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Introduction

The class structure

See the course homepage.
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Mathematical preliminaries Logic

Mathematical preliminaries
Logic

Logical operations: A, -, \V, =, <.V, 4.

x divides y, or y is divisible by x: x|y < Jz(x xz = y).
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Mathematical preliminaries Sets

Notation: {2,3,5}. x € A. The empty set.
Some important sets: N, 7Z, Q, R, C.

Example

x divides y more precisely: x|y < 9z € Z(x xz = y).

Set notation using conditions:
{x€Z:3x}={3x:x€Z}.

Note that x has a different role on the left-hand side and on the
right-hand side. The x in this notation is a bound variable: its
meaning is unrelated to everything outside the braces.

Composite numbers: {xy :x,y € Z~ {—1,1} }.
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Mathematical preliminaries Sets

A C B, A C B will mean the same! Proper subset: A C B.
Set operations: A UB, A N B, A ~ B. Disjoint sets: AN B = (.
The set of all subsets of a set A is denoted by 2.
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Mathematical preliminaries

Functions
The notation /' : A — B.

Functions
g(x) =1/(x? —1). It maps from R ~ {—1,1}, to R, so
g:R~{-1,1} - R
Domain(g) = R ~ {-1,1}.
In general,

(1)
Range(f) = {f(x) : x € Domain(f) }.
In the example,

Péter Gacs (Boston University)

Range(g) = (—oo0, —1] U (0,00) =R~ (—1,0].
Note that (0, c0) is an open interval.
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Mathematical preliminaries Functions

We could write g : R ~ {—1,1} — R ~ (—1,0), but (1) is correct, too:
it says that g is a function mapping from R ~ {—1,1} into R. On the
other hand, g is mapping onto R . (—1,0). An “onto” function is also
called surjective.

Péter Gacs (Boston University) Fall 05 7/96



Injective and surjective

A function is one-to-one (injective) if f(x) = f(y) implies x = y.

Theorem

If a set A is finite then a function [ : A — A is onto if and only if it is
one-to-one.

The proof is left for exercise.
The theorem is false for infinite A.

Example

A one-to-one function that is not onto: the functionf : Z — 7Z
defined by f(x) = 2x.

An onto function that is not one-to-one: exercise.

12N Ge
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Mathematical preliminaries Functions

We will also use the notation
x — 2x

to denote this function. (The — notation is similar to the lambda
notation used in the logic of programming languages.)

A function is called invertible if it is onto and one-to-one. For an
invertible function f : A — B, the inverse function /' : B — A is
always defined uniquely: / 1(b) = a if and only if f(a) = b.

An invertible function /' : A — A is also called a permutation.

Péter Gacs (Boston University) Fall 05
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Mathematical preliminaries Functions

Ordered pair (x,y), unordered pair {x,y}. (The (x,y) notation
conflicts with the same notation for open intervals. So, sometimes
(x,y) is used.) The Cartesian product

AxB={(x,y):xc€AyecB}.
A function of two arguments: we will use the notation
f:AxB—C

when f(x,y) € Cforx € A,y € B. Indeed, f can be regarded as a
one-argument function of the ordered pair (x,y).
Ordered triple, and so on. Sequence (x1,...,%,).
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Mathematical prelim

Inverse image

For a function / : A — B, and a set C C A we will write

f(C)={f(x):xcA}.

Thus, Range(f) = f(A).
Example: 27 is the set of even numbers.
For D € B, we will write

fUD) = {x:f(x) eD}.

Note that this makes sense even if the function is not invertible.
However, /(D) is always a set, and it may be empty.

Example

Iff : 7 — 7 is the function with f(x) = 2[x/2] then f~1(0) = {0, 1},
A1) =0={},f 12 ={2,3},f({3}) = 0, and so on.

m] = E E DA®
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Mathematical preliminaries Functions

A partition of a set A is a finite sequence (A1, ..., A,) of pairwise
disjoint subsets of A such that A; U---UA,, = A. Given any function
f:A— {1, ... n},it gives rise to a partition

function.

We will also talk about infinite partitions. A partition in this case is
a function p : B — 24 such that | J,_; p(b) = A and for b # ¢ we have
p(b)Np(c) = 0.
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Mathematical preliminaries Operations

Functions are sometimes are also called operations. Especially,
functions of the form f: A — Aorg: A x A — A. For example,
(x,y) — x+y for x,y € R is the addition operation.

Associativity. Example: functions /' : A — A, with the compositon
operation.

(% 7T
1 1l——1
Commutativity. Same example, ><
say the permutations o, 7 over 5 ” ”
{1,2,3} on the right do not
commute.
3 3 3

Distributivity. Examples: * through +, further N though U and U
through N.

Péter Gacs (Boston University) Fall 05
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Mathematical preliminaries Relations

A binary relation is a set R C A x B. We will write (x.y) € R also as
R(x,v) (with Boolean value). Thus

R(x,y) < (x,y) € R.

Frequently, infix notation. Example: x < y, where <C R x R.
Ternary relation: R €¢ A x B x C.

Interesting properties of binary relations over a set A.

Reflexive.

Symmetric.

Transitive.

A binary relation can be represented by a graph. If the relation is
symmetric the graph can be undirected, otherwise it must be
directed. In all cases, at most one edge can be between nodes.
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Equivalence relation

Equivalence relation over a set A: reflexive, symmetric transitive.
Example: equality. Other example: reachability in a graph.

Theorem

A relation R C A x A is an equivalence relation if and only if there is
a function f : A — B such that R(x,y) < f(x) = f(y).

Proof: exercise.

Each set of the form C, = {y : R(x.y) } is called an equivalence
class. An equivalence relation partitions the underlying set into the
equivalence classes.

In a partition into equivalence classes, we frequently pick a
representative in each class. Example: rays and unit vectors.
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Mathematical preliminaries Relations

Preorder, partial order

A relation < is antisymmetric if ¢ < b and b < ¢ implies a = b.
Preorder <: reflexive, transitive.

A preorder is a partial order if it is antisymmetric. Simplest
example: < among real numbers.

Example

The relation C among subsets of a set A is a partial order.

In a preorder, we can introduce a relation ~: x ~y if x <y and
y < x. This is an equivalence relation, and the relation induced by
< on the equivalence classes is a partial order.

Example

The relation x|y over the set Z of integers is a preorder. For every
integer x, its equivalence class is {x, —x}.

=l = =
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Running time Asymptotic analysis

0(),0(),Q(),O(). More notation: f(n) < g(n) for f(n) =o(g(n)),
f(n) < g(n)forf(n) = O(g(n)) and = for (< and >).

The relation < is a preorder. On the equivalence classes of = it
turns into a partial order.

The most important function classes: log, logpower, linear, power,
exponential. These are not all equivalence classes under =.
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Running time Asymptotic analysis

o Addition: take the maximum. Do this always to simplify
expressions. Warning: do it only if the number of terms is
constant!

@ An expression /()¢ is generally worth rewriting as
2g(n)logf(n)' For example, nlogn — 9(logn)-(logn) _ 210g2n.

@ But sometimes we make the reverse transformation:
310gn _ 2(10gn)-(10g3) _ (2logn)log3 _ nlogS

The last form is easiest to understand, showing » to a constant
power log 3.
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time

Asymptotic analysis

Examples

n/loglogn + log’n = n/loglogn.

Indeed, loglogn < logn < n'/2 hence n/loglogn > n'/? > log”n.

Péter Gacs (Boston University)
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Running time Asymptotic analysis

Order the following functions by growth rate:

n? — 3loglogn =n”,
logn/n,

loglogn,

nlog2 n,

3+1/n =1,
V/(5n)/2",

(1.2)" 1 + n +logn = (1.2)".

Solution:

V(5n)/2" < logn/n < 1 < loglogn
< n/loglogn < nlog’n < n? <« (1.2)".
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Running time Asymptotic analysis

Sums: the art of simplification

Arithmetic series.

Geometric series: its rate of growth is equal to the rate of growth of
its largest term.

Example

logn! =log2 +log3+ ---+1logn = ©(nlogn).

Indeed, upper bound: logn! < nlogn.
Lower bound:

logn! > log(n/2) +log(n/2 + 1)+ ---+logn > (n/2)log(n/2)
= (n/2)(logn — 1) = (1/2)nlogn — n/2.

o (w1 =
Péter Gacs (Boston University) s
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y time Asymptotic analysis

Prove the following, via rough estimates:

01+234+33+...+nd=0(n.
@ 1/3+2/324+3/33+4/3*+ ... < .
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Running time Asymptotic analysis

1+1/2+1/3+---+1/n=06(logn).

Indeed, for n = 2*~!, upper bound:

14+1/2+1/2+1/4+1/4+1/4+1/4+1/8+ ...
=1+1+---+1 (ktimes).

Lower bound:

1/24+1/4+1/4+1/8+1/8+1/8+1/8+1/16+...
=1/241/24---41/2 (k times).
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Running time Machine model

Fixed number K of registers R;,j = 1,..., K. Memory: one-way
infinite tape: cell i contains natural number 7'[i] of arbitrary size.
Program: a sequence of instructions, in the “program store”: a
(potentially) infinite sequence of registers containing instructions.

A program counter.

read |  Ro=TI[Rj| (this is random access)
wite j

store | R;=Ry

| oad |

add j Ry += R;

add =c Ry += ¢

sub J Ry = ‘Ro —f{j|Jr

sub =c

hal f Ry =2

junmp s

| pos s if Ry > 0 then jump s
ZF{O S
a
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Running time Machine model

In our applications, we will impose some bound % on the number of
cells.

The size of the numbers stored in each cell will be bounded by k¢ for
some constant c. Thus, the wordsize of the machine will be
logarithmic in the size of the memory, allowing to store the address
of any position in a cell.
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Running time Basic integer arithmetic

Length of numbers

len(n) — llog|n|| +1 ifn #0,
1 otherwise.

This is essentially the same as log n, but is always defined. We will
generally use len(n) in expressing complexities.

Upper bounds

On the complexity of addition, multiplication, division (with
remainder), via the algorithms learned at school.
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Basic integer arithmetic

Theorem
The complexity of computing (a,b) — (q,r) in the division with

remainder a = qb + r is O(len(q)len(d)).
Proof.

The long division algorithm has < len(q) iterations, with numbers
of length < len(b).

O]
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Basic properties of integers Divisibility and primality

Theorem (Fundamental theorem of arithmetic)

Unique prime decomposition +p7' ... pzk.

The proof is not trivial, we will lead up to it. We will see analogous
situations later in which the theorem does not hold.

Example

Irreducible family: one or two adult and some minors.
Later: the ring Z[\/—5].

The above theorem is equivalent to the following lemma:

Lemma (Fundamental)
If p is prime and a.b € 7 then plab if and only if p|a or p|b.

In class, we have shown the equivalence.
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eatest common divisors

Ideals

If I,J are ideals so is al + bJ.
aZ C bZ if and only if b|a.
Careful: generally aZ + b7 # (a + b)Z.

Example
27+ 37 = 7.

Principal ideal

Fall 05



Basic properties of integers Ideals and greatest common divisors

The following theorem is the crucial step in the proof of the
Fundamental Theorem.

Theorem
In 7, every ideal I is principal.

Proof.
Let d be the smallest positive integer in I. The proof shows I = dZ,
using division with remainder. O]

Corollary

Ifd > 0 and aZ + bZ = dZ then d = gcd(a, b). In particular, we
found that

(a) Every other divisor of a,b divides gcd(a,b).
(b) For all a,b there are s,t € 7 with gcd(a,b) = sa + tb.
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Basic properties of integers Ideals and greatest common divisors

The proof of the theorem is non-algorithmic. It does not give us a
method to calculate gcd(a, b): in particular, it does not give us the
s,t in the above corollary. We will return to this.
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Basic properties of integers Ideals and greatest common divisors

Theorem

For a,b,c with gcda,c = 1 and c|ab we have c|b.

This theorem implies the Fundamental Lemma announced above.

Proof.
Using 1 = sc + ta, hence b = scb + tab. O
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Basic properties of integers

Ideals and greatest common divisors

Some consequences of unique factorization

There are infinitely many primes.

The notation 1, (a). gcd and minimum, lcm and maximum.

lem(a, b) - ged(a,b) = |ab|

Pairwise relatively prime numbers.

Representing fractions in lowest terms.
Lowest common denominator.

Péter Gacs (Boston University)
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Basic properties of integers Ideals and greatest common divisors

Unless stated otherwise, commutative, with a unit element. The
detailed properties of rings will be deduced later (see Section 9 of
Shoup, in particular Theorem 9.2). We use rings here only as
examples.

e Z,Q, R, C.

@ The set of (say, 2 x 2) matrices over R is also a ring, but is not
commutative.

@ The set 27 is also a ring, but has no unit element.

o If R is a commutative ring, then R[x. y|, the set of polynomials
in x,y with coefficients in R, is also a ring.
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Basic properties of integers Ideals and greatest common divisors

Theorem
Let R be a ring. Then:
(1) the multiplicative identity is unique.
(1) 0-a =0 forall ain R.
(iii) (—a)b =a(—b) = —(abd) forall a,b € R.
(iv) (—a)(-b) =abforall a,b € R.
(v) (na)b =a(nb) =n(abd) foralln € Z, a,b € R.
Ideals.

Example

A non-principal ideal: xZ[x,y| + yZ[x,y| in Z|x, y|.
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Basic properties of integers Ideals and greatest common divisors

Example
Non-unique irreducible factorization in a ring. Let the ring be

Z[V/-5).
6=2-3=(1+v-5)(1-+v-5).

How to show that 2,3, (1 +/-5),(1 — \/-5) are irreducible? Let
N(a +b\/-5) = a® + 5b?, then it is easy to see that

N(xy) = N(x)N(y), since N (z) is the square absolute value of the
complex number z. It is always integer here.

IfN(z) = 1thenz = £1.

IfN(z) > 1then N(z) > 4.

Forz =2,3,(1+ v-5),(1 - v-5), we have N(z) = 4,9,6,6. The
only nontrivial factors of these numbers are 2 and 3, but there is no
zwith N(z) € {2,3}.
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Euclid’s Algorithm

Assume a > b > 0 are integers.

a =ro, b:rlv
rio1=riqi+riyn (0<rigi<r), (A<i<{)

Fe—1=qere
Upper bound on the number / of iterations:
(< log@ b+1,

where ¢ = (1 +/5)/2 ~ 1.62. We only note ¢ = O(logb) which is
obvious from
riv1 <ri—1/2.
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Euclid’s Algorithm

Theorem

Euclid’s algorithm runs in time O(len(a)len(b)).

This is stronger than the upper bound seen above.

Proof.
We have

l 4 l
len(b) ) "len(g;) < len(b) > (1 +1log(gy)) < len(b)(£ +log(] ] g1))-
. =l =1

Now,
a=ryg=>r1qQ1 =2r2q9291 = 2TQr - q1-
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Euclid’s Algorithm

The extended Euclidean algorithm

so=1, to =0,
s1 =0, t1 =1,
Si+1 = Si—1 — Siqi;

same for ;.

Péter Gacs (Boston University)
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Euclid’s Algorithm

The following relations hold.
1) s;a +t;b=r;.
(i) sitip1 — tisii1 = (—1).
(ii1) ged(s;,t;) = 1.
(iv) titip1 <O, [t;| < [tiy1], same for s;.

(v) ri_1ltil < a, ri_qls;| < b.

Proof.
(1),(i1): induction. (i) follows from (ii). (iv): induction. (v):
combining (i) for i and i — 1. O]
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Matrix representation

r; - 0 1 ri—1 - ) ri—1
<"i+1> a (1 —q,-> ( ri > -~ (
Define M; = Q; - - - @1, then

S; ti
()
' (8i+1 lit1
Now the relation siti 1 —t;8;.1 = (—1)" above says
detMi = Hjl'zl det Qi = :

_ (_1)1.
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Congruences Definitions and basic properties

Congruences

a=b (mod m)ifmlb —a.
More generally, in a ring with some ideal /, we write « = b (mod )
if (b—a)cl.

The relation = has the following properties, when I is fixed.

(a) It is an equivalence relation.

(b) Addition and multiplication of congruences.

Example (From Emil Kiss)

Is the equation x> + 5y = 1002 solvable among integers?

This seems hard until we take the remainders modulo 5, then it
says: x> = 2 (mod 5). The squares modulo 5 are 0,1,4,4, 1, so 2 is
not a square.
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Definitions and basic properties

The ring of congruence classes

For an integer x, let
Xlm ={y€Z:y=x (modm)}

denote the residue class of x modulo m. We choose a representative
for each class [x|,,: its smallest nonnegative element.

Example
The set [—3]5is {...,—8,-3,2,7,...}. Its representative is 2.

Definition of the operations +, - on these classes. This is possible
due to the additivity and multiplicativity of =.

The set of classes with these operations is turned into a ring which
we denote by Z,,. We frequently write Z,, = {0,1,...,(m — 1)}, that
is we use the representative of class [i],, to denote the class.
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Solving linear

Division of congruences

Doesc-a=c-b (mod m)implya = b (mod m) when ¢ # 0
(mod m)? Not always.

2.3=6=0=2-0 (mod 6), but 3# 0 (mod 6).

The numbers 2,3 are called here zero divisors. In general, an

element x # 0 of a ring R is a zero divisor if there is an element
y #0in R withx -y = 0.

=] [ = E E Qe
Péter Gacs (Boston University)
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Congruences Solving linear congruences

Theorem

In a finite ring R, if b is not a zero divisor then the equation x - b = ¢
has a unique solution for each c: that is, we can divide by b.

Proof.

The mapping x — x - b is one-to-one. Indeed, if it is not then there
would be different elemnts x.y withx -6 =y -b,but (x —y) - b # 0,
since b is not a zero divisor.

At the beginning of class, we have seen that in a finite set, if a class
is one-to-one then it is also onto. Therefore for each c there is an x
with x - b = c. The one-to-one property implies that x is unique. [

Observe that this proof is non-constructive: it does not help finding
x from b, c.
Actually we only need to find 5!, that is the solution of x - b = 1
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Finding the inverse

An element of b € Z,, is not a zero divisor if and only if
ged(b,m) = 1.

To find the inverse x of b, we need to solve the equation
x-b+y-m = 1. Euclid’s algorithm gives us these x,y, and then
x=b"1 (mod m).

Example

Inverse of 8 modulo 15.

Characterizing the set of all solutions of the equation

a-x=b (modm).

12N Ge
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Congruences Solving linear congruences

Corollary (Cancellation law of congruences)
If gcd(c,m) =1 and ac = bc (mod m) then a = b (mod m).

Examples
@ Wehave5-2=5-(—4) (mod 6). This implies 2 = —4 (mod 6).
@ Wehave3-5=3-3 (mod 6), but 5 # 3 (mod 6).

What can we do in the second case? Simplify as follows.

Proposition

For all a, b, c the relation ac = bc (mod mc) implies a = b (mod m).

The proof is immediate.
In the above example, from 3 -5 =3 -3 (mod 6) we can imply 5 = 1
(mod 2).
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Congruences Chinese remainder theorem

Chinese remainder theorem

Consider two diferent moduli: 77 and msy. Do all residue classes of
m1 intersect with all residue classes of my? That is, given a1, a9, we
are looking for an x with

x=a; (modmi), x=as (mod my).
There is not always a solution. For example, there is no x with
x=0 (mod2), x=1 (mod4).

But if m, my are coprime, there is always a solution. More
generally:

Theorem

If mq, ..., my are relatively prime with M = m1 - - - m,, then for all
ai,...,ap € Zthere is a unique 0 < x < M with x = a; (mod m;) for
alli=1,... k.

Péter Gacs (Boston University) Fall 05 48/96
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Congruences Chinese remainder theorem

Proof.
LetI(n) ={O0,..., n —1}. The sets U = I(M) and

) )

V =1I(my) x --- xI(my) both have size M. We define a mapping
f:U — V as follows:

f(x) = (x mod my,..., x mod my,).

Let us show that this mapping is one-to-one. Indeed, if f(x) = f(y)
for some x < y then x =y (mod m;) and hence m;|(y — x) for each .
Since m; are relatively prime this implies M|(y —x), hence y —x = 0.
Since the sets are finite and have the same size, it follows that the
mapping / is also invertible, which is exactly the statement of the
theorem. O

Note that the theorem is not constructive (just like the theorem
about the modular inverse).
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Jongruences Chinese remainder theorem

How to find the x in the Chinese remainder theorem?
Let M; = M /m;, for example M = mgy - --my. Let m! be (M;)~!
modulo m; (it exists). Let

x =a Mym} + - + ayMpmj, mod M.

Let us show for example x = a; (mod m1). We have a;M;m! =0
(mod m ) for each i > 1, since m1|M;.
On the other hand, 1M m/| =a; -1 (mod m;).
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Fractions in

Look at the equation » = y¢ (mod m), where m,y is given. Typically
there is no unique solution for r, ¢; however, the quotient /7 (as a
rational number) is uniquely determined if r, 7 are required to be
small compared to m.

Theorem (Rational reconstruction)

Let r*,t* > 0 and y be integers with 2rt* < m. Let us call the pair
(r,t) of integers admissible if [r| <r*, 0 <t < t*, and r =yt

(mod m). Then, there is a rational number q, such that r/t = q, for
all admissible pairs (r,t).
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Congruences = Rational reconstruction

Proof.

Suppose that both (r1,7;) and (79, %) are admissible pairs: we want
to prove ry /t; = ry/ts. We have, modulo m:

r1 =y,
ro =1toy.

Linear combination gives ity — rot1 = 0, hence m|(rity — rotq).
Since m > 2r*t* this implies 1t = rot1. Dividing by #179 gives the
result. O

Finding an admissible pair (if it exists) under the condition
n > 4ret*,

by the Euclidean algorithm: see the book.
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Error correction

Error correction

Let mq, ..., m; be mutually coprime moduli, M = m+---m,. Let
0<Z < M and 0 < P be integers. Aset B C {1,...,k} is called
P-admissible if [ [;.p m; < P.

Example
If (my,mg,mg,my) = (2,3,5,7) and P = 8 then the admissible sets
are {1},{2},{1,2}, {3}, {4}.

Let y be an arbitrary integer. An integer 0 < z < Z is called
(Z,P)-admissible for y if the set of indices

B={i:z#y (modm;)}

is P-admissible. We can say y has errors compared to z in the
residues y mod m; for i € B.

Péter Gacs (Boston University) CS 235 Fall 05 53 /96



Congruences Error correction

An admissible z can be recovered from vy, provided Z, P are small:

Theorem

If M > 2PZ? then for every y and there is at most one z that is
(Z,P)-admissible for it.

Proof.
Let ¢ = [[;.p m;. Then it is easy to see that

tz=ty (mod M)

holds. Let r = tz, r* = PZ,t* = P, then |tz| < r* and ¢ < ¢* while
M > 2r*t*. The Rational Reconstruction Theorem implies therefore
that z = /¢ is uniquely determined by y. O

If the stronger condition M > 4P?Z is required then following the
book, the value z can also be found efficiently using the Euclidean
algorithm.

Péter Gacs (Boston University) Fall 05 54 /96



s phi function

Euler’s phi function

See the definition in the book. Computing it for p.p, pq.
The multiplicative order of a residue.

Theorem (Euler)

For a € Z}, we have a®™ =1 (mod m).

Proof.

Corollary

Fermat’s little theorem.
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s phi function

Some properties of phi

For positive integers m.,n with gcd(m,n) = 1 we have

¢(mn) = ¢p(m)o(n).
Proof.
One-to-one map between 7, and Z;, x Z. O

Application: formula for ¢(n).

=] [ = E E Qe
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Congruences Euler’s phi function

Theorem
We have 3_;, #(d) = n.

Proof.

To each 0 < k& < n let us assign the pair (d,%’) where d = gcd(k,n)
and £’ = k/d. Then for each divisor d of n, the numbers %’ occurring
in some (d, k) will run through each element of 7. /a Once, hence

> g ?(n/d) =n. O
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Modular exponentiation

Modular exponentiation
In the exponents, we compute modulo ¢(m).

m
o For prime p > 2 and gcd(a,p) = 1, we have T = +1.

@ For composite 2, this is no more the case. If m = pg with

primes p,q > 2 then x? = 1 has 4 solutions, since x mod p = +1

and x mod ¢ = +1 can be independently of each other. See
p=3,9=>5.

Fast modular exponentiation: the repeated squaring trick.

Péter Gacs (Boston University)
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Congruences Modular exponentiation

Primitive root (generator).

Example

If g is a primitive root modulo a prime p > 2 then o’z = —1.

Theorem

Primitive root exists for m if and only if m = 2,4, p%, 2p® for odd
prime p.

Proof later.
When there is a primitive root, the multiplicative structure (group)

7, is the same as (isomorphic to) the additive group Z;f(m).
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The distribution of primes

Chebyshev’s theorem

Binomial coefficients. The definition of 7(n), J(n).

4"/(n+1) < <2:) < (2:'j11> < 4"

Lemma (Upper bound on )

We have 9(n) < 2n.

Proof.
We have ¥(2m + 1) — 9(m + 1) < log (%:’lfll) < 2m. From here,
induction using ¥(2m — 1) = ¥(2m). O

u]
@
I
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The distribution of primes

vp(n!) = Z In/p"].

E>1

Lemma (Lower bound in )

m(n) = (1/2)n/logn.
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The distribution of primes

Proof.

For N = (2,7’;1) we have

vp(N) =Y _([2m/p*] — 2|m/p")).

k>1

Recall the exercise showing 0 < [2x| — 2|x| < 1, hence this is sum
is between 0 and < log,(2m). So,

m < logN < vp(IN)logp < log,(2m)logp
o D

p<2m p<2m
= Z log(2m) = 7(2m) log(2m),
p<2m

(1/2)(2m)/ log(2m) < w(2m).

For odd n, note 7(2m — 1) = 7(2m ) and that x logx is monotone. [
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The distribution of primes

We have ¥(n) ~ m(n)logn, that is % — 1

Proof.

Y(n) < w(n)logn is immediate. For the lower bound, cut the sum at
p = n’ for some constant 0 < \ < 1. O

From all the above, we found

Theorem (Chebyshev)

We have 7(n) = Togr"
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Abelian groups Basic properties and examples

Abelian groups

Proposition

Identity and inverse are unique.

Examples
7+, Q+, R*, C+, nZ+, 7, Z%.
Q* ~ {0} and [0, c0) N Q* for multiplication.

Examples

Non-abelian groups:

@ 2 x 2 integer matrices with determinant +1
@ 2 x 2 integer matrices with determinant 1
o All permutations of {1,... n}.

=] [
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To create new groups

Cyclic groups, examples. Generators of a cyclic group.
Direct product G; x Go.

The set of all +1 strings of length n with respect to termwise
multiplication: this is “essentially the same” as 7.

When is a direct product of two cyclic groups cyclic? Examples.

=] [ = E E Qe
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Abelian groups Subgroups

Subgroups

A subset closed with respect to addition and inverse. Then it is also
a group.

Examples

o mG (or G™ in multiplicative notation).
o Gim}={gcG:mg=0}

Theorem

Every subgroup of 7. is of the form mZ.

We proved this already since subgroups of (Z, +) are just the ideals
of (Z,+,%)

Theorem

If H is finite then it is a subgroup already if it is closed under
addition.

=} (=] = = wa®
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Abelian groups Subgroups

Creating new subgroups

H{+Hy, HH NHs,.

Let G = G1 x G2, G = G1 x {0g,}, G2 = {0g,} x G2. Then G; are
subgroups of G, and

@1 ﬂég = {OG}, 61 +52 = G.

So in a way, the direct product can, with the sum notation, be also
called the direct sum.

=] [
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Congruences

a=b (mod H)ifb —a € H.

We have seen for rings earlier already that if H is an ideal, this is
an equvalence relation and you can add congruences. The same
proof shows that if H is a subgroup you can do this.

The equivalence classes a + H are called cosets.

All cosets have the same size as H.

Proof.
If C = a + H then x — a + x is a bijection between H and C. O

Corollary (Lagrange theorem, for commutative groups)
If G is finite and H is its subgroup then |H| divides |G/|.

o (w1 =

it
9
€
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Cosets and quotient groups

Abelian groups

Corollary
For any element a, its order ord(a) is the order of the cyclic group

generated by a, hence it divides |G| if |G| is finite.
Thus, we always have |G| -a = 0.

Fall 05 69 /96
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Abelian groups Cosets and quotient groups

The quotient group

Group operation among congruence classes, just as modulo m. This
is the group G/H.

o If G = G x Gy then recall G, G5. Each element of G/G can be
written as (0,g3) + G for some g5. So, elements of G form a
set of representatives for the cosets, and these representatives
form a subgroup.

® 7/mZ = Z,,. The class representatives do not form a subgroup.

® 74/274 consists of the classes [0] = {0,2}, [1] = {1, 3}. The class
representatives do not form a subgroup.

Two-dimensional picture.
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Homomorphism ar

Isomorphism, homomorphism

Isomorphism.

Example

ZQ X Z3 = Zg. But 2Z4 = Zz, Z4/2Z4 = Zz and Zz X Zz ¥ Z4.
Homomorphism, image, kernel.

Examples

@ The multiplication map, Z — mZ. Its kernel is Z{m }.

@ Fora = (a1,as) € Z2,let ¢, : G x G — G be defined as
(81,82) — @181 + az82.

@ This also defines a homomorphism v, : 77 — @, if we fix
g = (g1,82) € G? and view a1, ay as variable.

12N Ge

Péter Gacs (Boston University)

Fall 05 71/96



Homomorphism and isomorphism

Properties of a homomorphism

Let p : G — G’ be a homomorphism.
@ p(0g) = Og', p(—8) = —p(8), p(ng) = np(g).
(i1) For any subgroup H of G, p(H) is a subgroup of G'.
(iii) ker(p) is a subgroup of G.
(iv) p is injective if and only if ker(p) = {0g }.
(v) p(a) = p(b) if and only if a = b (mod ker(p)).

(vi) For every subgroup H' of G/, p~'(H') is a subgroup of G
containing ker(p).
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Abelian groups Homomorphism and isomorphism

Composition of homomorphisms.
Homomorphisms into and from G x Gs.

Theorem
For any subgroup H of an Abelian group G, the map p: G — G/H,
where p(a) = a + H is a surjective homomorphism, with kernel H,
called the natural map from G to G/H.

Conversely, for any homomorphism p, the factorgroup G/ ker(p) is
isomorphic to p(G).

Examples

@ The image of the multiplication map Zg — Zg, a — 2a is the
subgroup 2Zg of Zg. The kernel is Zg{2}, and we have
Zg|Zg{2} = 27g = Zy.

@ (Chinese Remainder Theorem) For m 1, ..., m;, the map
2o — L, % -+ X Lp, given by taking the remainders modulo 72;.
Surjective iff the m; are pairvise relatively prime.
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Abelian groups Homomorphism and isomorphism

Theorem
Let H1,Hy be subgroups of G. The the map p : Hy x Hy — Hy + Hy
with p(hi,hy) = hy + he is a surjective group homomorphism that is
an isomorphism iff Hy N Hy = {0}.
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Cyclic groups, classification

For a generator a of cyclic GG, look at homomorphism p, : Z — G,
defined by z — za. Then ker(p,) is either {0} or mZ for some m.
In the first case, G = Z, else G = 7Z,,

@ An element n of 7Z,, generates a subgroup of order m / gcd(m,n).

@ Zm, X L, is cyclic iff ged(m1,mg) = 1.
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Abelian groups Cyclic groups

Subgroups

All subgroups of Z are of the form mZ.

Theorem

On subgroups of a finite cyclic group G = Z,,:
(i) All subgroups are of the form dG = G{m/d} where d|m, and

dG C d'Giffd'|d.

(i1) For any divisor d of m, the number of elements of order d is
o(d).

(iii) For any integer n we have nG = dG and G{n} = G{d} where
d = ged(m,n).

Theorem

(1) If G is of prime order then it is cyclic.
(i1) Subgroups of a cyclic group are cyclic.
(i1i) Homomorphic images of a cyclic group are cyclic.
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Abelian groups Cyclic groups

The exponent of an Abelian group G: the smallest m > 0 with
mG = {0}, or 0 if there is no such m > 0.

Theorem
Let m be the exponent of G.

(i) m divides |G].

(i) If m +# 0 is then the order of every element divides it.
(i1i) G has an element of order m.

Theorem

(i) If prime p divides |G| then G contains an element of order p.

(i1) The primes dividing the exponent are the same as the primes
dividing the order.
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dinos
Rings

We have introduced rings earlier, now we will learn more about
them.

Example

Complex numbers: pairs (a,b) with a,b € R, and the known
operations.

Conjugation: a ring isomorphism. Norm: zz = a? + b2, and its
properties.

Characteristic: the exponent of the additive group.
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Units and fields

An element is a unit if it has a multiplicative inverse. The set of
units of ring R is denoted by R*. This is a group.

@ Forz c C,wehavez"! =z/N(z).

® Units in Z, Z,,.

@ The Gaussian integers, and units among them.
@ Units in R + Rs.

12N Ge
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dinos
Rings

Zero divisors and inte;

gral domains

Zero divisors and integral domains

R is an integral domain if it has no zero divisors.
Examples

@ When is 7Z,, an integral domain?

® When is an element of R x Ry a zero divisor?
Theorem

(i) a|b implies unique quotient.
(i1) a|b and b|a implies they differ by a unit.

Péter Gacs (Boston University)
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Rings Zero divisors and integral domains

Theorem
(i) The characteristic of an integral domain is a prime.
(i) Any finite integral domain is a field.

(iii) Any finite field has prime power cardinality.
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Rings Subrings

Subrings

@ Gaussian integers

® Q.
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Rings Polynomial rings

Polynomial rings

The ring R[X].

The formal polynomial versus the polynomial function. In algebra,
Xis frequently called an indeterminate to make the distinction
clear.

For each a € R, the substitution p, : R[X] — R defined by

pa(f(X)) = f(a) is a ring homomorphism.

Example

Zs9|X] is our first example of a ring with finite characteristic that is
not a field.

Degree deg(f). Leading coefficient lc(f). Monic polynomial: when
the leading coefficient is 1. Constant term.

Degree Convention: deg(0) = —oc.

deg(fg) < deg(f) + deg(g), equality if the leading coefficients are not
zero divisors.
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Rings Polynomial rings

Proposition
If D is an integral domain then (D[X])* = D".
Warning: different polynomials can give rise to the same

polynomial function. Example: X’ — X over Z, defines the 0
function.

Theorem (Division with remainder)

Let f.g € R[X| with g # Or and lc(g) € R*. Then there is a q with

f=q-g+r, deg(r) < deg(g).
Notice the resemblance to and difference from number division.

The long division algorithm.
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Rings Polynomial rings

Theorem
Dividing by X —

fX)=q - (X=0a)+f(a).

Roots of a polynomial.

Corollary
(1) aisaroot of f(X) iff f(X) is divisible by X — o

(i1) In an integral domain, a polynomial of degree n has at most n
roots.
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Rings Polynomial rings

Theorem

If D is an integral domain then every finite subgroup G of D* is
cyclic.
Proof.

The exponent of m of G is equal to G, since X”* — 1 has at most m
roots. By an earlier theorem, GG has an element whose order is the
exponent. [

Corollary

Modulo any prime p, there is a primitive root.
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Rings Ideals and homomorphisms

Ideals and homomorphisms

We defined ideals earlier, this is partly a review.
Generated ideal (a), (a,b,c). Principal ideal.
Congruence modulo an ideal. Quotient ring.

Example
Let / be a monic polynomial, consider £ = R[X|/(f - R[X]) = R[X]/(f).
e RIX]/(X2+1)=C.
@ Z3[X]/(X% + X+ 1). Elements are [0], [1], [X], [X + 1].

Multiplication using the rule X = X + 1. Since X(X + 1) = 1
every element has an inverse, and ¥ is a field of size 4.
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Rings Ideals and homomorphisms

Prime ideal: If ab € [ impliesa € [ or b € 1.
Maximal ideal.

Examples

@ In the ring 7Z, the ideal mZ is a prime ideal if and only if m is
prime. In this case it is also maximal.

o In the ring R[X, Y], the ideal (X) is prime, but not maximal.
Indeed, (X) € (X,Y) # R[X,Y]

Proposition

(1) I is prime iff R/I is an integral domain.
(i1) I is maximal iff R/I is a field.
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Rings Ideals and homomorphisms

Proposition
Let p: R — R’ be a homomorphism.
(1) Images of subrings are subrings. Images of ideals are ideals of
p(R).
(i1) The kernel is an ideal. p is injective (an embedding) iff it is {0}.
(i1i) The inverse image of an ideal is an ideal containing the kernel.

Proposition

The natural map p: R — R/I is a homomorphism.
Isomorphism between R/ ker(p) and p(R).

Examples

® 7 — 7./mZ is not only a group homomorphism but also a ring
homomorphism.

@ The mapping for the Chinese Remainder Theorem.
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Polynomial factorization and congruences

(See 17.3-4 of Shoup)
We will consider elements of F'[X] over a field F.
The associate relation between elements of 7'[X.

Theorem

Unique factorization in F[X|. The monic irreducible factors are
unique.

=} = = = E DA®
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Rings  Polynomial factorization, congruences

The proof parallels the proof of unique factorization for integers,
using division with remainder.

o Every ideal is principal.

o Iff g are relatively prime then there are s, with

f-s+g-t=1 (2)

@ Polynomial p is irreducible iff p - F'[X] is a prime ideal, and iff it
is a maximal ideal, so iff F'[X|/(p) is a field.
Warning: here we cannot use counting argument (as for
integers) to show the existence of the inverse. We rely on (2)
directly.

@ Congruences modulo a polynomial. Inverse.

@ Chinese remainder theorem. Interpolation.
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Rings Polynomial factorization, congruences

The following theorem is also true, but its proof is longer (see 17.8
of Shoup).

Theorem

There is unique factorization over the following rings as well:
ZIXy, .o X, F[Xg, - X,

where F'is an arbitrary field.
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gs mplex a

Complex and real numbers

Every polynomial in C[X| has a root.

We will not prove this. It implies that all irreducible polynomials in
C have degree 1.

Theorem

Every irreducible polynomial over R has degree 1 or 2.
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Rings Complex and real numbers

Proof.
Let /(X) be a monic polynomial with no real roots, and let

FO) = (X—a1) -+ (X~ an)

over the complex numbers. Then

fX)=Ff(X) = (X=a1) - (X=an).

Since the factorization is unique, the conjugation just permuted the
roots. All the roots are in pairs: /1, 31, 2, 75, and so on. We have

(X —B)(X—1B) =X2 — (B+ B)X+ G5.

Since these coefficients are their own conjugates, they are real.
Thus f is the product of real polynomials of degree 2. O]
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Rings Roots of unity

Roots of unity

Complex multiplication: addition of angles.

Roots of unity form a cyclic group (as a finite subgroup of the
multiplicative group of a field).

Primitive nth root of unity: a generator of this group. One such
generator is the root with the smallest angle.

Proposition
If = is a root of unity different from 1 then ! | e =0.
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Rings Fourier transform

Fourier transform

Interpolation is particularly simple if the polynomial is evaluated
at roots of unity.
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