, a subset of the
sample space.

Examples

1 We toss a 6-headed die. The event E is that the outcome is an odd
number.
We have Ω1 = {1, 2, . . . , 6}, E = {1, 3, 5}.

2 We watch the stock prize of Tesla tomorrow evening. The event
F is that it becomes bigger than it was this evening. Here
Ω2 = [0,∞) (nonnegative real numbers), and provided that
today’s closing prize was c , the event is the open halfline
F = (c,∞).



Types	of	sample	space

What subsets of the sample space are events?

Discrete	space Finite, or countably infinite. Its elements can be
enumerated in a (finite or infinite) sequence.
Example: the set of integers, the set of pairs of integers, and so on.
In these cases, every set of outcomes is an event.

Continuous	space Example: the set of real numbers, the set of points
in a plane, and so on.
In these cases, every set of outcomes “you can imagine” is an
event (intervals, rectangles, finite or infinite unions of these, their
complements, and so on). Some weird sets are not, but we will
never encounter those.



Probability	model

A probability model, or experiment is given with
• a sample space Ω
• and a function some probability 0 ≤ P(E) ≤ 1 to every possible

event E ⊆ Ω.

Examples Both of these examples are uniform distributions.
Discrete	case Toss a die and count the points on top.

Ω1 = {1, 2, . . . , 6}, and for every event E ⊂ Ω we have
P(E) = |E|/6.

Continuous	case Choose a random number x uniformly in the
interval [0, 1]. For some interval E = [a,b] where 0 ≤ a ≤ b ≤ 1
we have P(E) = b − a.



Additivity

The probability function is required to have the following properties:

0 ≤ P(E) ≤ P(Ω) = 1.

If events E, F are disjoint (mutually exclusive), that is E ∩ F = ∅, then

P(E ∪ F ) = P(E) + P(F ).

These properties are natural if we think of the frequency
interpretation. If E and F are disjoint then the frequency with which E
or F occurs is the sum of the frequencies with which E occurs and
with which F occurs.
It follows that A ⊆ B implies P(A) ≤ P(B).



If E, F are not disjoint then we can only say

P(E ∪ F ) ≤ P(E) + P(F ).

In many important cases, this simple union bound is also very useful.

Example	(Birthday	paradox, again) n birthdays, k students. For
any pair 1 ≤ i < j ≤ n of students, the event Ei j that their birthdays
coincide has probability 1/n. The probability that at least one of these
events occur is, by the union bound:

P(
∪
i<j

Ei j) ≤
∑
i<j

P(Ei j) =
k(k − 1)

2n
.

Recall our lower bound for this probability:

1 − e
k(k−1)

2n ≤ 1 −
(
1 − k(k − 1)

2n

)
=

k(k − 1)
2n

.



Product	space
Discrete	case

We will always speak about one experiment, but this one experiment
is often a composite one: the outcome can be viewed as the
combination of outcomes of several simpler experiments.
The outcomes of 2 rolls of a 6-sided die are the 36 pairs (i, j) with
i, j = 1, . . . , 6. This can be viewed as a 6 × 6 grid. The set of black
points is the event that the absolute difference of the two numbers is
2. Its probability is 8/36.

1 2 3 4 5 6

1

2

3

4

5

6



Another view is a 6-way tree, with two levels under the root (36
leaves). This view is easier to generalize to 3, 4, . . . rolls.



Continuous	case

Both Romeo and Juliet are up to 60 minutes late from the date, with
uniform distribution. The sample space is the square [0, 60] × [0, 60].
The shaded area is the event that they arrive within 15 minutes of
each other. Its probability is its relative area, 1 − (3/4)2.



Non-uniform	distribution
Discrete	case

Toss two dies and count the (absolute) difference of points on top.
Ω = {0, 1, 2, 3, 4, 5},
P(1) = 10

36 ,P(2) =
8
36 ,P(3) =

6
36 ,P(2) =

4
36 ,P(5) =

2
36 .
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Continuous	case

Choose two random numbers uniformly in the interval [0, 60], and
return the (absolute) difference. Ω2 = [0, 60], an interval of real
numbers. The probabilities can be described with the help of the
density function f (x) = (1 − x/60)/30: the area below the curve
f (x) is 1. Let the event E be any subinterval of Ω2, then we define
P(E) =

∫
E f (x)dx : the area above the points of interval E on the line

y = 0 and below the curve y = f (x). In the figure, E = [12, 36].

10 20 30 40 50 60
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Discrete	space

Uniform	distribution The sample space Ω is finite, |Ω| = n, and each
outcome x ∈ Ω has the same probability P(x) = 1/n. Then for
any event E ⊂ Ω we have

P(E) =
|E|
|Ω| = |E|/n.

Sounds simple, but computing or estimating |E| can be
challenging: recall the birthday paradox example, with
|Ω| = 36550.

Non-uniform	distribution Ω = {ω1,ω2, . . . }, P(ωi) = pi ≥ 0,∑
i pi = 1. For E ⊆ Ω, P(E) = ∑

ωi ∈E pi . We have seen an
example on the difference of two die throws.



Continuous	space

In this case, it can happen that each individual outcome has
probability 0.
Uniform	distribution Ω = [a,b], with a < b, an interval of real

numbers between a < b. For any interval E = [c,d] with
a ≤ c ≤ d ≤ b, the uniform distribution defines

P(E) =
d − c
b − a .

Non-uniform	distribution We have seen an example where we had
to integrate with the density function 2(1 − x) over the interval
[0, 1].



Conditional	probabiliity

Example (Fake numbers.)
• For an American male, the probability that he lives past 80 years,

is 0.9.
For an Indian male, this probability is 0.7.

• For an American male, the probability that he lives past 80 years,
provided he lived past 50, is 0.8.
For an Indian male, this conditional probability is 0.9.

How is this possible (if true)? They say that a typical Indian male will
retire early (if he lives that long), and his sons will support him into a
stress-free old age.



We define when P(E) > 0:

P(F | E) = P(E ∩ F )

P(E)
.

Justification using frequencies: Suppose that in n independent
experiments event E occurs, P(E) · n times, and event E ∩ F occurs
P(E ∩ F ) · n times. Then the relative frequency of the occurrence of F
in the cases when E occurred is

P(E ∩ F ) · n
P(E) · n =

P(E ∩ F )

P(E)
.



Example Fair coin toss, 3 times.
A: more heads than tails. B: first toss is head.
What is P(A | B)?
A ∩ B = {HHH ,HHT ,HTH}, B = {HHH ,HHT ,HTH ,HTT }.



Unconditional	probabilities	via	conditional	ones

Example	(Radar	detection)
A: aircraft present. B: radar generates alarm. Our data:
• P(A) = 0.05,
• P(B | A) = 0.99,
• P(B | Ac) = 0.1.

What are all possible outcome probabilities?

P(A)P(B | A), P(A)(1 − P(B | A)),
(1 − P(A))P(B | Ac), (1 − P(A))(1 − P(B | Ac)).



Multiplying	conditional	probabilities

Check the following (of course, it generalizes to more events):
P(A ∩ B ∩C) = P(A)P(B | A)P(C | A ∩ B).

Example 16 cookies, among them 4 have chili flavor. Random
division into bins containing 4 each. What is the probability of the
event E that each group contains a chili flavored one?
Create slots 1, . . . , 16, with the bins containing
{1, . . . , 4, }, . . . , {13, . . . , 16}. Just look at the placement of the chili
cookies c1, . . . , c4 into these slots. Let Ai be the event that ci+1 is
placed into a bin different from those of c1, . . . , ci ; then
E = A1 ∩A2 ∩A3. Note that P(A1) , 3/4!

P(A1) =
12

15
, P(A2 | A1) =

8

14
, P(A3 | A1 ∩A2) =

4

13
,

P(E) =
12 · 8 · 4

15 · 14 · 13 .



The	Monty	Hall	problem	(for	the	lab)

3 doors, prize behind one of them.
• You make an initial choice: one of the doors.
• The game master then opens one of the other doors, one that has

no prize behind it, and allows you to switch your choice to the
other unopened door.

Should you switch?
You had no information originally, your initial choice was random: it
has the prize with probability 1/3. This fact does not change just
because the game master opens another door.
But now you know that the prize is behind one of the two unopened
doors. So the probability that it is behind the other one is 2/3 – you
must switch!



Total	probability	theorem

Let the events A1, . . . ,An form a partition: Ai ∩Aj = ∅ for i , j, and
A1 ∪ · · · ∪An = Ω. Then

P(B) = P(B ∩A1) + · · ·+ P(B ∩An)

= P(A1)P(B | A1) + · · ·+ P(An)P(B | An).

Example Chess tournament.
• 1/2 of the players are type 1, you win with probability 0.3 against

those.
• 1/4 of the players are type 2, you win with probability 0.4 against

those.
• 1/4 of the players are type 3, you win with probability 0.5 against

those.
What is your probability of winning against a randomly chosen
player?



Example Roll a 6-sided die; if the result is < 3, roll again. What is
the probability that the sum is ≥ 4? Let Ai be the event that the first
roll is i , and B the event that the sum is ≥ 4. Then P(Ai) = 1/6 for
i = 1, . . . , 6. Further

P(B | A1) = P(the second roll is ≥ 3) = 4/6,

P(B | A2) = P(the second roll is ≥ 2) = 5/6,

P(B | A3) = 0,

P(B | A4) = P(B | A5) = P(B | A6) = 1,

P(B) =
1

6

(4
6
+

5

6
+ 3

)
=

27

36
=

3

4
.



Example	(Markov	chain, for	the	lab) Look at week i of the
probability class. EventUi : you are up-to-date. Event Bi = U c

i : you
are behind. We know the following:

P(Ui+1 | Ui) = 0.8, P(Ui+1 | Bi) = 0.4.

Given that P(U1) = 1, compute P(U4).



Bayes's	Rule

This rule allows to compute some “backward” conditional probability
from “forward” conditional probabilities. The formula is simple. Let
events A1, . . . ,An form a partition, B some event.

P(Ai | B) = P(Ai ∩ B)

P(B)
=

P(Ai)P(B | Ai)

P(A1)P(B | A1) + · · ·+ P(An)P(B | An)
.

The applications are interesting. In this setting, P(Ai) is called the
prior or apriori probability of Ai , and P(Ai | B) is called its posterior,
or aposteriori probability: the one we will switch to once we learned
that event B has taken place.

Example The above chess tournament with 3 types of opponents.
What is the conditional probability that you had an opponent of type
1 provided you won your game?



False	positives	example	(lab)

Rare disease, probability 0.001. We have a test:
• If you have the disease, positive with probability 0.95.
• If you don’t, negative with probability 0.95.

Provided the test is positive, what is the probability that you have the
disease?

0.001 · 0.95
0.001 · 0.95 + 0.999 · 0.05 = 0.0187

This is a surprise for many, showing the importance of the effect of
the prior probabilities.
The positive test result did increase the probability of your having the
disease about 19 times, but we started from 0.001.



Independence

See the separate, Feb 1 lecture notes.

• The criterion of independence for several events.
• Example: network connectivity.



Counting

See the separate, Feb 3 lecture notes.

Permutations

Combinations

Partitions



Discrete	random	variables
Basic	concepts

See the separate, Feb 5 lecture notes.

Bernoulli

Binomial

Geometric



Functions	of	a	random	variable

See the separate, Feb 8 lecture notes.



Expectation

See the separate, Feb 8 lecture notes.

• Definition
• Examples
• Expectation of a function
• Linearity



Markov's	inequality

See the separate, Feb 10 lecture notes.

• The inequality: for X ≥ 0,

P(X ≥ λEX ) ≤ 1/λ,

or alternatively:

P(X ≥ λ) ≤ EX/λ.

• Decision making with expectation.



Variance

See the separate, Feb 12. lecture notes.

• Definition.
• Expectation of a function.
• Standard deviation, Chebyshev’s inequality:

P(|X − EX | ≥ λσX ) < 1/λ2,

or alternatively:

P(|X − EX | ≥ λ) < var(X )/λ2.



Several	random	variables

Suppose we have two random variables, X ,Y , both of them the
functions of the outcomes of our probability space: P(X = xi) = pi ,
P(yj = qj), i, j = 1, 2, . . ., ∑i pi =

∑
j qj = 1. But this is not all that

we are interested in: we also want to know what for all i, j, the
probability

ri j = pX ,Y (xi ,yj) = P(Xi = xi ,Yj = yj) :

that is all possible joint probabilities. The function pX ,Y (x ,y) is the
joint PMF of X ,Y .
It is best to imagine these in an array, where position i, j contains ri j .
The sum of the ith row is pi , the sum of the jth column is qj .



The probability mass functions pi = pX (i) = P(X ) = xi and
qj = pY (j) = P(Y = yj) are called the marginal distributions of the
joint distribution of X ,Y , as it is customary to write the array in the
form where the values of X are running horizontally:

...
...
...

...
... . .

.

y3 q3 r13 r23 r33 . . .

y2 q2 r12 r22 r32 . . .

y1 q1 r11 r21 r31 . . .

p1 p2 p3 . . .

x1 x2 x3 . . .



Frequently, what is given directly, are conditional proabilities.

Example With probabilities 1/2, I drink 0 coffee or 1 coffees in the
morning.
With no coffee I reach the train in 8, 9 or 10 minutes with probabilities
1/4, 1/4, 1/2.
With 1 coffee these probabilities are 1/2, 1/4, 1/4.
Here x1 = 0, x2 = 1, p1 = p2 = 1/2, y1 = 8, y2 = 9, y3 = 10.
Also, P(Y = 8 | X = 0) = 1/4, and so on. More computation is
needed to determine q1,q2,q3:

r1,1 = P(X = 0,Y = 8) = P(X = 0)P(Y = 8 | X = 0) =
1

2
· 1
4
=

1

8
,

r1,2 =
1

2
· 1
4
=

1

8
, r1,3 =

1

2
· 1
2
=

1

4
,

r2,1 =
1

2
· 1
2
=

1

4
, r2,2 =

1

2
· 1
4
=

1

8
, r2,3 =

1

2
· 1
4
=

1

8
.

Then q1 = r1,1 + r2,1 = 3/8, q2 = r1,2 + r2,2 = 1/4,
q3 = r1,3 + r2,3 = 3/8.



The probability matrix in the above example is

10 3/8 1/4 1/8
9 1/4 1/8 1/8
8 3/8 1/8 1/4

1/2 1/2
0 1



Expectation	of	the	sum

A random variable X is some function f (ω) of the outcomes ω. Its
expectation can also be written as

EX =
∑
ω ∈Ω

f (ω)P(ω).

If X ,Y are two random variables, then both are functions f (ω), д(ω)
of the outcomes ω. Then X + Y = f (ω) + д(ω). Therefore

E(X + Y ) =
∑
ω

(f (ω) + д(ω))P(ω)

=
∑
ω

f (ω)P(ω) +
∑
ω

д(ω)P(ω) = EX + EY .

So the expectation is additive: the expectation of the sum is the sum
of expectations.
This holds also for the sum of several random variables.



Expectation	of	binomial

Let α be the probability of the success of one experiment, and p(k) the
probability that in n independent such experiments we will have k
successes. Then p(k) =

(
n
k

)
αk (1 − α)n−k . The expected value of this

random variable Y is, using
(
n
1

)
=

(
n

n−1
)
= n:

EY =
n∑

k=0

k ·
(
n

k

)
αk (1 − α)n−k

= 1 · nα(1 − α)n−1 + 2 ·
(
n

2

)
α2(1 − α)n−2

+ · · ·+ (n − 1) · nαn−1(1 − α) + n · αn .

This is complex, but notice that Y = X1 + · · ·+ Xn where Xi has
expectation α . By additivity, EY = α + · · ·+ α = nα .



This formula gives us some useful identities. For α = 1/2:

n/2 =
n∑

k=0

k ·
(
n

k

)
2−n ,

n · 2n−1 =
n∑

k=0

k ·
(
n

k

)
= n + 2

(
n

2

)
+ 3

(
n

3

)
+ · · · .

This can be easily seen directly, too.



Birthday	paradox

Recall the birthday paradox: n days in the year, k students in a class.
1 We computed an exact formula for at least two students to have a

common birthday – then we approximated it.
2 Union bound k(k − 1)/n.
3 Now: expected value of pairs with common birthday.

For 1 ≤ i < j ≤ k , let Xi j be the (Bernoulli) random variable that is 1 if
they have a common birthday and 0 if they don’t.
We know EXi j = P(Xi j = 1) = 1/n. Number of pairs with common
birthday:

X12 + X13 + · · ·+ Xn−1,n =
∑

1≤i<j≤n
Xi j .

Then E
∑

i<j Xi j ] =
∑

i<j EXi j =
k(k−1)

2n . As the union bound, but this
is exact.



This analysis of the birthday paradox is insufficient: it shows that
when k2 ≫ n then the expected number of pairs with common
birthdays is large. But this still allows it to happen that with large
probability, there are no such pairs. (See the homework about this.)
An estimation of the variance would help (possibly a later homework).



Conditional	expectation

If A is an event and X is a random variable we define the conditional
expectation of X with respect to A as

E[X | A] =
∞∑

k=1

k · P(X = k | A)

= P(X = 1 | A) + 2P(X = 2 | A) + · · · .

Example We toss a die. What is the expected value of the number
X of points, under the condition A that this value is odd? The
conditional probability of an odd k provided the outcome is odd is
1/6
1/2

= 1/3, hence

E[X | A] = (1 + 3 + 5)/3 = 3.



Law	of	total	expectation

Just as the law of total probability, we have a law of total expectation.
Let A1, . . . ,An be events that form a partition of the space, so
Ai ∩Aj = ∅ for i , j, and A1 ∪ · · · ∪An = Ω. Let X be a random
variable. Then

EX = P(A1)E[X | A1] + · · ·+ P(An)E[X | An ].



Game	show	example

Question	A: success probability 0.8, prize 100.
Question	B: success probability 0.5, prize 200.

Choose which one to answer first; if you succeed you can also answer
the second.
• Once the order is chosen, let pi and vi be the success probability

and the value for questions i = 1, 2.
• Let X be the final expected prize money.
• Let S be the event that you succeed in the first question.

We have E[X | S] = v1 + p2v2, and E[X | Sc ] = 0.

EX = P(S)E[X | S] + (1 − P(S))E[X | Sc ] = p1(v1 + p2v2).

Attempting question A first: 0.8(100 + 0.5 · 200) = 160.
Attempting question B first: 0.5(200 + 0.8 · 100) = 120.



Restart	property	of	the	geometric

Let X be a geometric random variable with parameter α . Let Yk be the
variable that counts which experiment succeeds first, but starting only
from the kth one, so its distribution is defined by

P(Y > n) = P(X > k + n | X > k) =
1 − α)n+k

(1 − α)k
= (1 − α)n .

So Yk is also a geometric random variable with the same parameter α .
We call this the memoryless property, of geometric random variables.



Expectation	of	the	geometric

Let X be a geometric random variable with parameter α .

µ = EX =
∞∑

k=1

k · α(1 − α)k−1 = 1 · α + 2 · α(1 − α) + · · · .

Let Y1 be the variable introduced above, then by the memoryless
property EY1 = EX = µ. Let S be the event X ≤ 1, then
E[X | Sc ] = 1 + EY1 = 1 + µ. By the law of total expectation:

µ = P(S)E[X | S] + (1 − P(S))E[X | Sc ] = α + (1 − α)(1 + µ).

Solving the equation gives µ = 1/α . So, if the success probability of
each attempt is 1/10, we can expect to succeed on the tenth attempt
(on average).
A similar trick computes var(X ) = 1/α2 − 1/α .



Poisson	random	variable

First we define a distribution, then we illustrate it.

Definition The Poisson random variable Y with parameter λ > 0

takes values 0, 1, 2, . . .. We have P(Y = k) = λk
k ! e
−λ .

Is this a probability mass function?
Yes. Let us use from calculus the power series

ex = 1 + x + x2/2 + · · ·+ xk/k! + · · · =
∞∑

k=0

xk/k! .

Then
∞∑

k=0

λk

k!
e−λ = eλe−λ = 1.



For motivation, consider a barbershop, where Y is the number of
customers entering it between 3 and 4 in the afternoon. The following
argument shows Y is approximately Poisson.
• Suppose we know from experience that the average number of

customers is λ, say λ = 13.7.
• For some large n divide the hour into n intervals Di of length 1/n.

Let Xi , i = 1, . . . ,n be 1 if a customer enters during Di .
• Approximately, Xi are independent Bernoulli random variables

with expectation λ/n, and Y ≈ X1 + · · ·+ Xn .
(Only approximately, as we assume that at most 1 customer enters
during Di , but two can enter during Di ∪ Di+1.)

• So there is a binomial random variable Z with parameters λ/n,n
with Y ≈ Z .



P(Z = k) =

(
n

k

) (
λ

n

)k (
1 − λ

n

)n−k
=

λk

k!

(
1 − 1

n

) (
1 − 2

n

)
. . .

(
1 − k − 1

n

) (
1 − λ

n

)n(1−k/n)
.

If k is fixed and n → ∞ then this converges to λk
k ! e
−λ . Here we used

the fact from calculus (and our earlier inequalities) that
(1 + x/n)n → ex as n → ∞.
So a Poisson random variable approximates a binomial random
variable Z in which the probability of each individual independent
event is small (λ/n), but due to the large number n of repetitions the
expected value EZ = n · λn = λ is not that small.



• For a Poisson random variable Y with parameter λ, the above
binomial approximation shows EY = λ.
This can also be calculated directly:

EY = e−λ
∞∑

k=0

k · λ
k

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)! = λ.

• A similar calculation shows var(Y ) = λ – thus, the standard
deviation is only

√
λ.

This we could also figure out from the approximation, and the
additivity of variance for independent variables (see below).



Independent	random	variables

Two random variables X ,Y are independent if every possible pair of
events referring to X and Y , that is events of the form X ∈ A, Y ∈ B is
independent.
• It is sufficient to require pX ,Y (x ,y) = pX (x)pY (y) for the joint

PMF. In our notation, if pi = pX (xi), pj = pY (yj),
ri j = pX ,Y (xi ,yj) then ri j = piqj .

• In the array, every element is the product of the marginals:

...
...

...
...

... . .
.

y3 q3 p1q3 p2q3 p3q3 . . .

y2 q2 p1q2 p2q2 p3q2 . . .

y1 q1 p1q1 p2q1 p3q1 . . .

p1 p2 p3 . . .

x1 x2 x3 . . .



• If X ,Y are independent then for any functions f ,д, also f (X ) and
д(Y ) are independent.

• Generally, our random variables are already given in such a way
that we know they are independent. But sometimes, this is less
obvious, as the example shows:

Examples

1 Let X be a number chosen uniformly among 1, 2, . . . , 10. Let
Y = X mod 2, Z = X mod 5. Then X ,Y are independent. Indeed, Y
is 0 or 1 with probabilities 1/2, and Z is 0,1,2,3 or 4 with probability
1/5. Every combination of values of Y ,Z appears exactly once,
with probability 1/10.

2 LetU be a number chosen uniformly among 1, 2, . . . , 24. Let
V = U mod 4,W = U mod 6. Then V ,W are not independent.
P(V = 0) = 1/6, P(W = 1) = 1/4. However,
P(V = 0,W = 1) = 0, since V = 0 implies that U is even, while
W = 1 thatU is odd.



The joint distribution of U ,V of the above example.

6 0 1/12 0 1/12
5 1/12 0 1/12 0
4 0 1/12 0 1/12
3 1/12 0 1/12 0
2 0 1/12 0 1/12
1 1/12 0 1/12 0

1 2 3 4



• We call several random variables X1, . . . ,Xn independent if any
combination events referring to different variables is independent.
For the independence of X ,Y ,Z it is sufficient to require, for
example that

pX ,Y ,Z (xi ,yj , zk ) = pX (xi)pY (yj)pZ (zk ).

• The events A,B,C are independent if and only if the random
variables X = IA,Y = IB ,Z = IC that are their indicator functions
are independent.

• If X1, . . . ,Xn are the indicator functions of independent events of
probability α then they are independent Bernoulli random
variables with parameter α .
Their sum Y = X1 + · · ·+ Xn is a binomial random variable with
parameters α ,n.

• The sum of independent variables is an important topic of
probability theory since we want to analyze the joint effect of
many independent random influences.



Theorem If random variables X ,Y are independent then

E(XY ) = (EX )(EY ).

Indeed, let X and Y be the range of X and Y , then

E(XY ) =
∑
x ∈X

∑
y ∈Y

xypX ,Y (x ,y)

=
∑
x ∈X

∑
y ∈Y

xypX (x)pX (y) =
∑
x

xpX (x)
∑
y

ypY (y)

= (EX )(EY ).

For many non-independent pairs of random variables, this property
does not hold. For example, if X = Y are Bernoulli trials with
probability 1/2 then
E(XY ) = EX 2 = EX = 1/2, while (EX )(EY ) = 1/4.



Summing	the	variances

Variables X ,Y are called uncorrelated if E(XY ) = (EX )(EY ). We have
seen that if X ,Y are independent then they are uncorrelated.
However, the converse is not always true.

Example Let P(X = −1,Y = −1) = 1/4, P(X = 0,Y = 1) = 1/2,
P(X = 1,Y = −1) = 1/4.

If X ,Y are uncorrelated then so is (aX + b),Y for any a , 0. So
uncorrelatedness does not change if we add a constant, and X ,Y are
uncorrelated if and only if

E[(X − EX )(Y − EY )] = 0.

The quantity E[(X − EX )(Y − EY )] is called the covariance. This can
also be computed as E(XY ) − EXEY (exercise).



Here is another way of looking at variance. Let X ,Y be two identically
distributed, uncorrelated random variables. Then

E(X − Y )2 = E(X 2 − 2XY + Y 2) = EX 2 − 2(EX )(EY ) + EY 2

= 2EX 2 − 2(EX )2 = 2var(X ).



Theorem If X ,Y are independent then
var(X + Y ) = var(X ) + var(Y ).

Indeed, let X ′ = X − EX , Y ′ = Y − EY , then

var(X + Y ) = E(X + Y − E(X + Y ))2 = E(X ′ + Y ′)2

= E(X ′)2 + E(Y ′)2 + 2E(X ′Y ′).

Since X ′,Y ′ are also independent, they are uncorrelated, their
covariance E(X ′Y ′) = 0, hence the right-hand side is var(X )+ var(Y ).

• This is a very important relation, we will apply it right away –
after generalizing to larger sums.



Pairwise	independence

Theorem Let X1, . . . ,Xn be pairwise uncorrelated random
variables. Then

var(X1 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn).

Let us prove this:

var(X1 + · · ·+ Xn) = E(X1 + · · ·+ Xn)
2 − (E(X1 + · · ·+ Xn))

2

=
∑
i

EX 2
i + 2

∑
i<j

EXiX j −
∑
i

(EXi)
2 − 2

∑
i<j

EXiEX j .

Since Xi and X j are uncorrelated, the two parts after the ∑
i<j cancel

each other.



Linear	growth	of	variance

• Let X1, . . . ,Xn be independent and equally distributed, with mean
µ and standard deviation σ , let Sn = X1 + · · ·+ Xn . Then
var(Sn) = nσ2 and hence the standard deviation σSn of Sn is

√
nσ .

• Contrast this to the case when the variables can be correlated: for
example when Xi = X1, i = 2, . . . ,n. Then
var(Sn) = var(nX1) = n2var(X1), and so σSn = nσ .

Thus, in the uncorrelated case, the distribution of the sum Sn is
concentrated around its mean nµ: its width is proportional to

√
n.

Example Let X1, . . . ,Xn be independent Bernoulli random
variables with parameter p. Their mean is p, the variance is p(1 − p).
Then Sn = X1+ · · ·+Xn is a binomial random variable. Its mean is np,
and its variance is np(1 − p), so its standard deviation is

√
n
√
p(1 − p).

If p = 1/2 then this is
√
n/2.



Law	of	large	numbers

Theorem	(Law	of	large	numbers) Let X1, . . . ,Xn be independent,
identically distributed random variables with mean µ and standard
deviations σ , and Sn = X1 + · · ·+ Xn .

P(|Sn − nµ | > λσ
√
n) < 1/λ2.

This follows from Chebyshev’s inequality, since ESn = nµ and
σSn =

√
nσ .

For example |Sn − nµ | ≤ 10σ
√
n with probability > 0.99.

Example If Xi is Bernoulli with parameter 1/2 then
|Sn − n/2| ≤ 5

√
n with probability > 0.99.

In coin tossing, a few times
√
n/2 deviation from n/2 heads can be

expected. In fact, we should be surprised if the deviation is too small.



Reformulation	for	the	average

Let X1, . . . ,Xn be random variables with mean µ and standard
deviation σ . Another way to phrase the law of large numbers is to
look at the average An = (X1 + · · ·+ Xn)/n. Then EAn = µ,
var(An) = σ2/n, so the standard deviation is σAn = σ/

√
n. The

Chebyshev inequality now gives

P(|An − µ | > λσ/
√
n) < 1/λ2.

So with high probability, the average differs from the expected value µ
of X1 only by a few times σ/

√
n.



Majority	voting

• Suppose that we make some decision using a randomized
algorithm A. Correct answer with probability ≥ 2/3. For greater
certainty, repeat the algorithm n times, with independent random
numbers, then decide by the majority. What is the probability that
this decision is still wrong?

• For each repeat, a Bernoulli random variable Xi : the correct
answer is 0, but Xi = 1 with probability 1/3. Then EXi = µ = 1/3,
σXi = σ =

√
1
3 ·

2
3 =

√
2
3 . Wrong decision if Sn ≥ n/2.

• ESn = nµ = n/3, σSn =
√
n ·
√
2
3 =

√
2n
3 . If Sn ≥ n/2 then

Sn − nµ = Sn − n/3 ≥ n/6.
• Choose λ so that n/6 = λσSn = λ

√
2n
3 . Thus, λ =

√
n/8. The

theorem now says P(Sn > n/2) < 1/λ2 = 8/n.



Large	deviations

• Chebyshev’s inequality says that the probability that Sn differs
from ESn by a linear amount is O(1/n).

• If the variables are independent (not only pairwise) and bounded
then another tool gives and exponentially decreasing bound e−cn .

There are several versions, all called (with disputed justification)
“Chernoff bounds”. They all imply the following:

Theorem Let X1, . . . ,Xn be independent random variables obeying
some common bound |Xi | < c . There is a function f (ε) > 0 such that
for all ε > 0

P(Sn − E(Sn) > εn) < e−f (ε)n .



Main idea: let X1, . . . ,Xn be identically distributed with t > 0, and
assume that EetX1 exists. By the product property for independent
random variables:

EetSn =
n∏

i=1

EetXi = (EetX1)n ,

P(Sn > λn) = P(etSn > etλn) ≤ (Eet(X1−λ))n .

For the exponential bound, it remains to show that Eet(X1−λ) < 1 for
some t when λ > EX1.



One version of Chernoff’s bound uses a quantity

v(a,b) = (b − a)2/4,

Lemma For a random variable X with a ≤ X ≤ b we have
var(X ) ≤ (b − a)2/4. This bound is achieved for
P(X = a) = P(x = b) = 1/2.

The proof is an exercise. For independent random variables Xi with
ai ≤ Xi ≤ bi , let vn =

∑n
i=1 v(ai ,bi). Then var(Sn) ≤ vn (equal when

Xi = ai or bi with probability 1/2 each).

Theorem	(Hoeffding) For all λ > 0:

P(Sn − ESn ≥ λ
√
vn) ≤ e−λ

2/2.

Alternatively, P(Sn − ESn ≥ λ) ≤ e−λ
2/2vn .



Let us apply Hoeffding’s theorem (in the second form) to the case
when all variables Xi are Bernoulli with parameter p. Then ai = 0,
bi = 1, ESn = np, vn = n/4. Choosing λ = εn it gives

P(Sn − np > εn) ≤ e
− ε2n2n/2 = e−2ε

2n ,

so our first “Chernoff bound” holds with f (ε) = 2ε2.
Applying this to the majority voting example which had p = 1/3:

P(Sn ≥ n/2) = P(Sn − n/3 ≥ n/6) ≤ e−2·(1/36)·n = e−n/18.

Compare this to the bound 8/n obtained from Chebyshev’s inequality.



The following version of the large deviation bound we can prove here.

Theorem Let X1, . . . ,Xn be independent bounded random
variables, where ai ≤ Xi ≤ bi with bi − ai ≤ 1. Then for any
0 ≤ λ ≤ 2σSn we have

P(Sn − ESn ≥ λσSn ) ≤ e−λ
2/4.

This is stronger than Hoeffding’s in using the variance in place of vn ,
but applies only when bi − ai ≤ 1 and λ ≤ 2σSn (still allowing λσSn to
grow linearly).
The proof uses the following:

Lemma For |x | ≤ 1 we have 1 + x ≤ ex ≤ 1 + x + x2.

This comes from ex =
∑∞

n=0 x
n/n!.



Shifting: Let X ′i = Xi − EXi , then EX ′i = 0. The assumption
bi − ai ≤ 1 implies |X ′i | ≤ 1. Replace Xi with X ′i .
By the lemma, for t ≤ 1:

EetXi ≤ E(1 + tXi + t2X 2
i ) = 1 + t2var(Xi) ≤ et

2var(Xi ).

By the product property for independent random variables and the
above:

EetSn =
n∏

i=1

EetXi ≤
n∏

i=1

et
2var(Xi )

= et
2 ∑

i var(Xi ) = et
2var(Sn) = et

2s2 .

By Markov’s inequality, where 0 ≤ t ≤ 1, and using the above:

P(Sn > λs) = P(etSn > etλs) ≤ EetSn/etλs ≤ et
2s2−tλs .

Choosing t = λ/2s (≤ 1 by the assumption), this is e−λ2/4.



General	random	variables
Cumulative	distribution	function

A random variable X taking values v1, v2, . . ., with probability mass
function pX (·) can always be characterized by the function

FX (a) = P(X ≤ a),

where a runs from −∞ to∞. This is called the cumulative distribution
function, or CDF of X . Example for the a random variable uniformly
distributed on {−2,−1, 0, 1, 2, 3, 4}:
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Example for the Poisson random variable with parameter 3:
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The CDF of a random variable X is always a function F (a) = FX (a)
that
• increases monotonically: if a < b then F (a) ≤ F (b),
• has limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

For any a < b we can write then

P(a < X ≤ b) = F (b) − F (a).

For example, for a Poisson random variable, Y with parameter 3,

P(3.5 < Y ≤ 6) = FY (6) − FY (3.5) = pY (4) + pY (5) + pY (6)

= e−3
(
34

4!
+

35

5!
+

36

6!

)
.



Continuous	random	variable

When Z is a discrete variable, the FZ may have jumps: for example if
Z is the discrete uniform distribution over {−2, . . . , 4} then
• FZ (x) = 1/7 for −2 ≤ x < −1,
• FZ (x) = 2/7 for −1 ≤ x < 0.

We will see, however, distributions, for which the CDF is continuous
(even differentiable).



The CDF of the random variable Y distributed uniformly over the
interval [−2, 4] is

FY (x) =


0 if x < −2,
(x − (−2))/6 if − 2 ≤ x < 4,

1 if 4 ≤ x .
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Exponential	random	variable

The CDF of the exponential random variable Y with parameter β , also
called the rate, is defined as

FY (x) =
0 if x ≤ 0,

1 − e−βx if 0 ≤ x .

Plot for β = 0.5:
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Exponential	from	geometric

The CDF of the exponential random variable with rate β is the limit of
the CDF of variables Zn/n, where Zn are geometric variables with
parameter β/n. Indeed, as n → ∞,

P(Zn/n > x) = P(Zn > xn) = (1 − β/n)xn → e−βx .

Zn/n ≈ the time of first success, if we make independent attempts
with success probability β/n in every time interval of length 1/n.



Recall the barbershop example used to illustrate the Poisson
distribution. On the average, β = 13.7 customers enter between 3 and
4 in the afternoon. Let Y be the first time after 3 (measured in hours)
when a customer arrives. Let n = 3600. Every second, independently
of the others, a customer arrives with probability β/n. Then Zn is the
first time after 3, measured in seconds, when a customer arrives, and
Y ≈ Zn/n is this time, measured in hours.



Memoryless	property	of	exponential

An exponential random variable X with rate β has a memoryless
property similar to the geometric. For any t > 0, let Yt be the random
variable with the distribution

P(Yt > s) = P(X > s + t | X > t) = e−β(s+t)/e−βt = e−βs .

So Yt is also an exponential random variable with the same rate β .



Inverse	CDF

In computer simulations, we frequently need a random variable X
with some given CDF F (x). How to generate one? Let

G(u) = min{x : u ≤ F (x) }.
Then G(u) ≤ x ⇔ u ≤ F (x). We will call G(u) the inverse of F (x) and
denote it by G(u) = F−1(u). When F (x) is strictly increasing then
G(y) is the customary inverse. Let U be a random variable distributed
uniformly over [0, 1].

Theorem F−1(U ) has the distribution of X .

Indeed, P(F−1(U ) ≤ x) = P(U ≤ F (x)) = F (x), since U is uniform.
Let us apply this theorem to generate some random variables.



Generating	Bernoulli

The Bernoulli random variable X with parameter p has CDF
FX (a) = 1 − p for 0 ≤ a < 1, and 1 if a ≥ 1. Then F−1X (u) = 0 for
u < 1 − p and 1 for u ≥ 1 − p. So we can generate a Bernoulli variable
by taking a random variable U uniformly distributed in [0, 1], then
output 1 if U ≥ 1 − p, otherwise output 0.



Generating	exponential

The exponential random variable Y with rate β has CDF
FY (x) = 1 − e−βx for x ≥ 0. We have

u ≤ 1 − e−βx ⇔ e−βx ≤ 1 − u

⇔ 1

β
ln 1

1 − u ≤ x ,

F−1Y (u) =
1

β
ln 1

1 − u

for 0 ≤ u < 1. So if U < 1 is uniform then

1

β
ln 1

1 −U

is exponential with rate β .



Density	function

For a random variable X whose distribution function F (x) is
differentiable, the derivative

f (x) =
dF (x)

dx
= F ′(x)

is called its probability density function, PDF. By the fundamental
theorem of calculus, we can then write

F (x) =

∫ x

−∞
f (y)dy ,

P(a < X ≤ b) = F (b) − F (a) =
∫ b

a
f (x)dx .

So P(a < X ≤ b) is the area under the curve f (x) for a < x ≤ b.



Recall an earlier example (Romeo and Juliet):
Choose two random numbers uniformly in the interval [0, 60], and
return the (absolute) difference Z . The density function is
f (x) = 1

30(1 −
x
60) for 0 ≤ x ≤ 60, and 0 otherwise (check∫ 60

0
f (x)dx = 1). We have, for 0 ≤ x ≤ 60:

F (x) =

∫ x

−∞
f (y)dy =

1

30

(
x − x2

120

)
for 0 ≤ x ≤ 60, and P(12 < Z ≤ 36) =

∫ 36

12
f (x)dx = F (36) − F (12).
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Uniform: The PDF of the uniform distribution over the interval [a,b]
is, of course, f (x) = 1

b−a for x ∈ [a,b], and 0 elsewhere.
Exponential: The PDF of the exponential distribution with rate β is

d
dx (1 − e−βx ) = βe−βx for x ≥ 0, and 0 for x < 0.

Shifting: If X has density f (x), then X + b has density f (x − b), this
is the function f shifted to the right by b.

Stretching/shrinking: aX with a , 0 has density 1
|a | f (

x
a ). This is the

function f stretched horizontally by a factor a (reflected if a < 0),
and the height shrunk by |a| to keep the area 1.

Example Romeo and Juliet decide that they will not be late by
more than 10 minutes (they used to be late by up to 60): a = 1/6.



Expectation	for	density	function

If a random variable X has density function f (x) then its expectation
is defined as ∫ ∞

−∞
x f (x)dx .

You can see the connection of this to the discrete case: for each n, if
we replace X with its approximation Yn = n⌊X/n⌋, then

EX ≈ EYn =
∞∑

k=−∞

k

n
P
(
k

n
≤ x <

k + 1

n

)
,

and by P
(
k
n ≤ x < k+1

n

)
≈ f (kn ) ·

1
n we get ∑∞k=−∞ k

n f (
k
n ) ·

1
n , which is

an approximating sum for
∫ ∞
−∞x f (x)dx .



Expectation	and	variance	for	uniform

Let X be uniformly distributed in [−1/2, 1/2].
Expectation By symmetry, EX = 0. The variable (b − a)X has the

same expectation, while

Y = (b − a)X +
a + b

2

is distributed uniformly on [a,b], with expectation a+b
2 . (This

could have been computed also directly by integration.)
Variance Using the notation [F (x)]ba = F (b) − F (a):

var(X ) = EX 2 − (EX )2 = EX 2 =

∫ 1/2

−1/2
x2 dx

= [x3/3]
1/2

−1/2 = 2 · 1/24 = 1/12,

so var(Y ) = (b−a)2
12 .



Expectation	and	variance	for	exponential

Let Y have exponential distribution with rate β . Its distribution is the
limit of the distribution of Xn/n with rate α = β/n.

Expectation EY = 1/β : this can be computed integration by parts
(see next page), but it is simpler to observe that
E[Xn/n] =

1/α
n = 1/β .

Variance Recall var(Xn) = 1/α2 − 1/α .

var(Xn/n) = n−2var(Xn) = n−2
(
n2

β2
− n

β

)
= 1/β2 − 1/βn → 1/β2.

So var(Y ) = 1/β2.



Integration	by	parts

(Just for illustration.) Compute the expectation for the exponential
again. Integration by parts is the identity∫ b

a
f (x)д′(x)dx = [f (x)д(x)]ba −

∫ b

a
f ′(x)д(x)dx .

Apply it with f (x) = x , д(x) = − 1
β e
−βx :

EY = β

∫ ∞

0
xe−βx dx = β

[
−1
β
xe−βx

]∞
0

− β

∫ ∞

0

(
−1
β
e−βx

)
dx

=

∫ ∞

0
e−βx dx =

[
−1
β
e−βx

]∞
0

=
1

β
.



Normal	random	variable

One more very important continuous random variable is given by the
density function

φ(x) =
1
√
2π

e−
x2
2 .

This is called standard normal, or standard Gaussian. (Without some
math, it is not even clear why

∫ ∞
−∞ φ(x)dx = 1.) The CDF is denoted

by Φ(x):

Φ(x) =

∫ x

−∞
φ(y)dy .

(There is no explicit formula for Φ(x).) It has mean 0 (obviously), and
variance 1 (less obviously, by some integration.)



The standard normal distribution’s graph is the famous (standard) bell
curve:
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(Any stretched and shifted form is also called a bell curve.)



If X is standard normal, then stretching and shifting turns it into some
Y = σX + µ, which is also called normal, or Gaussian for any µ and
any σ > 0. This has, of course, mean µ and variance σ2. By what we
learned about shifting and stretching:

fY (y) =
1

√
2πσ

e
− (y−µ)2

2σ2 .

In general, if Y is a random variable with mean µ and standard
deviation σ then

X =
Y − µ

σ

is a random variable with mean 0 and standard deviation 1 which we
can call the standardized version of Y .
The standardized version of any normal variable is the standard
normal variable.



Central	limit	theorem

Why is the normal distribution so interesting? For example, since it
describes the shape of the sum of i.i.d. random variables.

Theorem	(Central	limit	theorem) Let X1,X2 . . . be independent,
identically distributed random variables (having a variance), and let
Sn = X1 + · · ·+Xn . Then for the standardized version Yn = Sn−ESn

σSn
of

Sn we have

FYn (x)→ Φ(x)

as n → ∞.

So the shape of Sn becomes more and more like a bell curve (in the
strict sense of convergence).
(We will not prove this theorem, the proof needs mathematical tools
going beyond this course.)



• Many examples of a real-life random variable can be viewed as the
sum of a lot of small independent effects, so they are assumed to
have a normal distribution.

• Gauss introduced the normal law as the one governing the
distribution of measurement error (in astronomical observations).

• The normal distribution is distinguished by the property that (as
we will see) the sum Z = X + Y of two independent normal
variables X ,Y is also normal.
(If you add two independent non-normal variables, the sum is
getting “closer to the normal”.)



Joint	distribution

If we have two random variables X ,Y on a common probability space
they have a joint distribution function

FX ,Y (a,b) = P(X ≤ a,Y ≤ b).

If FX ,Y (a,b) is differentiable (as a two-variable function) then we have
a joint density function

f (a,b) = fX ,Y (a,b) =
∂2FX ,Y

∂a ∂b
(a,b).

Then for any event E ⊆ (−∞,∞) × (−∞,∞) we have

P((X ,Y ) ∈ E) =
∫
E
f (x ,y)dx dy .

For example, if E is the event a ≤ X ≤ b, c ≤ Y ≤ d then

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

( ∫ d

c
f (x ,y)dy

)
dx .



Marginal	distributions

If fX ,Y (x ,y) is the joint density of the pair (X ,Y ) then the density of
X is called the marginal density, and is obtained as

fX (x) =

∫ ∞

−∞
fX ,Y (x ,y)dy .

Recall the joint PMF and marginal PMF in case of discrete variables,
with values in the ranges A,B:

pX (a) =
∑
b ∈B

pX ,Y (a,b).

In the continuous case, the sum is replaced with the integral.



For a more complicated event (but a simple joint distribution) from an
earlier example, let Romeo and Juliet have a date. Romeo is late by X
minutes, and Juliet by Y minutes. These delays are independent, and
uniformly distributed over [0, 60]. Therefore fX ,Y (a,b) = 60−2 for
0 ≤ a,b ≤ 60 and 0 elsewhere.
Consider the event that they arrive within 15 minutes of each other:
its probability is ∫ 60

0
dx

∫ min(60,x+15)

max(0,x−15)
60−2 dy .



This could be evaluated, but we had an easier way, since the density is
uniform: just computing the relative area of the event |X − Y | ≤ 15
corresponding to the green area on the figure below.



Independence

If two continuous variables X ,Y are independent then the joint
density is the product of the densities:

fX ,Y (x ,y) = fX (x)fY (y).

This is also analogous to the PMF of independent discrete variables.
In the Romeo and Juliet example, fX (x) = fY (y) = 60−1, and
fX ,Y (x ,y) = 60−2.



Two-dimensional	normal

Let X ,Y be two independent standard normal random variables. Then

fX ,Y (x ,y) = φ(x)φ(y) =
1

2π
e−(x

2+y2)/2.

So the joint density depends only on the distance from the origin, it is
rotationally symmetric: a “bell surface”, and is called the
two-dimensional standard normal (Gaussian) density.
Stretching/shrinking in some directions, rotation and shifting gives
distributions that are also called normal (Gaussian): the general form
of such a density function is

Ae−(a
2x2+bxy+c2y2+dx+f y ),

where |b | < 2ac , and A is chosen to make the integral equal to 1.



Sum	of	independent	variables

Let X ,Y be two independent random variables, both over the set of
integers. Then

P(X + Y = n) =
∑

i, j :i+j=n

pX (i)pY (j) =
∞∑

i=−∞
pX (i)pY (n − i).

If X ,Y are the tossings of a fair die, then for n = 2, . . . , 12: if
[relation] is 1 if the relation holds and 0 othewise:

P(X + Y = n) =
6∑

i=1

[1 ≤ n − i ≤ 6]6−2 =

min(6,n−1)∑
i=max(1,n−6)

6−2,

since pX (i) = pY (i) = 6−1 for 1 ≤ i ≤ 6 and 0 otherwise.



Analogously, for two independent continous variables X ,Y , with
density functions f (x),д(y) if Z = X + Y has density function h(z)
then

h(z) =

∫ ∞

−∞
f (x)д(z − x)dx .

The function h(z) is called the convolution of f and д.



Recall the dating of Romeo and Juliet: their latenesses are independent
variables X ,Y uniform over [0, 60]. For Z = X − Y = X + (−Y ), we
will compute the density of Z . For −60 ≤ z ≤ 60,

fZ (z) =

∫ 60

0
[0 ≤ x − z ≤ 60]60−2 dx

=

∫ min(60,60+z)

max(0,z)
60−2 dx = 60−2(60 − |z|).

The shaded area is P(|X − Y | ≤ 15).
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Sum	of	independent	normals

Theorem If X ,Y are independent normal then X + Y is normal.

We can assume EX = EY = 0, since shifting does not change
normality. By stretching/shrinking, we can also assume
fX (x) = Ae−a

2x2 , fY (y) = Be−b
2y2 , with a2 + b2 = 1, hence b < 1. By

Z = X + Y , fZ (z) =
∫ ∞
−∞ fX (x)fY (z − x)dx and “completing the

square”:

fX (x)fY (z − x) = ABe−(a
2x2+b2(z−x)2),

a2x2 + b2(z − x)2 = (a2 + b2)x2 + b2z2 − 2xzb2

= (x − b2z)2 + (b2 − b4)z2,
fX (x)fY (z − x) = ABe−(x−b

2z)2e−(b
2−b4)z2 .

Only the factor e−(x−b2z)2 depends on x , and its integral does not
depend on z. So fZ (z) = Ce−Dz

2 for some C,D > 0, a normal density.



Correlation
Conditional	distribution

Let X ,Y be random variables with a joint distribution. The conditional
probability P(c < Y ≤ d | a < X ≤ b) is well-defined as long as
P(a < X ≤ b) > 0. But in case of a joint density function fX ,Y (x ,y),
we can compute also a conditional probability conditional on an event
X = x of probability 0. We can define it as a limit

P(c < Y ≤ d | X = x) = lim
h→0

P(c < Y ≤ d | x < X ≤ x + h),

(hoping the limit exists), but we will compute it with the help of
densities. Recall fX (x) =

∫ ∞
−∞ fX ,Y (x ,y), and define the conditional

density function

fY |X (y |x) = fX ,Y (x ,y)/fX (x).

This should be limh→0 P(y < Y ≤ y + h | x ≤ X ≤ x + h).



Now we can compute

P(c < Y ≤ d | X = x) =

∫ d

c
fY |X (y |x)dy .

To see that this is what we expect:

P(c < Y ≤ d) =

∫ ∞

−∞
dx

∫ d

c
fX ,Y (x ,y)dy

=

∫ ∞

−∞
fX (x)dx

∫ d

c
fY |X (y |x)dy

=

∫ ∞

−∞
fX (x)P(c < Y ≤ d | X = x)dx ,

which is the continuous version of the total probability theorem.



Mixed	joint	distribution

Continuous in one variable, and discrete in the other:

Example Suppose that a biased coin is tossed n times. We don’t
know what the bias is: let our “apriori” probability distribution for the
probability X of a head be uniform over the interval [0, 1]. The
number Y of heads obtained is a binomial random variable with
parameters n,X , so P(Y = k | X = p) =

(
n
k

)
pk (1 − p)n−k .

In the plane, probability is concentrated over the horizontal segments
0 ≤ x ≤ 1,y = 0, 1, . . . ,n.
It is non-trivial to compute P(Y = k). By the law of total probability:

P(Y = k) =

(
n

k

) ∫ 1

0
pk (1 − p)n−k dp.

Now for integers c,d > 0 the beta function (look up!) is
B(c,d) =

∫ 1

0
pc−1(1 − p)d−1 dp =

(c−1)!(d−1)!
(c+d−1)! , giving P(Y = k) = 1

n+1 .
The uniformity of Y is surprising.



In the following example both X and Y are continuous but the
conditional distribution of Y over X is not:

Example Let X be uniformly distributed over [−1, 1], and Y = X 2.
In the plane, the probability is concentrated on the curve
−1 ≤ x ≤ 1,y = x2.
Let us compute the distribution of Y . Given that fX (x) = 1/2 for
−1 ≤ x ≤ 1, for 0 ≤ y ≤ 1 we have

FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(−y1/2 ≤ X ≤ y1/2)

= (y1/2 − (−y)1/2)/2 = y1/2.

The density of Y is fY (y) = d
dy y

1/2 = y−1/2/2.
So fY (y)→ ∞ as y → 0.



Conditional	expectation

Conditional density allows also to define conditional expectation:

E[Y | X = x ] =

∫ ∞

−∞
y fY |X (y | x)dy .

Then integration gives

E[Y ] =
∫ ∞

−∞
E[Y | X = x ]fX (x)dx ,

the continuous version of the total expectation theorem.
With the function д(x) = E[Y | X = x ], will write

E[Y | X ] = д(X ).

Now the total expectation theorem can be expressed concisely as

EY = E(E[Y | X ]).



Example Let X be a random variable uniformly distributed over
[0, 1], and Z standard normal, independent of X . Let Y = X + Z . Now
fX ,Y (x ,y) can be computed as follows.

P(Y ≤ y | X = x) = P(Z ≤ y − x | X = x) = Φ(y − x),

fY |X (y | x) = d

dy
Φ(y − x) = φ(y − x),

fX ,Y (y | x) = [0 ≤ x ≤ 1]φ(y − x).

The surface representing this two-dimensional density function is, in
the vertical stripe 0 ≤ x ≤ 1, a wave cresting on the line y = x , with
E[Y | X = x ] = x . The vertical section is, at each 0 ≤ x ≤ 1, a standard
bell curve centered at the point y = x .



Example Let X be distributed uniformly over [0.5, 5], and let Y be
an exponential variable with rate X . Then

fX ,Y (x ,y) =
4.5

−1xe−xy if 0.5 ≤ x ≤ 5, 0 ≤ y ,

0 otherwise.

The conditional expectation is E[Y | X = x ] = 1/x .



Estimate	Y knowing	X

• The expected value EX of a random variable is the “best estimate”
m of X in the sense that it minimizes E(X −m)2. Indeed,

E(X −m)2 = EX 2 − (EX )2 + (EX )2 − 2mEX +m2

= var(X ) + (EX −m)2.

This is smallest if EX =m.
• Given the joint distribution of X ,Y , we may be looking for a

function д(x) for which E(Y − д(X ))2 is minimal. Since for each x
the valuem = E[Y | X = x ] minimizes E[(Y −m)2 | X = x ], the
optimal function is

д(x) = E[Y | X = x ],

the conditional expectation of Y under the condition X = x .



Estimation	error

Given random variables X ,Y with a joint distribution, if we know the
value x of X then we may estimate Y as д(x) = E[Y | X = x ]. As a
random variable, our estimate is д(X ). The estimation error is
Y − д(X ).

Theorem The variables д(X ) and Y − д(X ) are uncorrelated, and
therefore var(Y ) = var(д(X )) + var(Y − д(X )).

So the variance of Y is equal to the variance of its best estimate plus
the variance of the estimation error. Indeed,

E[д(x)(Y − д(x)) | X = x ] = E[д(x)Y | X = x ] − (д(x))2

= д(x)E[Y | X = x ] − (д(x))2 = 0,

so also Eд(X )(Y − д(X )) = E[E[д(X )(Y − д(X )) | X ]] = 0. But also
Eд(X )E(Y − д(X )) = Eд(X )(EY − Eд(X )) = 0, since Eд(X ) = EY .



Sometimes the function E[Y | X = x ] is too complex, or even cannot
be estimated from the data.

Example

• For i = 1, . . . ,n let (xi ,yi) be some distinct pairs of numbers. Let
X ,Y be discrete random variables with P(X = xi ,Y = yi) = 1/n
for i = 1, . . . ,n. The picture of the joint distribution just puts a
probability of 1/n on each point (xi ,yi) in the plane. The
conditional expectation E[Y | X = x ] is not helpful
(is yi for x = xi and undefined otherwise).

• Maybe the points (xi ,yi) are coming from some observations.
Trying to fit a function д(x) describing them, if we allow д(·) to be
complex then then it will probably describe just some random
details of the data, not any real underlying regularities: the
technical name for this is overfitting.

Let us look for some simpler, just linear dependence between X and Y .



Correlation

There are several ways to quantify the dependence of Y over X . Let us
look for a linear one: the “best” a,b for Y ≈ aX + b. We will minimize

E(Y − (aX + b))2 = E((Y − aX ) − b)2.

For every a the best b is, as we have seen, E(Y − aX ).
Let X̄ = X − EX , then Y − aX − E(Y − aX ) = Ȳ − aX̄ . Recall the
definition of covariance:

cov(X ,Y ) = E(X − EX )(Y − EY ) = EX̄Ȳ .

We minimize E(Ȳ − aX̄ )2 = EȲ 2 − 2a · E(X̄Ȳ ) + a2EX̄ 2 by

a =
E(X̄Ȳ )
EX̄ 2

=
cov(X ,Y )
var(X )

. (1)



There is a more symmetric quantity

ρ(X ,Y ) =
cov(X ,Y )
σXσY

called the correlation coefficient. With it, substituting (1) into
E(Ȳ − aX̄ )2 = EȲ 2 − 2a · E(X̄Ȳ ) + a2EX̄ 2:

E(Y − aX − b)2 = E(Ȳ − aX̄ )2

= var(Y ) − 2cov(X ,Y )2/var(X ) + cov(X ,Y )2/var(X )

= var(Y ) − ρ2var(Y ) = (1 − ρ2)var(Y ).

Hence Y = aX + b if and only if ρ2 = 1, so ρ = ±1. This way the
correlation coefficient measures the strength of (positive or negative)
linear dependence between Y and X .



Another way to understand the correlation cofficient is by
standardizing our variables:

X̃ =
X − EX
σX

.

Now ρ(X ,Y ) = cov(X̃ , Ỹ ), the correlation coefficient is the covariance
of the standardized variables. For them, the regression line from the
point of view of x is

y = ρ · x ,

and from the point of view of y :

x = ρ · y, that is y = ρ−1x .

The closer the lines y = ρx and y = ρ−1x are to each other, that is the
closer is ρ to 1, the stronger the correlation.



Example For i = 1, . . . ,n let (xi ,yi) be some distinct pairs of
numbers. Let X ,Y be discrete random variables with
P(X = xi ,Y = yi) = 1/n for i = 1, . . . ,n. Then EX = n−1

∑n
i=1 xi ,

var(X ) = n−1
n∑

i=1

(xi − EX )2,

cov(X ,Y ) = n−1
n∑

i=1

(xi − EX )(yi − EY ).

The coefficients a,b minimizing E(Y − (aX + b))2 give the line
y = ax + b that best fits the points (x1,y1), . . . , (xn ,yn) in the sense
of minimizing ∑

i(yi − (axi + b))2. We computed already
a = cov(X ,Y )/var(X ) and b = EY − a · EX .

These same formulas will also be used to estimate a,b in case when
(xi ,yi), i = 1, . . . ,n are independent samples of some pair (X ,Y ),



A very special, symmetric case of the above example:

Example Let 0 ≤ u, v ≤ 1 with u2 + v
2 = 1, and let X ,Y take

values (u, v), (v,u), (−u,−v), (−v,−u) on the unit circle, with
probability 1/4 each. Then EX = EY = 0, and

var(X ) = var(Y ) = 1

4
(2(u2 + v

2)) = 1/2.

So
√
2X ,
√
2Y are standardized variables. Their covariance is

ρ(X ,Y ) =
1

4
· 4 · 2 · uv = 2uv.

Since u2 + v
2 = 1 write u = cosα , v = sinα . Then

ρ(X ,Y ) = 2 sinα cosα = sin(2α).
As α grows from 0 to π/4 this grows from 0 to 1.
If α is small then ρ(X ,Y ) ≈ 2α , the angle of the regression line is ≈ 2α .
If α = π/4 − δ for a small δ then ρ(X ,Y ) ≈ 1 − 2δ2, the angle of the
regression line is ≈ π/4 − δ2.



Example

• Let Y = −X + Z where Z is a variable independent of X , and
EX = EZ = 0. Then var(Y ) = var(X ) + var(Z),

cov(X ,Y ) = E(X (−X + Z)) = −EX 2 = −var(X ),

ρ(X ,Y ) =
cov(X ,Y )
σXσY

= −σX
σY

= −
(
1 +

var(Z)
var(X )

)−1/2
.

• For example, if X is distributed uniformly over [−1, 1] and Z is
normal with standard deviation 0.4 then var(X ) = 4/12 = 1/3,
var(Z) = 0.16, so

ρ(X ,Y ) = −1.48−1/2.



Correlation	and	dependence

Uncorrelated	does	not	imply	independent The variable Y can be
completely dependent on X even if cov(X ,Y ) = 0.

Example Let X be uniformly distributed over [−1, 1], and Y = |X |.
Now X and −X have the same distribution hence

cov(X , |X |) = cov(−X , | − X |) = cov(−X , |X |) = −cov(X , |X |).
This shows cov(X , |X |) = 0. (Y is dependent negatively on X for
X < 0 and positively for X > 0.)

In	some	cases	it	does • If X ,Y are both random variables taking
only two values (like the Bernoulli variables).

• If X ,Y are both normal random variables.



Some	statistics
Parameter	estimation

• In probability theory, we assume that some probability distribution
is given, and we compute or estimate other probabilities (or
expectations, and so on). But in real life, we frequently don’t know
the probabilities: we are given the outcomes, from some data
(experimental or observational), we want to find out the model
they are coming from, that is the probability distribution.

• In many cases, we can assume that we are given the values of
some number n of independent random variables X1, . . . ,Xn ,
whose unknown distribution is the question.

• This problem is too difficult, and generally also we know
something about the distribution. We may know what class the
distribution belongs to (uniform, Bernoulli, exponential, normal),
but we do not know some parameters.



Estimate	the	mean

• If we want to estimate some parameter θ of the distribution, we
will compute some function

Θ̂n = Θ̂n(X1, . . . ,Xn)

of the observations. (One frequently denotes by Ŷ an estimated
value of some quantity Y .)

• Suppose we know that the distribution is normal, with known
variance σ , and unknown mean µ. It is natural to estimate µ using

Mn = n−1(X1 + · · ·+ Xn),

which is called the sample mean.



The	quality	of	an	estimator

Estimation	error Θ̂n − θ
Bias E(Θ̂n − θ). If this is 0, the estimator is unbiased.

The sample mean Mn is an unbiased estimator of the mean µ.
(Unbiased is not necessarily the best.)

Consistent if Θ̂n is close to θ with probability close to 1 if n is large.



Sample	mean	is	not	always	best

Example Let X1, . . . ,Xn be i.i.d. random, where

P(Xi = µ − 1) = P(Xi = µ + 1) = 1/2.

The unknown parameter is µ = EXi . We could use the sample mean
Mn to estimate it, with a behavior similar to the normal. But the
following is clearly much better:

Θ̂n = (min(X1, . . . ,Xn) +max(X1, . . . ,Xn))/2.

We have

P(Θ̂n < µ) = P(Θ̂n > µ) = 2−n ,

P(Θ̂n , µ) = 2−n+1.

Of course, you do not have to look at all of X1, . . . ,Xn , only until the
first k with Xk , Xk+1, then µ = (Xk + Xk+1)/2.



Estimate	the	variance, chi-square

Suppose that X1, . . . ,Xn are i.i.d. normal, with known mean µ
unknown variance σ2. We may want to use the following sum to
estimate σ2:

Vn =
n∑

i=1

(Xi − µ)2.

Then Vn/σ2 is of the form Z2
1 + · · ·+ Z2

n where Zi are independent
standard normal. Its distribution is called the χ2n distribution, called
chi-square with n degrees of freedom (pronounce “khi”).
• When n is large then this is close to normal, but since it is

important, statisticians use tables of χ2n for smaller values of n.



Confidence	intervals

We may want an upper estimate Θ+
n and a lower estimate Θ−n for the

unknown parameter θ , with the property

P(Θ̂−n ≤ θ ≤ Θ̂+
n ) > 1 − α .

Then we call [Θ̂−n , Θ̂+
n ] a (1 − α)-confidence interval. This random

interval contains θ with large probability > 1 − α .



Example Let Xi have normal distribution with variance σ2 and
mean θ . Suppose we want α = 0.05. The sample mean Mn is normal
with variance σ2/n, so

P(Mn − µ < −xσ/n1/2) = Φ(−x).

Similar estimate for the other side; since Φ−1(−x) = α/2 for x ≈ 1.96,
so

Mn ± 1.96σ/n1/2

is a 0.95-confidence interval.
We obtained the value 1.96 from Mathematica:

InverseCDF[NormalDistribution[0, 1], 0.025] ≈ −1.96.



Example With n = 10 and X1, . . . ,Xn that are i.i.d. normal, with
known mean µ and unknown variance σ2, we used the following sum
for the estimation of σ2: Vn =

∑n
i=1(Xi − µ)2. How to get a

confidence interval of level 1 − α with, say, α = 0.05?
Since Vn/σ2 is χ2n-distributed, let Fn be the CDF of χ2n , then

F−110 (α/2) ≈ 3.24, F−110 (1 − α/2) ≈ 20.49.

So with probability 1 − α we know 3.24 ≤ V10/σ
2 ≤ 20.49, or written

differently,

V10/20.49 ≤ σ2 ≤ V10/3.25,

giving a confidence interval for σ2 with level 1 − α = 0.95.

F−110 (0.025) is computed, for example, in Mathematica as
InverseCDF[ChiSquareDistribution[10], 0.025].



Unknown	mean	and	variance

Suppose that X1, . . . ,Xn are i.i.d. normal, with unknown mean µ and
unknown variance σ2. We may want to use the following sum to
estimate σ2:

Yn =
n∑

i=1

(Xi −Mn)
2.

Recall E∑n
i=1(Xi − µ)2 = nσ2. Surprisingly, on the other hand,

EYn = (n − 1)σ2 (see the homework).

Theorem Ŝ2n/σ
2 has a χ2n−1 distribution.

(This is somewhat harder to prove.)



• For an unbiased estimate of σ2 we will therefore use

Ŝ2n =
1

n − 1

n∑
i=1

(Xi −Mn)
2.

And we should use χ2n−1 to get confidence intervals for σ2 from
here.

• To get 0.95 confidence intervals for µ we might use Ŝn =

√
Ŝ2n in

place of σ as

Mn ± 1.96 · Ŝn/n1/2.

But this is not quite OK, since Ŝn , σ .



Let us define the random variable

Tn =
Mn − µ

Ŝn/n1/2
.

With σ in place of Ŝn , this would be standard normal. Now it is not
(though still symmetric); however:

Theorem The distribution of Tn does not depend on µ.

(We will not prove it.) This is called the Student t-distribution with
n − 1 degrees of freedom. Its table gives a confidence interval for µ,
somewhat different from normal for small n, say n = 10 (asking
Mathematica):

InverseCDF[NormalDistribution[0, 1], 0.025] ≈ −1.96,
InverseCDF[StudentTDistribution[9], 0.025] ≈ −2.26.



All the above statistics are used much even when it is not known that
Xi are normal, but is guessed that they are not far from normal.



Applications	in	computer	science
Some	number	theory

We use the notation

a ≡ b (mod m)

for a modm = b modm. This is the same as requiringm | a − b.
This notation is used a lot in the number theory important for
computer science. Here are the most important properties.



Adding, multiplying If a1 ≡ b1 and a2 ≡ b2 (mod m) then

a1 + a2 ≡ b1 + b2 (mod m),

a1a2 ≡ b1b2 (mod m). (2)

A special case are the rules: “odd plus odd is even”, “odd times odd is
odd”, and so on.
To prove for example (2), write bi = ai +mki , then

b1b2 = a1a2 +m(k1a2 + k2a1 +mk1k2).

Example A decimal number is divisible by 3 iff its sum of digits is.
Indeed, 10 ≡ 1 (mod 3), so

a0 + 10a1 + · · ·+ 10kak ≡ a1 + 1a1 + · · ·+ 1kak (mod 3).



Dividing is not always possible, but the following is true, (mod m):

Division	Theorem If b has no common divisors withm (is
relatively prime with m) then for every a1 . a2 we have ba1 . ba2.

So the multiplication by such b just permutes the remainders. To
prove this note that ifm divides b(a1 − a2) then (by the fundamental
theorem of arithmetic), since it has no common divisors with b, it has
to divide a1 − a2.
• So from ba ≡ bc we can always conclude a ≡ c: a congruence can

be divided by such b.
• In particular, for such b there is a b ′ with bb ′ ≡ 1 called the inverse

of b modulom. (How to find it? By the “Euclidean algorithm”, see
in another course…)

• So ifm is a prime then every b not divisible bym (that is . 0) has
an inverse.



Fingerprint	for	equality	checking

Alice and Bob hold binary strings a and b of length n, and want to
check a = b with communicating much fewer than n bits..

Idea: Let Alice send Bob only a certain short fingerprint h(a) (also
called hash) of the string a, and let Bob compare it with h(b).
We have to choose the function h(·) randomly, and there will be
some probability of error.

Implementation: Treat a,b as numbers. Alice chooses a random
prime number p from some set p1 < · · · < pk of primes and sends
p and the fingerprint a mod p. Bob checks whether
a mod p = b mod p. He accepts if and only if this is true.

Better	than	sending	all	bits	of a? Yes, if logp ≪ n, then the
fingerprint is much smaller than the original string.

False	acceptance? Only if p divides b − a, written as p | b − a. Since
|b − a| ≤ 2n , b − a has at most n prime divisors. So the probability
of failure is ≤ n/k , small if n ≪ k .



• But, can we achieve logp ≪ n ≪ k?

Let π(n) be the number of primes up to n. From number theory:

Theorem	(Chebyshev) π(n) > 3
4n/ lnn for all large n.

For example there are at least

k =
3

4
n2/ ln(n2) = 3

8
n2/ lnn > n2/3 lnn ≫ n

prime numbers p below n2; their length is at most
logp ≤ logn2 = 2 logn ≪ n.

• The goal is achieved: Alice sends only 4 logn bits, and the false
acceptance probability is at most n/k < 3 lnn/n.

• If a smaller probability is desired, Alice can send several
fingerprints, with independent primes.



How	much	computation	is	needed?

Algorithm: Choose random p ≤ n2, and apply a prime test. If p is not
a prime, repeat, else send p and the fingerprint a mod p.

How	many	repetitions till a prime is found? Geometric variable with
parameter ≥ k/n2, so its expected value is n2/k < 3 lnn.

How	much	computation	in	each	repetition? • There is a prime
number test taking time that is only (logp)c for some
constant c .
(We say polynomial in n. There is also a randomized prime
test, costing (logp)3, even less.)

• From the bit string a = a1a2 · · ·an , the fingerprint a mod p
can be computed with very little cost:
s ← 0
for i = 1 to n:

s ← 2s + ai mod p.
Exercise: check that the result is indeed a mod p.



Hash	tables

Problem: A very large universeU of possible items, each with a
different key k . The set S ⊂ U of n of actual items that may
eventually occur is much smaller. We want to store the items in a
data structure in a way that they can be
• stored fast as they come, and found fast later.

Idea (among others, like balanced search trees): Hash function
mapping each key k into some bucket h(k) in a hash table of size
m.

Problem: Collisions, different keys mapped into the same bucket. To
minimize collisions, the hash function should spread the elements
of the universe as uniformly as possible over the table.



Randomization: universal	hashing

Instead of assuming that items arrive “randomly”, we we choose a
random hash function, h(·,R), where R is chosen randomly and
uniformly from some set H .

Definition The function h(·, ·) is universal if for all x , y ∈ U :

P(h(x ,R) = h(y ,R)) ≤ 1

m
.

If the values h(x , r) and h(y , r) are pairwise independent, then the
probability is exactly 1

m (the converse is not always true). Thus, from
the point of view of collisions, universality is at least as good as
pairwise independence.



Using	a	universal	hash	function

Once we have chosen the random parameter r , we will keep it fixed.

• No matter how we fix r , if the universeU is big then there is some
set Sr ⊂ U with |Sr | = n such that h(k, r) maps all elements of Sr
to the same position in the table.

• But if we assume that somehow the set S ⊂ U was fixed before we
choose r (we just don’t know S), or chosen independently of r ,
then universality helps bounding the expected number of
collisions.



An	example	universal	hash	function

We assume that our table sizem is a prime number, and let
H = {0, . . . ,m − 1}.
Number theory tells us (similarly to the earlier Chebyshev theorem)
that it is easy to find a prime number between, say,m and 4m.
Let d > 0 be an integer dimension. We break up our key x into bit
strings of size logm interpreted as integers in H :

x = (x1,x2, . . . ,xd ), 0 ≤ xi < m.

Fix random coefficients Ri ∈ H , i = 1, . . . ,d : therefore the number of
possible random inputs is |H | =md , and let

h(x ,R) = R1x1 + · · ·+ Rdxd modm.



• Let us show that our random hash function is universal.
• In what followsm is always the same, and we omit the (mod m)

part.
• Suppose y , x , and let i be such that xi , yi , for example x1 , y1.

Then

h(y,R) − h(x ,R) ≡ R1(y1 − x1) + D,

where D depends only on R2, . . . ,Rd . No matter how we fix
R2, . . . ,Rd , there arem equally likely ways to choose R1.
According to the Division Theorem above, only one of these
choices gives R1(y1 − x1) ≡ D, so the probability of this happening
(conditionally on fixing R2, . . . ,Rd ) is 1/m.



Pairwise	independence

Let us modify our hash function a little bit:

h′(x ,R) = R0 + R1x1 + · · ·+ Rdxd modm,

where R0 is also chosen from H independently from the other Ri .
We claim that the random variables h′(x ,R) for x ∈ Hd are pairwise
independent. Namely, each pair h′(x ,R), h′(y,R) for x , y is
uniformly distributed over the pairs a,b ∈ H : for all pairs a,b ∈ H
there aremd−1 =md+1/m2 solutions R to the pair of equations

a ≡ h′(x ,R) ≡ R0 + R1x1 + · · ·+ Rdxd , (3)
b ≡ h′(y,R) ≡ R0 + R1y1 + · · ·+ Rdyd . (4)

Without loss of generality, assume x1 , y1. Fix R2, . . . ,Rd in an
arbitrary way, then just as above, we find that there is exactly one
solution R1 to b − a ≡ h′(y,R) − h′(x ,R). Using this R1, there is
exactly one solution R0 to (3), and this R0,R1 also solves (4).



Maximum	cut

How to partition a group of people who dislike each other in various
degrees, into two subgroups?
Given: a set V = {v1, . . . , vn}, and for each pair of points vi , vj ∈ V ,

i < j, a reward wi j ≥ 0 for separating them. Let wji = wi j .
Task: If we assign numbers Xi = ±1 to each vi then

d(Xi ,X j) = (1 − XiX j)/2 = 1 if Xi , X j and 0 otherwise. We
want to maximize the total reward S =

∑
i<j wi jd(Xi ,X j). This is

the maximum cut problem, hard to solve exactly, in general.
Upper	bound: W =

∑
i<j wi j .

Randomized	algorithm: Let Xi be independent random variables,
P(Xi = 0) = P(Xi = 1) = 1/2.

Claim ES =W /2.

Indeed, E(1 − XiX j)/2 = (1 − EXiX j)/2 = 1/2.



Two-point	sampling

• How to find a partitioning achieving the rewardW /2, without
randomness? We cannot afford to try all 2n possibilities.

• Note that we needed only the pairwise independence of Xi ,X j .
Idea: use hash functions.

• Let d = ⌈logn⌉, choose random R = (R0,R1, . . . ,Rd ), Ri ∈ {0, 1}.
• Bit strings i = (i1, . . . , id ) can number the elements of the set
V = {v1, . . . , vn}. Let

Xi = h(i,R) = R0 + R1i1 + · · ·+ Rdid mod 2.

For different values of i , these are pairwise independent random
variables – giving an expected rewardW /2.

• Then there is a choice of R giving reward ≥W /2. Since there are
only 2d+1 ≤ 4n possibilities for R, we can afford to check them all
– without any randomization!



Method	of	conditional	expectations

Another way to avoid randomization while using probabilities in max
cut. Suppose that X1 = a1, . . . ,Xk−1 = ak−1 has been decided already.
Choose ak maximizing the increase in conditional expectation

∆ = E[S | X1 = a1, . . . ,Xk = ak ] − E[S | X1 = a1, . . . ,Xk−1 = ak−1].

• Only those terms of S =
∑

i<j wi jd(Xi ,X j) matter that include Xk .
If j > k then Ed(ak ,X j) = 1/2, independently of ak (check!).

• Similarly, if i < k then Ed(ai ,Xk ) = 1/2. This will change if we fix
Xk = ak : increase by 1/2 if ai , ak and decrease by 1/2
otherwise. So

2∆ =
∑

i<k :ai,ak

wik −
∑

i<k :ai=ak

wik .

Choose the value ak = ±1 that makes this nonnegative.



This method generalizes to all situations where it is easy to compute
the conditional expectations.
Indeed, by the law of total expectation, even if Xk has more than two
possible values:

E[S | F ] =
∑
α

P(Xk = α)E[S | F ∧ Xk = α ]

Since E[S | F ] is the average of the terms on the right-hand side, there
is a value α such that E[S | F ∧ Xk = α ] ≥ E[S | F ].



Greedy	algorithm

Look at the partial sum Sk (x1, . . . ,xk ) =
∑

1≤i<j≤k wi jd(xi ,x j). The
algorithm that increases the conditional expectations has a simpler
interpretation, not involving probabilities:
• for k = 1, . . . ,n, choose xk = ±1 in such a way that maximizes

Sk − Sk−1, which is exactly∑
i<k :xi,xk

wik −
∑

i<k :xi=xk

wik .

In words: Put vk into the set A+ = { vi : xi = 1 } or into
A− = { vi : xi = −1 }. Put it into A+ if ∑

vi ∈A− wik ≥
∑

vi ∈A+ wik ,
else into A−.

• This algorithm is called greedy, since it maximizes every step’s
gain along the way. It is not optimal (there are examples showing
this), but as we have seen it is not too bad in our case.



Local	search

Given is an undirected graph G with a set V of N vertices, and on its
vertices a function f (x). A vertex x is a local minimum of f if for
every neighbor y of x in G we have f (y) ≥ f (x). Our goal is to find a
local minimum in a short time.
Naive	strategy: start from some vertex, and keep moving to

neighbors as long as f (x) decreases.
But this may take as long as n steps: for example ifG is just a path
on which f (x) is decreasing, and we start from the highest value.

Other	strategies: On the path binary search is better, but how about
more complex graphs, like a 3-dimensional grid?

Randomization: choose some numberm (to be optimized later).
1 Examinem random probes X1, . . . ,Xm . Find the absolute

minimum of f (X1), . . ., f (Xm), say it is in point Xi .
2 Descend over neighbors starting from Xi until a local

minimum.
Let us analyze this.



• For some k , compute the probability that chosen X j is at least k
steps above the minimum:

N − k
N

= 1 − k

N
.

The probability that this happens with each X j is (1 − k/N )m .
Using (1 + x) ≤ ex : (

1 − k

N

)m
≤ e−mk/N .

If k > N/m then this is < 1/e .
• We want to minimize the total number of steps that succeeds with

good probability, so let us minimizem + N/m. Simple calculus
givesm = N 1/2.

• So choosingm =
√
N random probes, our algorithm terminates in

2
√
N steps with good probability, independently of the graph

structure.



Example Our graph is a cube C(n) of N = n3 points in
3-dimensional space with integer coordinates between 1 and n. Two
points are neighbors when they differ only in one coordinate, and
only by 1.

Theorem Every deterministic local search algorithm over C(n)
takes > c · n2 = N 2/3 steps in the worst case, for some constant c > 0.

We will not prove this, but it implies that randomization gives a real
advantage, since it achieves N 1/2.
Deterministic algorithm achieving O(n2) probes:

1 Divide the cube A = C(n) by a wall into two equal parts:
A = A1 ∪A2 (not cubes, but this does not matter). Find the
absolute minimum over this wall, at some point x . If it is not a
local minimum in A there is a half Ai in which x has a neighbor y
with f (y) < f (x).

2 Repeat the procedure recursively for A← Ai (after 2 more
divisions “the right way”, A is again a cube).
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