Algebraic algorithms

Freely using the textbook: Victor Shoup's "A Computational Introduction to Number Theory and Algebra"

Péter Gács

Computer Science Department Boston University

Fall 2005

The class structure

See the course homepage.

Mathematical preliminaries

Logical operations: \land , \neg , \lor , \Rightarrow , \Leftrightarrow . \forall , \exists .

Example

x divides y, or y is divisible by x: $x|y \Leftrightarrow \exists z(x*z=y)$.

Notation: $\{2,3,5\}$. $x \in A$. The empty set.

Some important sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Example

x divides *y* more precisely: $x|y \Leftrightarrow \exists z \in \mathbb{Z}(x*z=y)$.

Set notation using conditions:

$$\{x \in \mathbb{Z} : 3|x\} = \{3x : x \in \mathbb{Z}\}.$$

Note that *x* has a different role on the left-hand side and on the right-hand side. The *x* in this notation is a bound variable: its meaning is unrelated to everything outside the braces.

Example

Composite numbers: $\{xy : x, y \in \mathbb{Z} \setminus \{-1, 1\}\}$.

 $A \subseteq B, A \subset B$ will mean the same! Proper subset: $A \subseteq B$. Set operations: $A \cup B, A \cap B, A \setminus B$. Disjoint sets: $A \cap B = \emptyset$. The set of all subsets of a set A is denoted by 2^A .

5/96

Functions

The notation $f: A \rightarrow B$.

Example

$$g(x) = 1/(x^2 - 1)$$
. It maps from $\mathbb{R} \setminus \{-1, 1\}$, to \mathbb{R} , so

$$g: \mathbb{R} \setminus \{-1, 1\} \to \mathbb{R}.$$
 (1)

 $Domain(g) = \mathbb{R} \setminus \{-1, 1\}.$

In general,

$$Range(f) = \{ f(x) : x \in Domain(f) \}.$$

In the example,

Range(
$$g$$
) = $(-\infty, -1] \cup (0, \infty) = \mathbb{R} \setminus (-1, 0]$.

Note that $(0, \infty)$ is an open interval.

We could write $g: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R} \setminus (-1,0)$, but (1) is correct, too: it says that g is a function mapping from $\mathbb{R} \setminus \{-1,1\}$ into \mathbb{R} . On the other hand, g is mapping onto $\mathbb{R} \setminus (-1,0)$. An "onto" function is also called surjective.

7/96

Injective and surjective

A function is one-to-one (injective) if f(x) = f(y) implies x = y.

Theorem

If a set A is finite then a function $f: A \rightarrow A$ is onto if and only if it is one-to-one.

The proof is left for exercise.

The theorem is false for infinite A.

Example

A one-to-one function that is not onto: the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x.

An onto function that is not one-to-one: exercise.

We will also use the notation

$$x\mapsto 2x$$

to denote this function. (The \mapsto notation is similar to the lambda notation used in the logic of programming languages.)

A function is called invertible if it is onto and one-to-one. For an

invertible function $f: A \to B$, the inverse function $f^{-1}: B \to A$ is always defined uniquely: $f_{-1}(b) = a$ if and only if f(a) = b.

An invertible function $f: A \rightarrow A$ is also called a permutation.

Ordered pair (x,y), unordered pair $\{x,y\}$. (The (x,y) notation conflicts with the same notation for open intervals. So, sometimes $\langle x,y\rangle$ is used.) The Cartesian product

$$A \times B = \{ (x,y) : x \in A, y \in B \}.$$

A function of two arguments: we will use the notation

$$f: A \times B \rightarrow C$$

when $f(x,y) \in C$ for $x \in A$, $y \in B$. Indeed, f can be regarded as a one-argument function of the ordered pair (x,y). Ordered triple, and so on. Sequence (x_1, \ldots, x_n) .

Inverse image

For a function $f: A \rightarrow B$, and a set $C \subseteq A$ we will write

$$f(C) = \{ f(x) : x \in A \}.$$

Thus, Range(f) = f(A).

Example: $2\mathbb{Z}$ is the set of even numbers.

For $D \in B$, we will write

$$f^{-1}(D) = \{ x : f(x) \in D \}.$$

Note that this makes sense even if the function is not invertible. However, $f^{-1}(D)$ is always a set, and it may be empty.

Example

If $f : \mathbb{Z} \to \mathbb{Z}$ is the function with $f(x) = 2\lfloor x/2 \rfloor$ then $f^{-1}(0) = \{0, 1\}$, $f^{-1}(\{1\}) = \emptyset = \{\}, f^{-1}(2) = \{2, 3\}, f^{-1}(\{3\}) = \emptyset$, and so on.

Partitions

A partition of a set A is a finite sequence (A_1, \ldots, A_n) of pairwise disjoint subsets of A such that $A_1 \cup \cdots \cup A_n = A$. Given any function $f: A \to \{1, \ldots, n\}$, it gives rise to a partition $(f^{-1}(\{1\}), \ldots, f^{-1}(\{n\}))$. And every partition defines such a function.

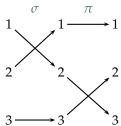
We will also talk about infinite partitions. A partition in this case is a function $p:B\to 2^A$ such that $\bigcup_{b\in B}p(b)=A$ and for $b\neq c$ we have $p(b)\cap p(c)=\emptyset$.

Operations

Functions are sometimes are also called operations. Especially, functions of the form $f:A\to A$ or $g:A\times A\to A$. For example, $(x,y)\mapsto x+y$ for $x,y\in\mathbb{R}$ is the addition operation.

Associativity. Example: functions $f:A\to A$, with the compositon operation.

Commutativity. Same example, say the permutations σ, π over $\{1, 2, 3\}$ on the right do not commute.



Distributivity. Examples: * through +, further \cap though \cup and \cup through \cap .

Relations

A binary relation is a set $R \subseteq A \times B$. We will write $(x,y) \in R$ also as R(x,y) (with Boolean value). Thus

$$R(x,y) \Leftrightarrow (x,y) \in R$$
.

Frequently, infix notation. Example: x < y, where $< \subset \mathbb{R} \times \mathbb{R}$.

Ternary relation: $R \in A \times B \times C$.

Interesting properties of binary relations over a set A.

Reflexive.

Symmetric.

Transitive.

A binary relation can be represented by a graph. If the relation is symmetric the graph can be undirected, otherwise it must be directed. In all cases, at most one edge can be between nodes.

Equivalence relation

Equivalence relation over a set A: reflexive, symmetric transitive. Example: equality. Other example: reachability in a graph.

Theorem

A relation $R \subset A \times A$ is an equivalence relation if and only if there is a function $f : A \to B$ such that $R(x,y) \Leftrightarrow f(x) = f(y)$.

Proof: exercise.

Each set of the form $C_x = \{y : R(x,y)\}$ is called an equivalence class. An equivalence relation partitions the underlying set into the equivalence classes.

In a partition into equivalence classes, we frequently pick a representative in each class. Example: rays and unit vectors.

Preorder, partial order

A relation \leq is antisymmetric if $a \leq b$ and $b \leq a$ implies a = b. Preorder \leq : reflexive, transitive.

Example

The relation \subseteq among subsets of a set A is a partial order.

In a preorder, we can introduce a relation \sim : $x \sim y$ if $x \leqslant y$ and $y \leqslant x$. This is an equivalence relation, and the relation induced by \leqslant on the equivalence classes is a partial order.

Example

The relation x|y over the set \mathbb{Z} of integers is a preorder. For every integer x, its equivalence class is $\{x, -x\}$.

Asymptotic analysis

$$O(),o(),\Omega(),\Omega(),\Theta().$$
 More notation: $f(n)\ll g(n)$ for $f(n)=o(g(n))$, $f(n)\stackrel{<}{<}g(n)$ for $f(n)=O(g(n))$ and $\stackrel{*}{=}$ for $(\stackrel{<}{<}$ and $\stackrel{*}{>})$.

The relation $\stackrel{*}{<}$ is a preorder. On the equivalence classes of $\stackrel{*}{=}$ it turns into a partial order.

The most important function classes: log, logpower, linear, power, exponential. These are not all equivalence classes under *=.

Some simplification rules

- Addition: take the maximum. Do this always to simplify expressions. *Warning*: do it only if the number of terms is constant!
- An expression $f(n)^{g(n)}$ is generally worth rewriting as $2^{g(n)\log f(n)}$. For example, $n^{\log n} = 2^{(\log n)\cdot(\log n)} = 2^{\log^2 n}$.
- But sometimes we make the reverse transformation:

$$3^{\log n} = 2^{(\log n) \cdot (\log 3)} = (2^{\log n})^{\log 3} = n^{\log 3}.$$

The last form is easiest to understand, showing n to a constant power $\log 3$.

Examples

$$n/\log\log n + \log^2 n \stackrel{*}{=} n/\log\log n.$$

Indeed, $\log \log n \ll \log n \ll n^{1/2}$, hence $n/\log \log n \gg n^{1/2} \gg \log^2 n$.

Order the following functions by growth rate:

$$n^2 - 3 \log \log n$$
 $\stackrel{*}{=} n^2$, $\log n/n$, $\log \log n$, $n \log^2 n$, $3 + 1/n$ $\stackrel{*}{=} 1$, $\sqrt{(5n)/2^n}$, $(1.2)^{n-1} + \sqrt{n} + \log n$ $\stackrel{*}{=} (1.2)^n$.

Solution:

$$\sqrt(5n)/2^n \ll \log n/n \ll 1 \ll \log \log n$$

 $\ll n/\log \log n \ll n \log^2 n \ll n^2 \ll (1.2)^n.$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Sums: the art of simplification

Arithmetic series.

Geometric series: its rate of growth is equal to the rate of growth of its largest term.

Example

$$\log n! = \log 2 + \log 3 + \dots + \log n = \Theta(n \log n).$$

Indeed, upper bound: $\log n! < n \log n$.

Lower bound:

$$\begin{split} \log n! &> \log(n/2) + \log(n/2+1) + \dots + \log n > (n/2) \log(n/2) \\ &= (n/2) (\log n - 1) = (1/2) n \log n - n/2. \end{split}$$

4□ > 4□ > 4 = > 4 = > = 90

Examples

Prove the following, via rough estimates:

•
$$1+2^3+3^3+\cdots+n^3=\Theta(n^4)$$
.

•
$$1/3 + 2/3^2 + 3/3^3 + 4/3^4 + \cdots < \infty$$
.

Example

$$1 + 1/2 + 1/3 + \cdots + 1/n = \Theta(\log n).$$

Indeed, for $n = 2^{k-1}$, upper bound:

$$1 + 1/2 + 1/2 + 1/4 + 1/4 + 1/4 + 1/4 + 1/8 + \dots$$

= $1 + 1 + \dots + 1$ (k times).

Lower bound:

$$\begin{aligned} 1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + 1/16 + \dots \\ &= 1/2 + 1/2 + \dots + 1/2 \; (k \text{ times}). \end{aligned}$$

Random access machine

(this is random access)

Fixed number K of registers $R_j, j=1,\ldots,K$. Memory: one-way infinite tape: cell i contains natural number T[i] of arbitrary size. Program: a sequence of instructions, in the "program store": a (potentially) infinite sequence of registers containing instructions.

A program counter.

```
read j R_0 = T[R_i]
write j
store j R_i = R_0
load j
add j R_0 += R_i
add =c R_0 += c
sub j R_0 = |R_0 - R_i|^+
sub = c
     R_0 \neq 2
half
jump s
         if R_0 > 0 then jump s
ipos s
izero s
halt
```

In our applications, we will impose some bound k on the number of cells.

The size of the numbers stored in each cell will be bounded by k^c for some constant c. Thus, the wordsize of the machine will be logarithmic in the size of the memory, allowing to store the address of any position in a cell.

Basic integer arithmetic

Length of numbers

$$\mathrm{len}(n) = egin{cases} \lfloor \log |n|
floor + 1 & ext{if } n
eq 0, \ 1 & ext{otherwise.} \end{cases}$$

This is essentially the same as $\log n$, but is always defined. We will generally use $\operatorname{len}(n)$ in expressing complexities.

Upper bounds

On the complexity of addition, multiplication, division (with remainder), via the algorithms learned at school.

Theorem

The complexity of computing $(a,b) \mapsto (q,r)$ in the division with remainder a = qb + r is $O(\operatorname{len}(q)\operatorname{len}(b))$.

Proof.

The long division algorithm has $\leq \text{len}(q)$ iterations, with numbers of length $\leq \text{len}(b)$.

Theorem (Fundamental theorem of arithmetic)

 $Unique\ prime\ decomposition\ \pm p_1^{e_1}\dots p_k^{e_k}.$

The proof is not trivial, we will lead up to it. We will see analogous situations later in which the theorem does not hold.

Example

Irreducible family: one or two adult and some minors.

Later: the ring $\mathbb{Z}[\sqrt{-5}]$.

The above theorem is equivalent to the following lemma:

Lemma (Fundamental)

If p is prime and $a, b \in \mathbb{Z}$ then p|ab if and only if p|a or p|b.

In class, we have shown the equivalence.

Ideals

If I, J are ideals so is aI + bJ.

 $a\mathbb{Z}\subseteq b\mathbb{Z}$ if and only if b|a.

Careful: generally $a\mathbb{Z} + b\mathbb{Z} \neq (a+b)\mathbb{Z}$.

Example

$$2\mathbb{Z} + 3\mathbb{Z} = \mathbb{Z}$$
.

Principal ideal

The following theorem is the crucial step in the proof of the Fundamental Theorem.

Theorem

In \mathbb{Z} , every ideal I is principal.

Proof.

Let d be the smallest positive integer in I. The proof shows $I = d\mathbb{Z}$, using division with remainder.

Corollary

If d>0 and $a\mathbb{Z}+b\mathbb{Z}=d\mathbb{Z}$ then $d=\gcd(a,b).$ In particular, we found that

- (a) Every other divisor of a, b divides gcd(a, b).
- (b) For all a, b there are $s, t \in \mathbb{Z}$ with gcd(a, b) = sa + tb.

The proof of the theorem is non-algorithmic. It does not give us a method to calculate $\gcd(a,b)$: in particular, it does not give us the s,t in the above corollary. We will return to this.

Theorem

For a, b, c with gcd a, c = 1 and c|ab we have c|b.

This theorem implies the Fundamental Lemma announced above.

Proof.

Using
$$1 = sc + ta$$
, hence $b = scb + tab$.

Some consequences of unique factorization

There are infinitely many primes.

The notation $\nu_p(a)$. gcd and minimum, lcm and maximum.

$$lcm(a,b) \cdot \gcd(a,b) = |ab|$$

Pairwise relatively prime numbers.

Representing fractions in lowest terms.

Lowest common denominator.

Unless stated otherwise, commutative, with a unit element. The detailed properties of rings will be deduced later (see Section 9 of Shoup, in particular Theorem 9.2). We use rings here only as examples.

Examples

- Z, O, R, C.
- The set of (say, 2×2) matrices over \mathbb{R} is also a ring, but is not commutative.
- The set $2\mathbb{Z}$ is also a ring, but has no unit element.
- If R is a commutative ring, then R[x,y], the set of polynomials in x, y with coefficients in R, is also a ring.

34 / 96

Theorem

Let R be a ring. Then:

- (i) the multiplicative identity is unique.
- (ii) $0 \cdot a = 0$ for all a in R.
- (iii) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- (iv) (-a)(-b) = ab for all $a, b \in R$.
- (v) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$, $a, b \in R$.

Ideals.

Example

A non-principal ideal: $x\mathbb{Z}[x,y] + y\mathbb{Z}[x,y]$ in $\mathbb{Z}[x,y]$.

Example

Non-unique irreducible factorization in a ring. Let the ring be $\mathbb{Z}[\sqrt{-5}]$.

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

How to show that $2, 3, (1 + \sqrt{-5}), (1 - \sqrt{-5})$ are irreducible? Let $N(a + b\sqrt{-5}) = a^2 + 5b^2$, then it is easy to see that N(xy) = N(x)N(y), since N(z) is the square absolute value of the complex number z. It is always integer here.

If N(z) = 1 then $z = \pm 1$.

If N(z) > 1 then $N(z) \geqslant 4$.

For $z=2,3,(1+\sqrt{-5}),(1-\sqrt{-5})$, we have N(z)=4,9,6,6. The only nontrivial factors of these numbers are 2 and 3, but there is no z with $N(z)\in\{2,3\}$.

(□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ · 불 · • •) Q (~

The basic Euclidean algorithm

Assume $a \geqslant b \geqslant 0$ are integers.

$$egin{aligned} a &= r_0, \quad b = r_1, \ r_{i-1} &= r_i q_i + r_{i+1} \quad (0 < r_{i+1} < r_i), \quad (1 \leqslant i < \ell) \ dots \ r_{\ell-1} &= q_\ell r_\ell \end{aligned}$$

Upper bound on the number ℓ of iterations:

$$\ell \leqslant \log_{\phi} b + 1$$
,

where $\phi = (1+\sqrt{5})/2 \approx 1.62$. We only note $\ell = O(\log b)$ which is obvious from

$$r_{i+1}\leqslant r_{i-1}/2.$$

Theorem

Euclid's algorithm runs in time O(len(a)len(b)).

This is stronger than the upper bound seen above.

Proof.

We have

$$\operatorname{len}(b) \sum_{i=1}^\ell \operatorname{len}(q_i) \leqslant \operatorname{len}(b) \sum_{i=1}^\ell (1 + \log(q_i)) \leqslant \operatorname{len}(b) (\ell + \log(\prod_{i=1}^\ell q_i)).$$

Now,

$$a=r_0\geqslant r_1q_1\geqslant r_2q_2q_1\geqslant \cdots \geqslant r_\ell q_\ell \cdots q_1.$$

The extended Euclidean algorithm

$$s_0 = 1,$$

 $s_1 = 0,$
 $s_{i+1} = s_{i-1} - s_i q_i,$

$$egin{aligned} t_0 &= 0, \ t_1 &= 1, \ & ext{same for } t_i. \end{aligned}$$

Theorem

The following relations hold.

- (i) $s_i a + t_i b = r_i$.
- (ii) $s_i t_{i+1} t_i s_{i+1} = (-1)^i$.
- (iii) $gcd(s_i, t_i) = 1$.
- (iv) $t_i t_{i+1} \leq 0$, $|t_i| \leq |t_{i+1}|$, same for s_i .
- (v) $r_{i-1}|t_i| \leq a, r_{i-1}|s_i| \leq b.$

Proof.

(i),(ii): induction. (i) follows from (ii). (iv): induction. (v): combining (i) for i and i-1.

Matrix representation

$$egin{pmatrix} r_i \ r_{i+1} \end{pmatrix} = egin{pmatrix} 0 & 1 \ 1 & -q_i \end{pmatrix} egin{pmatrix} r_{i-1} \ r_i \end{pmatrix} = Q_i egin{pmatrix} r_{i-1} \ r_i \end{pmatrix}.$$

Define $M_i = Q_i \cdots Q_1$, then

$$M_i = egin{pmatrix} s_i & t_i \ s_{i+1} & t_{i+1} \end{pmatrix}.$$

Now the relation $s_i t_{i+1} - t_i s_{i+1} = (-1)^i$ above says $\det M_i = \prod_{j=1}^i \det Q_i = (-1)^i$.

Congruences

 $a \equiv b \pmod{m}$ if m|b-a.

More generally, in a ring with some ideal I, we write $a \equiv b \pmod{I}$ if $(b-a) \in I$.

Theorem

The relation \equiv has the following properties, when I is fixed.

- (a) It is an equivalence relation.
- (b) Addition and multiplication of congruences.

Example (From Emil Kiss)

Is the equation $x^2 + 5y = 1002$ solvable among integers? This seems hard until we take the remainders modulo 5, then it says: $x^2 \equiv 2 \pmod{5}$. The squares modulo 5 are 0, 1, 4, 4, 1, so 2 is not a square.

The ring of congruence classes

For an integer x, let

$$[x]_m = \{ y \in \mathbb{Z} : y \equiv x \pmod{m} \}$$

denote the residue class of x modulo m. We choose a representative for each class $[x]_m$: its smallest nonnegative element.

Example

The set $[-3]_5$ is $\{\ldots, -8, -3, 2, 7, \ldots\}$. Its representative is 2.

Definition of the operations +, \cdot on these classes. This is possible due to the additivity and multiplicativity of \equiv .

The set of classes with these operations is turned into a ring which we denote by \mathbb{Z}_m . We frequently write $\mathbb{Z}_m = \{0, 1, \dots, (m-1)\}$, that is we use the representative of class $[i]_m$ to denote the class.

< □ > < 🗗 >

Division of congruences

Does $c \cdot a \equiv c \cdot b \pmod{m}$ imply $a \equiv b \pmod{m}$ when $c \not\equiv 0 \pmod{m}$? Not always.

Example

$$2 \cdot 3 = 6 \equiv 0 \equiv 2 \cdot 0 \pmod{6}$$
, but $3 \not\equiv 0 \pmod{6}$.

The numbers 2,3 are called here zero divisors. In general, an element $x \neq 0$ of a ring R is a zero divisor if there is an element $y \neq 0$ in R with $x \cdot y = 0$.

Theorem

In a finite ring R, if b is not a zero divisor then the equation $x \cdot b = c$ has a unique solution for each c: that is, we can divide by b.

Proof.

The mapping $x \to x \cdot b$ is one-to-one. Indeed, if it is not then there would be different elemnts x, y with $x \cdot b = y \cdot b$, but $(x - y) \cdot b \neq 0$, since b is not a zero divisor.

At the beginning of class, we have seen that in a finite set, if a class is one-to-one then it is also onto. Therefore for each c there is an x with $x \cdot b = c$. The one-to-one property implies that x is unique.

Observe that this proof is non-constructive: it does not help finding x from b,c.

Actually we only need to find b^{-1} , that is the solution of $x \cdot b = 1$

Finding the inverse

Proposition

An element of $b \in \mathbb{Z}_m$ is not a zero divisor if and only if gcd(b,m) = 1.

To find the inverse x of b, we need to solve the equation $x \cdot b + y \cdot m = 1$. Euclid's algorithm gives us these x, y, and then $x \equiv b^{-1} \pmod{m}$.

Example

Inverse of 8 modulo 15.

Characterizing the set of all solutions of the equation

$$a \cdot x \equiv b \pmod{m}$$
.

Corollary (Cancellation law of congruences)

If gcd(c, m) = 1 and $ac \equiv bc \pmod{m}$ then $a \equiv b \pmod{m}$.

Examples

- We have $5 \cdot 2 \equiv 5 \cdot (-4) \pmod{6}$. This implies $2 \equiv -4 \pmod{6}$.
- We have $3 \cdot 5 \equiv 3 \cdot 3 \pmod{6}$, but $5 \not\equiv 3 \pmod{6}$.

What can we do in the second case? Simplify as follows.

Proposition

For all a, b, c the relation $ac \equiv bc \pmod{mc}$ implies $a \equiv b \pmod{m}$.

The proof is immediate.

In the above example, from $3 \cdot 5 \equiv 3 \cdot 3 \pmod{6}$ we can imply $5 \equiv 1 \pmod{2}$.

Chinese remainder theorem

Consider two different moduli: m_1 and m_2 . Do all residue classes of m_1 intersect with all residue classes of m_2 ? That is, given a_1, a_2 , we are looking for an x with

$$x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}.$$

There is not always a solution. For example, there is no x with

$$x \equiv 0 \pmod{2}, \quad x \equiv 1 \pmod{4}.$$

But if m_1, m_2 are coprime, there is always a solution. More generally:

Theorem

If m_1, \ldots, m_k are relatively prime with $M = m_1 \cdots m_k$ then for all $a_1, \ldots, a_k \in \mathbb{Z}$ there is a unique $0 \leqslant x < M$ with $x \equiv a_i \pmod{m_i}$ for all $i = 1, \ldots, k$.

Proof.

Let $I(n)=\{0,\dots,n-1\}$. The sets U=I(M) and $V=I(m_1)\times\cdots\times I(m_k)$ both have size M. We define a mapping $f:U\to V$ as follows:

$$f(x) = (x \bmod m_1, \dots, x \bmod m_k).$$

Let us show that this mapping is one-to-one. Indeed, if f(x) = f(y) for some $x \le y$ then $x \equiv y \pmod{m_i}$ and hence $m_i | (y-x)$ for each i. Since m_i are relatively prime this implies M | (y-x), hence y-x=0. Since the sets are finite and have the same size, it follows that the mapping f is also invertible, which is exactly the statement of the theorem.

Note that the theorem is **not constructive** (just like the theorem about the modular inverse).

Chinese remainder algorithm

How to find the x in the Chinese remainder theorem? Let $M_i = M/m_i$, for example $M_1 = m_2 \cdots m_k$. Let m'_i be $(M_i)^{-1}$ modulo m_i (it exists). Let

$$x = a_1 M_1 m_1' + \dots + a_k M_k m_k' \mod M.$$

Let us show for example $x \equiv a_1 \pmod{m_1}$. We have $a_i M_i m_i' \equiv 0 \pmod{m_1}$ for each i > 1, since $m_1 | M_i$. On the other hand, $a_1 M_1 m_1' \equiv a_1 \cdot 1 \pmod{m_1}$.

Fractions in \mathbb{Z}_m

Look at the equation $r \equiv yt \pmod{m}$, where m, y is given. Typically there is no unique solution for r, t; however, the quotient r/t (as a rational number) is uniquely determined if r, t are required to be small compared to m.

Theorem (Rational reconstruction)

Let $r^*, t^* > 0$ and y be integers with $2r^*t^* < m$. Let us call the pair (r,t) of integers admissible if $|r| \leqslant r^*$, $0 < t \leqslant t^*$, and $r \equiv yt \pmod{m}$. Then, there is a rational number q_y such that $r/t = q_y$ for all admissible pairs (r,t).

51/96

Proof.

Suppose that both (r_1, t_1) and (r_2, t_2) are admissible pairs: we want to prove $r_1/t_1 = r_2/t_2$. We have, modulo m:

$$r_1 \equiv t_1 y,$$

 $r_2 \equiv t_2 y.$

Linear combination gives $r_1t_2-r_2t_1\equiv 0$, hence $m|(r_1t_2-r_2t_1)$. Since $m>2r^*t^*$ this implies $r_1t_2=r_2t_1$. Dividing by t_1t_2 gives the result.

Finding an admissible pair (if it exists) under the condition

$$n\geqslant 4r^*t^*$$
,

by the Euclidean algorithm: see the book.

Error correction

Let m_1,\ldots,m_k be mutually coprime moduli, $M=m_1\cdots m_k$. Let 0 < Z < M and 0 < P be integers. A set $B \subset \{1,\ldots,k\}$ is called P-admissible if $\prod_{i \in B} m_i \leqslant P$.

Example

If $(m_1, m_2, m_3, m_4) = (2, 3, 5, 7)$ and P = 8 then the admissible sets are $\{1\}, \{2\}, \{1, 2\}, \{3\}, \{4\}$.

Let y be an arbitrary integer. An integer $0 \le z \le Z$ is called (Z,P)-admissible for y if the set of indices

$$B = \{i : z \not\equiv y \pmod{m_i}\}$$

is P-admissible. We can say y has errors compared to z in the residues $y \mod m_i$ for $i \in B$.

An admissible z can be recovered from y, provided Z, P are small:

Theorem

If $M>2PZ^2$ then for every y and there is at most one z that is (Z,P)-admissible for it.

Proof.

Let $t = \prod_{i \in B} m_i$. Then it is easy to see that

$$tz \equiv ty \pmod{M}$$

holds. Let r=tz, $r^*=PZ$, $t^*=P$, then $|tz|\leqslant r^*$ and $t\leqslant t^*$ while $M>2r^*t^*$. The Rational Reconstruction Theorem implies therefore that z=r/t is uniquely determined by y.

If the stronger condition $M>4P^2Z$ is required then following the book, the value z can also be found efficiently using the Euclidean algorithm.

Euler's phi function

See the definition in the book. Computing it for p, p^{α}, pq . The multiplicative order of a residue.

Theorem (Euler)

For $a \in \mathbb{Z}_m^*$ we have $a^{\phi(m)} \equiv 1 \pmod{m}$.

Proof.

Corollary

Fermat's little theorem.

Some properties of phi

Theorem

For positive integers m, n with gcd(m, n) = 1 we have $\phi(mn) = \phi(m)\phi(n)$.

Proof.

One-to-one map between \mathbb{Z}_{mn}^* and $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$.

Application: formula for $\phi(n)$.

Theorem

We have $\sum_{d|n} \phi(d) = n$.

Proof.

To each $0 \leqslant k < n$ let us assign the pair (d,k') where $d = \gcd(k,n)$ and k' = k/d. Then for each divisor d of n, the numbers k' occurring in some (d,k') will run through each element of $\mathbb{Z}_{n/d}^*$ once, hence $\sum_{d|n} \phi(n/d) = n$.

Modular exponentiation

In the exponents, we compute modulo $\phi(m)$.

Examples

- For prime p>2 and $\gcd(a,p)=1$, we have $a^{\frac{p-1}{2}}\equiv \pm 1$.
- For composite m, this is no more the case. If m=pq with primes p,q>2 then $x^2\equiv 1$ has 4 solutions, since $x \bmod p=\pm 1$ and $x \bmod q=\pm 1$ can be independently of each other. See p=3,q=5.

Fast modular exponentiation: the repeated squaring trick.

Primitive root (generator).

Example

If *g* is a primitive root modulo a prime p > 2 then $a^{\frac{p-1}{2}} \equiv -1$.

Theorem

Primitive root exists for m if and only if $m=2,4,p^{\alpha},2p^{\alpha}$ for odd prime p.

Proof later.

When there is a primitive root, the multiplicative structure (group) \mathbb{Z}_m^* is the same as (isomorphic to) the additive group $\mathbb{Z}_{\phi(m)}^+$.

Chebyshev's theorem

Binomial coefficients. The definition of $\pi(n)$, $\vartheta(n)$.

Proposition

$$4^n/(n+1) < {2n \choose n} < {2n+1 \choose n+1} < 4^n.$$

Lemma (Upper bound on $\vartheta(n)$)

We have $\vartheta(n) \leqslant 2n$.

Proof.

We have $\vartheta(2m+1) - \vartheta(m+1) \leqslant \log {2m+1 \choose m+1} \leqslant 2m$. From here, induction using $\vartheta(2m-1) = \vartheta(2m)$.

Proposition

$$\nu_p(n!) = \sum_{k \ge 1} \lfloor n/p^k \rfloor.$$

Lemma (Lower bound in $\pi(n)$)

$$\pi(n) \geqslant (1/2)n/\log n$$
.

Proof.

For $N = \binom{2m}{m}$ we have

$$u_p(N) = \sum_{k\geqslant 1} (\lfloor 2m/p^k \rfloor - 2\lfloor m/p^k \rfloor).$$

Recall the exercise showing $0 \le \lfloor 2x \rfloor - 2 \lfloor x \rfloor \le 1$, hence this is sum is between 0 and $\le \log_p(2m)$. So,

$$\begin{split} m \leqslant \log N \leqslant \sum_{p \leqslant 2m} \nu_p(N) \log p \leqslant \sum_{p \leqslant 2m} \log_p(2m) \log p \\ = \sum_{p \leqslant 2m} \log(2m) = \pi(2m) \log(2m), \end{split}$$

 $(1/2)(2m)/\log(2m)\leqslant \pi(2m).$

For odd n, note $\pi(2m-1)=\pi(2m)$ and that $x\log x$ is monotone.

Theorem

We have $\vartheta(n) \approx \pi(n) \log n$, that is $\frac{\vartheta(n)}{\pi(n) \log n} \to 1$.

Proof.

 $\vartheta(n) \leqslant \pi(n) \log n$ is immediate. For the lower bound, cut the sum at $p \geqslant n^{\lambda}$ for some constant $0 < \lambda < 1$.

From all the above, we found

Theorem (Chebyshev)

We have $\pi(n) \stackrel{*}{=} \frac{n}{\log n}$.

Abelian groups

Proposition

Identity and inverse are unique.

Examples

$$\mathbb{Z}^+$$
, \mathbb{Q}^+ , \mathbb{R}^+ , \mathbb{C}^+ , $n\mathbb{Z}^+$, \mathbb{Z}_n^+ , \mathbb{Z}_n^* . $\mathbb{Q}^* \setminus \{0\}$ and $[0, \infty) \cap \mathbb{Q}^*$ for multiplication.

Examples

Non-abelian groups:

- ullet 2 imes 2 integer matrices with determinant ± 1
- ullet 2 imes 2 integer matrices with determinant 1
- All permutations of $\{1, \ldots, n\}$.

To create new groups

Cyclic groups, examples. Generators of a cyclic group. Direct product $G_1 \times G_2$.

Example

The set of all ± 1 strings of length n with respect to termwise multiplication: this is "essentially the same" as \mathbb{Z}_2^n .

When is a direct product of two cyclic groups cyclic? Examples.

Subgroups

A subset closed with respect to addition and inverse. Then it is also a group.

Examples

- mG (or G^m in multiplicative notation).
- $G\{m\} = \{g \in G : mg = 0\}.$

Theorem

Every subgroup of $\mathbb Z$ is of the form $m\mathbb Z$.

We proved this already since subgroups of $(\mathbb{Z},+)$ are just the ideals of $(\mathbb{Z},+,*)$

Theorem

If H is finite then it is a subgroup already if it is closed under addition.

Creating new subgroups

$$H_1 + H_2, H_1 \cap H_2$$
.

Example

Let $G=G_1\times G_2$, $\overline{G}_1=G_1\times\{0_{G_2}\}$, $\overline{G}_2=\{0_{G_1}\}\times G_2$. Then \overline{G}_i are subgroups of G, and

$$\overline{G}_1 \cap \overline{G}_2 = \{0_G\}, \qquad \overline{G}_1 + \overline{G}_2 = G.$$

So in a way, the direct product can, with the sum notation, be also called the direct sum.

Congruences

 $a \equiv b \pmod{H}$ if $b - a \in H$.

We have seen for rings earlier already that if H is an ideal, this is an equivalence relation and you can add congruences. The same proof shows that if *H* is a subgroup you can do this.

The equivalence classes a + H are called cosets.

Theorem

All cosets have the same size as H.

Proof.

If C = a + H then $x \mapsto a + x$ is a bijection between H and C.

Corollary (Lagrange theorem, for commutative groups)

If G is finite and H is its subgroup then |H| divides |G|.

Corollary

For any element a, its order $\operatorname{ord}_G(a)$ is the order of the cyclic group generated by a, hence it divides |G| if |G| is finite. Thus, we always have $|G| \cdot a = 0$.

The quotient group

Group operation among congruence classes, just as modulo m. This is the group G/H.

Examples

- If $G = G_1 \times G_2$ then recall $\overline{G}_1, \overline{G}_2$. Each element of G/\overline{G}_1 can be written as $(0,g_2) + \overline{G}_1$ for some g_2 . So, elements of \overline{G}_2 form a set of representatives for the cosets, and these representatives form a subgroup.
- ullet $\mathbb{Z}/m\mathbb{Z}=\mathbb{Z}_m.$ The class representatives do not form a subgroup.
- $\mathbb{Z}_4/2\mathbb{Z}_4$ consists of the classes $[0]=\{0,2\},[1]=\{1,3\}.$ The class representatives do not form a subgroup.

Two-dimensional picture.

Isomorphism, homomorphism

Isomorphism.

Example

$$\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$$
. But $2\mathbb{Z}_4 \cong \mathbb{Z}_2$, $\mathbb{Z}_4/2\mathbb{Z}_4 \cong \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \not\cong \mathbb{Z}_4$.

Homomorphism, image, kernel.

Examples

- The multiplication map, $\mathbb{Z} \to m\mathbb{Z}$. Its kernel is $\mathbb{Z}\{m\}$.
- For $a=(a_1,a_2)\in\mathbb{Z}^2$, let $\phi_a:G\times G\to G$ be defined as $(g_1,g_2)\mapsto a_1g_1+a_2g_2$.
- This also defines a homomorphism $\psi_g : \mathbb{Z}^2 \to G$, if we fix $g = (g_1, g_2) \in G^2$ and view a_1, a_2 as variable.

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Properties of a homomorphism

Proposition

Let $\rho: G \to G'$ be a homomorphism.

- (i) $\rho(0_G) = 0_{G'}$, $\rho(-g) = -\rho(g)$, $\rho(ng) = n\rho(g)$.
- (ii) For any subgroup H of G, $\rho(H)$ is a subgroup of G'.
- (iii) $ker(\rho)$ is a subgroup of G.
- (iv) ρ is injective if and only if $\ker(\rho) = \{0_G\}$.
- (v) $\rho(a) = \rho(b)$ if and only if $a \equiv b \pmod{\ker(\rho)}$.
- (vi) For every subgroup H' of G', $\rho^{-1}(H')$ is a subgroup of G containing $\ker(\rho)$.

<ロ > ∢回 > ∢回 > ∢ 直 > ∢ 直 > りへ(?)

Composition of homomorphisms.

Homomorphisms into and from $G_1 \times G_2$.

Theorem

For any subgroup H of an Abelian group G, the map $\rho: G \to G/H$, where $\rho(a) = a + H$ is a surjective homomorphism, with kernel H, called the natural map from G to G/H.

Conversely, for any homomorphism ρ , the factorgroup $G/\ker(\rho)$ is isomorphic to $\rho(G)$.

Examples

- The image of the multiplication map $\mathbb{Z}_8 \to \mathbb{Z}_8$, $\alpha \mapsto 2\alpha$ is the subgroup $2\mathbb{Z}_8$ of \mathbb{Z}_8 . The kernel is $\mathbb{Z}_8\{2\}$, and we have $\mathbb{Z}_8/\mathbb{Z}_8\{2\}\cong 2\mathbb{Z}_8\cong \mathbb{Z}_4.$
- (Chinese Remainder Theorem) For m_1, \ldots, m_k , the map $\mathbb{Z} \to \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$ given by taking the remainders modulo m_i . Surjective iff the m_i are pairvise relatively prime.

CS 235

73 / 96

Theorem

Let H_1, H_2 be subgroups of G. The the map $\rho: H_1 \times H_2 \to H_1 + H_2$ with $\rho(h_1, h_2) = h_1 + h_2$ is a surjective group homomorphism that is an isomorphism iff $H_1 \cap H_2 = \{0\}$.

Cyclic groups, classification

For a generator a of cyclic G, look at homomorphism $\rho_a:\mathbb{Z}\to G$, defined by $z\mapsto za$. Then $\ker(\rho_a)$ is either $\{0\}$ or $m\mathbb{Z}$ for some m. In the first case, $G\cong\mathbb{Z}$, else $G\cong\mathbb{Z}_m$

Examples

- An element n of \mathbb{Z}_m generates a subgroup of order $m/\gcd(m,n)$.
- ullet $\mathbb{Z}_{m_1} imes \mathbb{Z}_{m_2}$ is cyclic iff $\gcd(m_1, m_2) = 1$.

All subgroups of \mathbb{Z} are of the form $m\mathbb{Z}$.

Theorem

On subgroups of a finite cyclic group $G = \mathbb{Z}_m$:

- (i) All subgroups are of the form $dG = G\{m/d\}$ where d|m, and $dG \subseteq d'G \text{ iff } d'|d.$
- (ii) For any divisor d of m, the number of elements of order d is $\phi(d)$.
- (iii) For any integer n we have nG = dG and $G\{n\} = G\{d\}$ where $d = \gcd(m, n)$.

Theorem

- (i) If G is of prime order then it is cyclic.
- (ii) Subgroups of a cyclic group are cyclic.
- (iii) Homomorphic images of a cyclic group are cyclic.

The exponent of an Abelian group G: the smallest m>0 with $mG=\{0\}$, or 0 if there is no such m>0.

Theorem

Let m be the exponent of G.

- (i) m divides |G|.
- (ii) If $m \neq 0$ is then the order of every element divides it.
- (iii) G has an element of order m.

Theorem

- (i) If prime p divides |G| then G contains an element of order p.
- (ii) The primes dividing the exponent are the same as the primes dividing the order.

We have introduced rings earlier, now we will learn more about them.

Example

Complex numbers: pairs (a,b) with $a,b \in \mathbb{R}$, and the known operations.

Conjugation: a ring isomorphism. Norm: $z\overline{z}=a^2+b^2$, and its properties.

Characteristic: the exponent of the additive group.

Units and fields

An element is a unit if it has a multiplicative inverse. The set of units of ring R is denoted by R^* . This is a group.

Examples

- For $z \in \mathbb{C}$, we have $z^{-1} = \overline{z}/N(z)$.
- Units in \mathbb{Z} , \mathbb{Z}_m .
- The Gaussian integers, and units among them.
- Units in $R_1 + R_2$.

Zero divisors and integral domains

R is an integral domain if it has no zero divisors.

Examples

- When is \mathbb{Z}_m an integral domain?
- When is an element of $R_1 \times R_2$ a zero divisor?

Theorem

- (i) a|b implies unique quotient.
- (ii) a|b and b|a implies they differ by a unit.

Theorem

- (i) The characteristic of an integral domain is a prime.
- (ii) Any finite integral domain is a field.
- (iii) Any finite field has prime power cardinality.

Subrings

Examples

- Gaussian integers
- $\bullet \mathbb{Q}_m$.

Polynomial rings

The ring R[X].

The formal polynomial versus the polynomial function. In algebra, x is frequently called an indeterminate to make the distinction clear.

For each $a \in R$, the substitution $\rho_a : R[X] \to R$ defined by $\rho_a(f(X)) = f(a)$ is a ring homomorphism.

Example

 $\mathbb{Z}_2[X]$ is our first example of a ring with finite characteristic that is not a field.

Degree deg(f). Leading coefficient lc(f). Monic polynomial: when the leading coefficient is 1. Constant term.

Degree Convention: $deg(0) = -\infty$.

 $\deg(fg) \leqslant \deg(f) + \deg(g)$, equality if the leading coefficients are not zero divisors.

Proposition

If D is an integral domain then $(D[X])^* = D^*$.

Warning: different polynomials can give rise to the same polynomial function. Example: $X^p - X$ over \mathbb{Z}_p defines the 0 function.

Theorem (Division with remainder)

Let $f,g \in R[x]$ with $g \neq 0_R$ and $lc(g) \in R^*$. Then there is a q with

$$f = q \cdot g + r,$$
 $\deg(r) < \deg(g).$

Notice the resemblance to and difference from number division.

The long division algorithm.

Theorem

Dividing by $X - \alpha$:

$$f(X) = q \cdot (X - \alpha) + f(\alpha).$$

Roots of a polynomial.

Corollary

- (i) α is a root of f(X) iff f(X) is divisible by $X \alpha$.
- (ii) In an integral domain, a polynomial of degree n has at most n roots.

Theorem

If D is an integral domain then every finite subgroup G of D^* is cyclic.

Proof.

The exponent of m of G is equal to G, since $\mathbb{X}^m - 1$ has at most m roots. By an earlier theorem, G has an element whose order is the exponent.

Corollary

Modulo any prime p, there is a primitive root.

Ideals and homomorphisms

We defined ideals earlier, this is partly a review. Generated ideal (a), (a,b,c). Principal ideal. Congruence modulo an ideal. Quotient ring.

Example

Let f be a monic polynomial, consider $E = R[X]/(f \cdot R[X]) = R[X]/(f)$.

- $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.
- $\mathbb{Z}_2[x]/(x^2+x+1)$. Elements are [0],[1],[x],[x+1]. Multiplication using the rule $x^2\equiv x+1$. Since $x(x+1)\equiv 1$ every element has an inverse, and E is a field of size 4.

Prime ideal: If $ab \in I$ implies $a \in I$ or $b \in I$. Maximal ideal.

Examples

- In the ring \mathbb{Z} , the ideal $m\mathbb{Z}$ is a prime ideal if and only if m is prime. In this case it is also maximal.
- In the ring $\mathbb{R}[X,Y]$, the ideal (X) is prime, but not maximal. Indeed, $(X) \subsetneq (X,Y) \neq \mathbb{R}[X,Y]$

Proposition

- (i) I is prime iff R/I is an integral domain.
- (ii) I is maximal iff R/I is a field.

Proposition

Let $\rho: R \to R'$ be a homomorphism.

- (i) Images of subrings are subrings. Images of ideals are ideals of $\rho(R)$.
- (ii) The kernel is an ideal. ρ is injective (an embedding) iff it is $\{0\}$.
- (iii) The inverse image of an ideal is an ideal containing the kernel.

Proposition

The natural map $\rho: R \to R/I$ is a homomorphism. Isomorphism between $R/\ker(\rho)$ and $\rho(R)$.

Examples

- $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is not only a group homomorphism but also a ring homomorphism.
- The mapping for the Chinese Remainder Theorem.

Polynomial factorization and congruences

(See 17.3-4 of Shoup)

We will consider elements of F[X] over a field F.

The associate relation between elements of F[X].

Theorem

Unique factorization in F[X]. The monic irreducible factors are unique.

The proof parallels the proof of unique factorization for integers, using division with remainder.

- Every ideal is principal.
- If f,g are relatively prime then there are s,t with

$$f \cdot s + g \cdot t = 1. \tag{2}$$

- Polynomial p is irreducible iff p · F[X] is a prime ideal, and iff it is a maximal ideal, so iff F[X]/(p) is a field.
 Warning: here we cannot use counting argument (as for integers) to show the existence of the inverse. We rely on (2) directly.
- Congruences modulo a polynomial. Inverse.
- Chinese remainder theorem. Interpolation.

The following theorem is also true, but its proof is longer (see 17.8 of Shoup).

Theorem

There is unique factorization over the following rings as well:

$$\mathbb{Z}[\mathbf{x}_1,\ldots,\mathbf{x}_n], F[\mathbf{x}_1,\ldots,\mathbf{x}_n],$$

where F is an arbitrary field.

Complex and real numbers

Theorem

Every polynomial in $\mathbb{C}[X]$ *has a root.*

We will not prove this. It implies that all irreducible polynomials in $\ensuremath{\mathbb{C}}$ have degree 1.

Theorem

Every irreducible polynomial over \mathbb{R} has degree 1 or 2.

Proof.

Let f(x) be a monic polynomial with no real roots, and let

$$f(\mathbf{X}) = (\mathbf{X} - \alpha_1) \cdots (\mathbf{X} - \alpha_n)$$

over the complex numbers. Then

$$f(X) = \overline{f(X)} = (X - \overline{\alpha}_1) \cdots (X - \overline{\alpha}_n).$$

Since the factorization is unique, the conjugation just permuted the roots. All the roots are in pairs: $\beta_1, \overline{\beta}_1, \beta_2, \overline{\beta}_2$, and so on. We have

$$(\mathbf{X} - \beta)(\mathbf{X} - \overline{\beta}) = \mathbf{X}^2 - (\beta + \overline{\beta})\mathbf{X} + \beta\overline{\beta}.$$

Since these coefficients are their own conjugates, they are real. Thus f is the product of real polynomials of degree 2.

Roots of unity

Complex multiplication: addition of angles.

Roots of unity form a cyclic group (as a finite subgroup of the multiplicative group of a field).

Primitive *n*th root of unity: a generator of this group. One such generator is the root with the smallest angle.

Proposition

If ε is a root of unity different from 1 then $\sum_{i=1}^{n} \varepsilon^{i} = 0$.

Fourier transform

Interpolation is particularly simple if the polynomial is evaluated at roots of unity.