
Combinatorial Structures
Freely using the textbooks by Lovász-Pelikán-Vesztergombi and

Ensley-Crawley

Péter Gács

Computer Science Department
Boston University

Fall 2009

Péter Gács (Boston University) CS 131 Fall 09 1 / 201

Introduction

Introduction

For details on the course structure (syllabus, policies, lecture
schedule, homework), see the course homepage
www.cs.bu.edu/∼gacs/courses/cs131 .
The course introduces some general techniques of mathematical
reasoning used in computer science. You will get most benefit
from it as a freshman, but I hope it is not completely useless for
those taking it later just to satisfy the requirement.
The material is sets, functions, relations, counting, graphs. Much
emphasis will be on methods of sound reasoning and proof. (We
will practice rigorous reasoning, but not learn any rigid formats
for doing proofs!)

Péter Gács (Boston University) CS 131 Fall 09 2 / 201

Introduction

On our books

We use:

LPV (Lovász-Pelikán-Vesztergombi)

Péter Gács (Boston University) CS 131 Fall 09 3 / 201

Introduction

Homework

Start early, so that you have time to ask questions. Do not
skimp on time: many of the problems will be deliberately such
that they cannot be solved in a snap. In my experience, this is
necessary for real learning.

Work neatly. First, your grader is not obliged to spend extra
time trying to decipher what you were trying to do. Second,
sorting out things on paper helps sorting out your own ideas.
Do not skimp on paper: start new line, new paragraph, new
sheet of paper frequently.

Péter Gács (Boston University) CS 131 Fall 09 4 / 201

Introduction

Grading

Homework: The purpose of homework grade is to give you
some incentive to work and to provide feedback. But the
percentage contribution of homework to your final grade is
low, so you do not gain much by plagiarizing the work of
others. Also it is not worth wasting your and my time coming
to office hours and haggling on homework partial credit: come
only if you think there is real misunderstanding or mistake by
the grader.

Exams: I do not give partial credit easily, and give it only if I
see some real understanding. Even a lot of writing will not get
credit if the reasoning is wrong. Be careful about how you
argue over a grade. I am frequently amused with students
who do it even before they tried to understand what they did
wrong.

Péter Gács (Boston University) CS 131 Fall 09 5 / 201

Counting Some examples

Counting
Some examples

Names: Alice, Bob, Carl, Diane, Eve, Frank, George.

How many handshakes among these 7 people?
6+5+·· ·+2+1= 6·7

2 (arithmetic series).
7·6
2 since everybody shakes with everybody else, and here we

counted each shake twice, from both sides.

The two solutions, for the general case (n people) provide a
new proof for the sum formula of the arithmetic series.

How many ways to seat around the table, with Alice’s place
fixed? 6 ·5 · · ·2 ·1= 6! (everybody seems to be familiar with the
factorial notation).

How many boy-girl pairs can be formed for dancing (4 boys, 3
girls)?

Péter Gács (Boston University) CS 131 Fall 09 6 / 201

Counting Some examples

How many ways to fill out a lottery ticket (90 numbers, 5
must be crossed out)?
Interesting side result: 90 ·89 ·88 ·87 ·86 is divisible by
5 ·4 ·3 ·2. (The earlier side result, that 7 ·6 is divisible by 2, is
less interesting.)

Bridge: how likely is it that I will get the same hand next
time? (A hand is 13 cards, out of the possible 52.)

Péter Gács (Boston University) CS 131 Fall 09 7 / 201

Counting Some examples

Matchings

Matching up 6 people at 3 boards to play chess. How many ways?
Discussing the interpretation of the question:

Do we distinguish the 3 boards (say, by how close they are to
the refreshments)?

Do we consider which player has whites?

Assume that none of those distinctions are made.
In general, before you can solve a practical problem by applying
mathematics to it, you must clarify carefully the assumptions,
and decide which aspects of the situation you can abstract away
from.

Péter Gács (Boston University) CS 131 Fall 09 8 / 201

Counting Some examples

Ways to count:

There are 6·5
2 choices for the first board, 4·3

2 for the second
board (and just one for the third board). But the order of the
boards does not matter, we must divide by 3!:

6 ·5 ·4 ·3
22 ·3!

.

There are 6! ways to sit on the chairs, divided by: 3! ways to
reshuffle the tables, and 23 ways to reshuffle the people
within the pairs:

6!
3! ·23 = 6 ·5 ·4

23 .

The youngest chooses first, then the youngest among the
remaining people: 5 ·3.

Péter Gács (Boston University) CS 131 Fall 09 9 / 201

Counting Some examples

Equality obtained: 6·5·4
23 = 5 ·3. More generally

2n(2n−1)···(n+1)
2n = (2n−1)(2n−3) · · ·3. Can you show this without

referring to counting?

2n(2n−1) · · · (n+1)
2n = 2n!

n! ·2n = 1 ·2 · · ·2n
2 ·4 · · ·2n

= 1 ·3 · · · (2n−1).

Péter Gács (Boston University) CS 131 Fall 09 10 / 201

Counting Sum and product notation

Sum and product notation

We will write

n∑
i=1

ai = a1 +a2 +·· ·+an.

For example

n∑
i=1

i = 1+2+·· ·+n.

The variable i here is a bound variable: its meaning is restricted
to inside the sum. We could use any other variable in its place,
(but of course, not n or another variable in use):

n∑
i=1

ai =
n∑

p=1
ap.

Péter Gács (Boston University) CS 131 Fall 09 11 / 201

Counting Sum and product notation

Note that

g(j)=
4∑

i=0
f (i, j)= f (0, j)+ f (1, j)+ f (2, j)+ f (3, j)+ f (4, j)

depends on j, but

g =
4∑

j=0
f (j, j)= f (0,0)+ f (1,0)+ f (2,2)+ f (3,3)+ f (4,4)

does not.

Péter Gács (Boston University) CS 131 Fall 09 12 / 201

Counting Sum and product notation

There is a corresponding notation for products: The number of
pairings among 2n people was found to be∏2n

i=n+1 i
2n =

n∏
i=1

(2i−1)= 1 ·3 · · · (2n−1)= ∏
1ÉiÉ2n

i odd

i.

Note that i has a completely different meaning in each of the
formulas. You can add conditions to the subscript, as in the last
formula.
If you learned calculus, you have seen bound variables already. A
definite integral is like a sum. In∫ 15

1
sin x dx =

∫ 15

1
sin yd y,

the variable x is a the bound variable, we could use y instead.

Péter Gács (Boston University) CS 131 Fall 09 13 / 201

Sets

Sets

Curly bracket notation: {2,3,5}. The party set :

P = {Alice,Bob,Carl,Diane,Eve,Frank,George}.

Order does not matter:

{Alice,Bob,George}= {Bob,Alice,George},

Element relation: Frank ∈ P.

Number of elements (cardinality) of a set A: |A|. For example,
|{Alice,Bob,George}| = 3, |{1,2,3, . . . }| =∞.

Péter Gács (Boston University) CS 131 Fall 09 14 / 201

Sets

Set notation using conditions:

G = { x ∈ P : x is a girl }= {Alice,Diane,Eve},

D = { y ∈ P : y is over 21 years old }= {Alice,Carl,Frank}.

The x or y in this notation is a bound variable: its meaning is
unrelated to everything outside the braces.

{ x ∈Z : 3|x }= {3x : x ∈Z }.

Note that x has a different role on the left-hand side and on
the right-hand side.

Péter Gács (Boston University) CS 131 Fall 09 15 / 201

Sets

The subset relation A ⊆ B. A ⊂ B means proper subset. So
both G ⊆ P and G ⊂ P are true.

The empty set ;= {}.

Some important sets: ;⊂Z⊂Q⊂R.
Nonnegative integers Z+.
Positive integers N (in the notation of the book LPV, see
remark below!).

Péter Gács (Boston University) CS 131 Fall 09 16 / 201

Sets

Set operations: A∪B, A∩B, A \ B, A∆B. For example:

G∩D = {Alice},

G∪D = {Alice,Carl,Diane,Eve,Frank},

G \ D = {Diane,Eve}.

Disjoint sets: A∩B =;. For example, {Alice,George} is
disjoint from {Carl,Frank}.
One frequently writes for a sequence A1, . . . , An of sets either
the statement that they are pairwise disjoint or, equivalently,
that A i ∩ A j =; for all i 6= j.

Warning: Do not confuse a one-element set with its element!
For example, if C = {Alice,George}, then |C| = 2, but |{C}| = 1.

Péter Gács (Boston University) CS 131 Fall 09 17 / 201

Sets

Many ways to express the same thing, for example

A ⊆ B ⇔ A∩B = A ⇔ A∪B = B.

For addition or subtraction of an element using set operations,
we need the one-element set:

{1,2,3}∪ {4}= {1,2,3,4},

{1,2,3,4}\ {4}= {1,2,3}.

One more example:

C = {Alice,George}∪;, |C| = 2,

D = {Alice,George}∪ {;}, |D| = 3.

Péter Gács (Boston University) CS 131 Fall 09 18 / 201

Sets

There are many identities, for example

(A∪B)∩ A = A = A∪ (B∩ A),

A∩ (B∪C)= (A∩B)∪ (A∩C) (distributivity of ∩),

A∪ (B∩C)= (A∪B)∩ (A∪C) (distributivity of ∪).

Péter Gács (Boston University) CS 131 Fall 09 19 / 201

Sets

Let us prove the distributivity of ∩.. In proving an equality, it is
frequently helpful to break it up into two inequalities, that is we
will prove ⊆ and ⊇ separately.

We prove A∩ (B∪C)⊆ (A∩B)∪ (A∩C), that is that
x ∈ A∩ (B∪C) implies x ∈ (A∩B)∪ (A∩C). If x ∈ A∩ (B∪C)
then x ∈ A and either x ∈ B or x ∈ C.

Suppose that for example x ∈ B. Then x ∈ A∩B, hence also
x ∈ (A∩B)∪ (A∩C) since P ⊆ P ∪Q in general.
The case x ∈ C is handled similarly.

We still need to prove A∩ (B∪C)⊇ (A∩B)∪ (A∩C), this is left
as an exercise.

Péter Gács (Boston University) CS 131 Fall 09 20 / 201

Sets

Illustration by Venn diagrams.

B

C

A

The set of all subsets of a set A is denoted by 2A.

Péter Gács (Boston University) CS 131 Fall 09 21 / 201

Sets

On notation

Some people write “|” in place of “:”, as in {3x | x ∈Z }.

The LPV book denotes by N the positive integers. In computer
science (and logic), in general N=Z+.

Many people understand A ⊂ B to mean the same as A ⊆ B, so
it is better to be explicit, and write A (B for proper subset, if
there is any chance of misunderstanding.

In general, mathematics (or computer science) is not about
notation! Notation is important to communicate the ideas, but it
is your responsibility to make sure that in each case, people
understand what you mean: if there is a chance of ambiguity, you
must state your conventions explicitly.

Péter Gács (Boston University) CS 131 Fall 09 22 / 201

Sets

The ∃ notation: we will return to it yet in more examples.
“x divides y” means: x|y⇔∃ z ∈Z x · z = y.

Example
Composite positive numbers:

{ x · y : x, y ∈N\{1} }= {n ∈N : ∃m ∈N\{1,n} m|n }.

The ∀ notation:
A ⊆ B is the same as saying ∀x, x ∈ A implies x ∈ B.
Prime positive numbers:

{n ∈N :∀m ∈N if m|n then m ∈ {1,n} }.

Péter Gács (Boston University) CS 131 Fall 09 23 / 201

Sets

Big unions and intersections

We have notation similar to big sums and products also for big
unions and intersections:

n−1⋃
i=2

A i = A2 ∪·· ·∪ An−1,

m⋂
j=1

B j = B1 ∩·· ·∩Bm.

Péter Gács (Boston University) CS 131 Fall 09 24 / 201

Sets

Complement

Frequently, all the sets we are considering are subsets of one set,
called the universal set. For example, if we talk about sets of
integers, we can take the set Z of all integers as the universal set.
Let us denote the universal set by X . Then we will write

A = X \ A.

The notation is useful because with it, we can write for example:

A \ B = A∩B,

which makes some of the properties easier to understand. Also,
now union and intersection are connected by the De Morgan
rules:

A∪B = A∩B, A∩B = A∪B.

Péter Gács (Boston University) CS 131 Fall 09 25 / 201

Propositional logic Factual statements

Propositional logic
Factual statements

When we want the computer check some conditions in order to
make a decision, these conditions must be expressed in a precise
language. Ordinary English is sometimes not even about
statement of fact:

I don’t like you.

When I say this to you, the fact is not necessarily what the
sentence says, the fact is that I am saying this to you. In the real
world, a sentence may express many things: for example, you
may say

I bet the professor will not say anything funny today.

The meanings of such statements are too complex for
mathematics: we will only deal with sentences that can be true or
false.

Péter Gács (Boston University) CS 131 Fall 09 26 / 201

Propositional logic Factual statements

Ambiguity

Ordinary English is too ambiguous.
A You let me alone, or I call the police!
B This car either has no gas or its starter is broken.

The “or” in first statement does not allow for the possibility that
you let me alone and I call the police, in the second one it allows
that the car has no gas and its starter is also broken.

Péter Gács (Boston University) CS 131 Fall 09 27 / 201

Propositional logic Factual statements

We may say:
1 The weather today is cold and windy in Allston.
2 The sandwiches that I got packed today are salmon and

peanut butter.

The meaning of “and” in these two statements is different.
In mathematics and computer science, we use a simplified
language in which all ambiguity is eliminated.

Péter Gács (Boston University) CS 131 Fall 09 28 / 201

Propositional logic Factual statements

Finally, in English, “and” and “or” sometimes just means the
same thing:

The bus will not stop within half hour before and/or after the
game.

If we break this up into the combination of two phrases then only
one of “and” and “or” will be allowed, depending on the
translation:

The bus will not stop within half hour before the game and it
will not stop within half hour after.

It will not happen that the bus stops within half hour before
the game or stops within half hour after.

We will see below that the equivalence corresponds to the
so-called De Morgan rule: ¬p∧¬q =¬(p∨ q).

Péter Gács (Boston University) CS 131 Fall 09 29 / 201

Propositional logic Factual statements

On history

Mathematics has developed for thousands of years without
any need for formal logic. This changed in the nineteenth
century, when some nasty paradoxes forced mathematicians
to be more cautious.

Some kind of formal logic has also been invented a couple of
thousand years ago (Aristotle) but the form in which it
became applicable in mathematics has been worked out only
by the end of the nineteenth century.

Péter Gács (Boston University) CS 131 Fall 09 30 / 201

Propositional logic Factual statements

Our reasoning is made up of statementes, or sentences. Whether
the sentence is true or false may depend on some circumstances,
but once these circumstances are fixed, all that matters is this
truth value.
We will first speak about how to connect sentences into more
complex sentences. This part is called propositional logic and has
been invented by he Englishman George Boole.

Péter Gács (Boston University) CS 131 Fall 09 31 / 201

Propositional logic Connectives

Connectives
Conjunction

If p and q are statements then

p∧ q

reads “p and q”, the conjunction of p and q, and is defined as the
statement that is true if both p and q are true, and false
otherwise. There is nothing more to it: define a two-element set,

{T,F}.

The function (x, y)→ x∧ y is given by the following table called
the truth table of ∧.

p q p∧ q
F F F
F T F
T F F
T T T

Péter Gács (Boston University) CS 131 Fall 09 32 / 201

Propositional logic Connectives

Sometimes we code the value T by the number 1 and the value F
by the number 0. In this case, we could also say that “and” is the
same as “minimum”, and also as the ordinary arithmetical
product:

p∧ q =min(p, q)= p · q.

Péter Gács (Boston University) CS 131 Fall 09 33 / 201

Propositional logic Connectives

Negation

If p is a statement then

¬p

reads “not p”, the negation of p, and is by definition the statement
that is true if and only if p is false. (Sometimes the notation p is
used.) This operation is called negation, and has the truth table

p ¬p
F T
T F

If 1 stands for T and 0 for F then you can check that

¬p = 1− p.

Péter Gács (Boston University) CS 131 Fall 09 34 / 201

Propositional logic Connectives

Disjunction

If p and q are statements then

p∨ q

reads “p or q”, the disjunction of p and q, and is by definition the
statement that is true if at least one of p and q is true, and false
otherwise. We have the truth table

p q p∨ q
F F F
F T T
T F T
T T T

So, the mathematical “or” is an inclusive “or”. If 1 stands for T
and 0 for F then you can check that

p∨ q =max(p, q)= p+ q− pq.

Péter Gács (Boston University) CS 131 Fall 09 35 / 201

Propositional logic Connectives

Expressing other operations

Once we have ∧ and ¬, the operation p∨ q is not really needed,
since the following identity expresses it:

p∨ q =¬(¬p∧¬q).

But ∨ is intuitive and convenient, so we will keep using it. You
may wonder what happens if we want to express an exclusive
“or”? Here it comes:

p⊕ q = p XOR q = (p∧¬q)∨ (¬p∧ q).

Péter Gács (Boston University) CS 131 Fall 09 36 / 201

Propositional logic Connectives

Implication

If you don’t let me alone, I call the police!

What happens when I let her alone? If she still calls the police, I
will feel cheated.
The mathematical implication p ⇒ q is the statement that says
that if p is true then q must be true. It requires nothing else, so it
is only false if p is true and q is false:

p q p ⇒ q
F F T
F T T
T F F
T T T

Péter Gács (Boston University) CS 131 Fall 09 37 / 201

Propositional logic Connectives

Expressing implication by other operations:
p ⇒ q =¬(p∧¬q)=¬p∨ q.

If p ⇒ q is an implication then ¬p ⇒¬q is called its inverse,
further q ⇒ p is called its converse, and ¬q ⇒¬p is called its
contrapositive.

The following observations can be made.

An implication is equivalent to its contrapositive.

The converse and the inverse of an implication are equivalent
to each other.

The converse (and inverse) are not equivalent to the original
implication.

Péter Gács (Boston University) CS 131 Fall 09 38 / 201

Propositional logic Connectives

Mathematicians use different ways to express implication. Here
are a few equivalent ways to express the implication

you tease the dog ⇒ the dog will bite.

Teasing the dog implies that it will bite.

If you tease the dog then it will bite.

It is sufficient to tease the dog in order for it to bite.

It is necessary for the dog to bite if I you tease it.

The dog will not bite only if you do not tease it.

Péter Gács (Boston University) CS 131 Fall 09 39 / 201

Propositional logic Connectives

Example
The empty set ; is a subset of every set. Indeed, we say A ⊆ B if
x ∈ A implies x ∈ B. If A is empty then x ∈ A is always false,
therefore x ∈ A ⇒ x ∈ B is always true.

Péter Gács (Boston University) CS 131 Fall 09 40 / 201

Propositional logic Connectives

Equivalence

There is a formula that expresses the fact that p and q are equal:

p ⇔ q = (p ⇒ q)∧ (q ⇒ p)= (p∧ q)∨ (¬p∧¬q)=¬(p XOR q).

Saying F(p, q, r)⇔G(p, q, r)=T for all p, q, r, is the same as to
say F(p, q, r)=G(p, q, r) for all p, q, r. We will call such an
equality an identity.

Péter Gács (Boston University) CS 131 Fall 09 41 / 201

Propositional logic Connectives

Mathematicians use different ways to express equivalence. The
most usual is this:

The dog will bite if and only if you tease it.

This means that both the statement and its inverse holds:
1 The dog will bite if you tease it.
2 The dog will bite only if you tease it.

The second part is equivalent to the converse, that is (roughly in
English)

If dog bites then you must have teased it.

Péter Gács (Boston University) CS 131 Fall 09 42 / 201

Propositional logic Identities

Identitites

There are many useful identities for the logical operations,
allowing to compute with them:

p∧ p = p, ¬¬p = p.

Conjunction and disjunction are associative, since for example
both p∧ (q∧ r) and (p∧ q)∧ r simply expresses the minimum of
p, q and r. So we simply write p∧ q∧ r.

Péter Gács (Boston University) CS 131 Fall 09 43 / 201

Propositional logic Identities

Distributive law:

p∧ (q∨ r)= (p∧ q)∨ (p∧ r).

How can we check this? For example by plugging in all 8
combinations of truth values for p, q, r and comparing the
left-hand and right-hand sides. But we can also note that this
identity is not independent of the distributive law for sets, since
for example

x ∈ A∩ (B∪C)= (x ∈ A)∧ ((x ∈ B)∨ (x ∈ C)).

Péter Gács (Boston University) CS 131 Fall 09 44 / 201

Propositional logic Identities

There is also a distributive law when we interchange ∧ and ∨:

(p∧ q)∨ r = (p∨ r)∧ (q∨ r).

This is also analogous to ∩ and ∪.
The following identities are very useful, and are called the De
Morgan rules.

¬(p∧ q)=¬p∨¬q, ¬(p∨ q)=¬p∧¬q.

With their help, we can bring the negation inside any
parentheses, which leads to significant simplification:

¬(¬(a∨b)∧ (¬x∨ y∨¬z))= a∨b∨ (x∧¬y∧ z).

Péter Gács (Boston University) CS 131 Fall 09 45 / 201

Propositional logic Identities

Sets and propositional formulas

There is a correspondence between sets and propositional
formulas that explains completely the similar behavior of ∪,∨
and ∩,∧. Let X = {T,F}n. To a formula P(x1, . . . , xn) we define the
set AP ⊆ X as

AP = { (x1, . . . , xn) ∈ X : P(x1, . . . , xn)=T },

the set of all those truth assignments that make P true. For
example, if n = 3, P = (x1 ∧¬x2)∨ (x2 ∧ x3) then we have

AP = {TFT,TFF,TTT,FTT}.

Check that this sets up a 1-1 correspondence between
propositional functions P(x1, . . . , xn) and subsets of X ! The
correspondence matches each logic operation to a set operation:

AP∨Q = AP ∪ AQ , AP∧Q = AP ∧ AQ , A¬P = AP .

So instead of propositional functions, we could always reason
about sets (and vice versa).

Péter Gács (Boston University) CS 131 Fall 09 46 / 201

Propositional logic Simplification

Simplification

Here are some steps that help simplify a logical formula:
1 Express all connectives via ∧,∨,¬.
2 Bring the negations to the deepest level, using the De

Morgan rules.
3 Use one of the following strategies via the distributive rules:

i Expand all parentheses containing disjunctions. You end up
with a disjunction of conjunctions, called a disjunctive normal
form (DNF).

ii Expand all parentheses containing conjunctions. You end up
with a conjunction of disjunctions, called a conjunctive
normal form (CNF).

Generally, a DNF is more useful, but harder to achieve when
there are many variables.

Péter Gács (Boston University) CS 131 Fall 09 47 / 201

Propositional logic Simplification

Example (Bringing to normal form)

¬((a ⇒ b)⇒ (c ⇒ a))=¬(¬(¬a∨b)∨¬c∨a)

= (¬a∨b)∧ c∧¬a

= (¬a∧ c)∨ (¬a∧b∧ c).

This is a DNF, though it can be simplified further as just ¬a∧ c.
Here is the simplification formally:

(¬a∧ c)∨ (¬a∧b∧ c)= (¬a∧ c∧T)∨ (¬a∧ c∧b)

= (¬a∧ c)∧ (T∨b)=¬a∧ c∧T=¬a∧ c.

Péter Gács (Boston University) CS 131 Fall 09 48 / 201

Propositional logic Simplification

Full DNF

The DNF is not unique. But we can make it unique if we insist
that each ∧-term contain each variable (or its negation). For
example the last expression ¬a∧ c could be expanded to full form,
by writing

¬a∧ c =¬a∧T∧ c =¬a∧ (b∨¬b)∧ c

= (¬a∧b∧ c)∨ (¬a∧¬b∧ c).

The different terms of the full DNF are all mutually exclusive.
Each term corresponds to a true line in the truth table. This
makes it straightforward to construct a formula from a truth
table or vice versa.

Péter Gács (Boston University) CS 131 Fall 09 49 / 201

Propositional logic Tautology, contradiction, satisfiability

Here are some statements that are always true:

p∨¬p, p ⇒ (p∨ q).

Such statements are called tautologies.
Outside mathematics, labeling a statement a tautology is
generally not flattering: it denotes an empty statement, that is
true only due to logic, and so carries no useful information. The
first Wikipedia example is:

If you do not find [say, your flashlight], you are not
looking in the right place.

But mathematicians recognize that logical tautologies can be very
complex, and therefore give them due respect.
Note that F(p, q, r)=G(p, q, r) is an identity if and only if
F(p, q, r)⇔G(p, q, r) is a tautology.

Péter Gács (Boston University) CS 131 Fall 09 50 / 201

Propositional logic Tautology, contradiction, satisfiability

Contradiction

Here are some statements that are always false:

p∧¬p, p∧ (p ⇒ q)∧¬q.

Such statements are called contradictions. The negation of a
contradiction is a tautology and vice versa.
Trick question: if a statement is not a contradiction, is it a
tautology?
A statement that is not a contradiction is called satisfiable (since
there is a choice of variables that satisfies it (makes it true).

Péter Gács (Boston University) CS 131 Fall 09 51 / 201

Propositional logic Valid conclusions (rules)

Valid conclusions (rules)

Example
From a ⇒ b and b ⇒ c we can always conclude a ⇒ c.

From a ⇒ b and ¬b we can always conclude ¬a.

From a⊕b we can always conclude a∨b.

We say that from formulas P1(p1, . . . , pk), . . . ,Pn(p1, . . . , pk) it is
valid to conclude formula C, if for every substitution of the
propositional variables p1, . . . , pk whenever P1, . . . ,Pn is true, C is
true. The conclusion relation is expressed this way:

P1, . . . ,Pn |= C.

The formulas P1, . . . ,Pn are called the premises, and C is called
the consequent. For example, (a ⇒ b), (b ⇒ c) |= (a ⇒ c).

Péter Gács (Boston University) CS 131 Fall 09 52 / 201

Propositional logic Valid conclusions (rules)

How to check whether a conclusion (say
P1(x, y, z),P2(x, y, z),P3(x, y, z) |= C(x, y, z)) is valid?

1. Make a truth table of P1(x, y, z),P2(x, y, z),P3(x, y, z),C(x, y, z)
side-by-side.

2. Check all lines where the assignment makes P1,P2,P3 true,
that it also makes C true.

If there is a line (an assignment) that makes the premises are
true and the consequent false, it is called a counterexample to the
conclusion.

Péter Gács (Boston University) CS 131 Fall 09 53 / 201

Propositional logic Valid conclusions (rules)

Consider the conclusion (x∨ y), (x∨ z),¬x |= (y∧ z).

x y z x∨ y x∨ z ¬x y∧ z
F F F F F T F
F F T F T T F
F T F T F T F
F T T T T T T ∗
T F F T T F F
T F T T T F F
T T F T T F F
T T T T T F T

The only line of interest is the one with the ∗, in which all three
premises become true. The line shows that then the consequent is
also true, so the conclusion is valid.

Péter Gács (Boston University) CS 131 Fall 09 54 / 201

Propositional logic Valid conclusions (rules)

Theorem
It is valid to conclude C from P1, . . . ,Pn if and only if the formula
P1 ∧·· ·∧Pn ⇒ C is a tautology.

Example

(p ⇒ q) |= (¬q ⇒¬p)

is a valid conclusion, that we use frequently. (It has a name: the
contrapositive.) On the other hand, the conclusions

(p ⇒ q) |= (q ⇒ p), (p ⇒ q) |= (¬p ⇒¬q)

are both invalid: they correspond to important and frequent
logical errors in reasoning!

Péter Gács (Boston University) CS 131 Fall 09 55 / 201

Propositional logic Valid conclusions (rules)

Example (Logical error)
Some of these errors are fatal. For example, there is a tasty
mushroom called csiperke, with long white stem and wide red
hat. But there is also a poisonos mushroom called galóca with
long white stem and wide red hat. Last time we went to hike with
some students, one of them said: “look, csiperke!”. My wife’s
comment: “famous last words”.
The student committed the error: from the implication

If csiperke, then it has long white stem and wide red hat.

he concluded:
If it has long white stem and wide red hat then it is
csiperke.

Péter Gács (Boston University) CS 131 Fall 09 56 / 201

Propositional logic Proof by contradiction

Proof by contradiction

Suppose that we found a valid conclusion P1, . . . ,Pn |= x∧¬x, or
what is the same P1, . . . ,Pn |=F. What can be said about the
formulas P1, . . . ,Pn?
We can say that at least one of them must be false! A similar and
useful method of reasoning is based on the following theorem:

Theorem
The deduction P1, . . . ,Pn,¬C |=F is equivalent to P1, . . . ,Pn |= C.

That is, if assuming ¬C along with the other assumptions
P1, . . . ,Pn we arrive at a contradiction, this shows that C follows
from P1, . . . ,Pn. This is frequently a convenient way to prove the
statement C, since now in our proof we can rely on one more
assumption: the premise ¬C. Such a method is the basis of proofs
by contradiction.

Péter Gács (Boston University) CS 131 Fall 09 57 / 201

Propositional logic Proof by contradiction

Example (Irrationality of
p

2)

The fact that
p

2 is irrational can be reformulated as the
statement

¬∃m,n ∈Z
(
2=

(m
n

)2
)
.

This was proved in Greece in the fifth century B.C., by assuming
∃m,n ∈Z 2= (m

n
)2 and arriving at a contradiction. Assume that

such a pair m,n exists, take a particular such pair. We can
assume that m

n cannot be simplified.
Now 2= (m

n
)2 gives 2n2 = m2. Then 2|m2 so 2|m: write m = 2m1,

so 2n2 = 4m2
1, n2 = 2m2

1, so 2|n2, so 2|n, but this contradicts the
assumption that m

n cannot be simplified.

Péter Gács (Boston University) CS 131 Fall 09 58 / 201

Propositional logic Proofs

Proofs

Now we can say in a formal way, what is a proof, at least when we
use just propositional formulas.
Let A1, . . . , Am be some formulas called axioms, or assumptions. A
proof is a sequence of formulas P = (S1,S2, . . . ,Sn) such that each
formula Si is either an axiom or follows from some of the earlier
ones by a valid conclusion:

S j1 ,S j2 , . . . ,S jk |= Si

for some j1, . . . , jk. (You must get used to seeing indices of
indices. . . .) We will say that P is the proof of the statement Sn
from the assumptions A1, . . . , Am

Theorem
If there is a proof of a statement C from the assuptions P1, . . . ,Pm
then P1, . . . ,Pm |= C is a valid conclusion.

Péter Gács (Boston University) CS 131 Fall 09 59 / 201

Propositional logic Proofs

A1 A2 A3 A4 A5

F1 F2

F3
F4

F5

Proof represented as a diagram. Each formula inside is obtained
by a rule (valid conclusion) from the formulas above it to which a
line leads.

Péter Gács (Boston University) CS 131 Fall 09 60 / 201

Propositional logic Local counterexample

Local counterexample

It is possible that a theorem is true but its proof is wrong. When
this happens then the proof either uses a false assumption or an
invalid conclusion. An example showing this is called a local
counterexample. It does not make the theorem false, only its
proof.

Péter Gács (Boston University) CS 131 Fall 09 61 / 201

Propositional logic Local counterexample

Example (Local counterexample)
Theorem: the number of subsets of the set A = {0,1,2,3} is
divisible by 4.
Proof: Take the following transformation: if x ∈ A then x′ = x+1
for x < 3 and 0 for x = 3. Then x, x′, x′′, x′′′ are all different and
x′′′′ = x. Transform each subset B ⊆ A into a subset B′ by taking
each element x of B into x′. For example, {2,3}′ = {3,0}= {0,3}. We
get the sets B,B′,B′′,B′′′ where B′′′′ = B. We grouped all subsets
into groups of size 4, showing that the number of subsets is
divisible by 4.
The theorem is true, but the proof is wrong. Namely there are
subsets B for which B,B′,B′′,B′′′ are not all different, so not all
groups will have size 4. For example, {0,2}′′ = {0,2}. This is a
counterexample to the argument, a local counterexample.

Péter Gács (Boston University) CS 131 Fall 09 62 / 201

Predicate logic

Predicate logic

Statements generally have a structure, they are about something.
Look at a statement of the form:

P(x) := (x ·3= 12).

(I use the symbol := to mean is defined as.) As a function of x ∈N,
the statement P(x) is true of x = 4 and false otherwise. A
statement that depends on some variables, and is true or false
depending on what values we substitute into the variables, is
called a predicate.

Péter Gács (Boston University) CS 131 Fall 09 63 / 201

Predicate logic

Example with several variables x, y ∈N:

R(x, y) := (x · y= 12).

This is true if x = 1, y= 1, or x = 2, y= 6, or x = 4, y= 3, or
x = 6, y= 2, or x = 12, y= 1, and false otherwise. A predicate with
several variables is sometimes also called a relation. Say, on the
set Alice,Bob,Carl,Diana,Eve,Frank,George, there could be a
relation D(x, y) saying “x is dating y”.
A predicate P(x) where x runs over numbers, is not a proposition,
rather it is a propositional function. It does not have a truth
value: it will have one only if you substitute an element into x.
The statements 2 ·3= 12, 3 ·3= 12 are (false) propositions, found
by substituting 2 and 3 into the predicate P(x) := (x ·3= 12).

Péter Gács (Boston University) CS 131 Fall 09 64 / 201

Predicate logic Quantifiers

Quantifiers

Another way to turn a predicate into a proposition is using a
quantifier (∃ or ∀). Say

∃x ∈N (x ·3= 12)

is a (true) proposition, saying there is a natural number x with
x ·3= 12, or there exists such a natural number.

∀x ∈N (x ·3= 12)

is a (false) proposition saying that for all natural numbers x we
have x ·3= 12.

Péter Gács (Boston University) CS 131 Fall 09 65 / 201

Predicate logic Quantifiers

The operation ∃x can be viewed as an “or” over all possible values
of x:

∃x ∈N (x ·3= 12)⇔ ∨
x∈N

(x ·3= 12).

Similarly, ∀x can be viewed as an “and” over all possible values of
x:

∀x ∈N (x ·3= 12)⇔ ∧
x∈N

(x ·3= 12).

Péter Gács (Boston University) CS 131 Fall 09 66 / 201

Predicate logic Quantifiers

The variable x in ∃x becomes a bound variable. If there are other
variables in the predicate, after quantification it will have one
fewer free variables. The relation R(x, y) := (x 6= 1∧ x 6= y∧ x|y)
says that x is a proper divisor of y.

C(y) := (∃x ∈N R(x, y))

is a predicate that is true if and only if y is a composite number.

Péter Gács (Boston University) CS 131 Fall 09 67 / 201

Predicate logic Quantifiers

English (and mathematicians writing English) sometimes use
different wording to express the quantifiers. Instead of saying
“there is an x such that x divides y”, we may say “x has a divisor”.
Instead of saying “there does not exist an x that divides y”, we
may say “y has no divisor”.

Péter Gács (Boston University) CS 131 Fall 09 68 / 201

Predicate logic Proof by example

Proof by example

This course does not teach any general methodology of doing
proofs, only some useful techniques.

I will (try to) not prove obvious facts, to prevent thinking that
giving proofs is just a ritual.

For the same reason, I will not emphasize the formal aspects
of proofs: for me, proof is just a convincing argument.
Generally the way one demonstrates that a part of a proof is
not convincing is to give a local counterexample (as shown
before): an example showing that the proof uses an invalid
conclusion.

Péter Gács (Boston University) CS 131 Fall 09 69 / 201

Predicate logic Proof by example

But I will point out some frequent errors in proofs. The most
naive of these is to prove a general statement by example. A
general statement ∀x P(x) cannot be proved by just showing an
example u where P(u) is true. This seems obvious but I have seen
plenty of such homeworks and exams.

If a statement has the form ∃x P(x) then it can be proven by
showing an example. “There is a prime number greater than
3” can be proven by just showing that 5 is prime.

If a statement has the form ∀x P(x) then it can be disproved
by an example u such that P(u) is false. This is called a
counterexample to the statement ∀x P(x).

Péter Gács (Boston University) CS 131 Fall 09 70 / 201

Systematic enumeration Number of subsets

Systematic enumeration
The number of subsets

We may want to not just know the subsets, but also to list them is
some order. How to make sure we list all of them once and do not
leave out anything?
Various ways to compute: we will learn from all.

;, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c}.

First the one-element subsets, then the two-element subsets, and
so on. Easy for small sets, but not so easy to do systematically for
larger ones. Phonebook ordering?

;,a,ab,abc,ac,b,bc, c.

Not very practical for enumerating subsets: which is the 233th
subset here?

Péter Gács (Boston University) CS 131 Fall 09 71 / 201

Systematic enumeration Number of subsets

Decision tree

a ∈ S

b ∈ S

c ∈ S

b ∈ S

c ∈ S c ∈ S c ∈ S

{a,b, c} {a,b} {a, c} {a} {b, c} {b} {c} !

NY

Y N Y N

Y N Y N Y N Y N

2n leaves.

Péter Gács (Boston University) CS 131 Fall 09 72 / 201

Systematic enumeration Number of subsets

For a useful numbering, encode subsets of {a,b, c} into 0-1
sequences of length 3:

If a ∈ S we write a 1 in position 1, otherwise a 0.

If b ∈ S we write a 1 in position 2, otherwise a 0.

And so on.

Example: {a, c}→ 101. We represented every subset of a set of
size n by a binary string.
We set up a one-to-one correspondence (bijection) between
subsets of a set and binary strings.

Péter Gács (Boston University) CS 131 Fall 09 73 / 201

Systematic enumeration Number of subsets

Binary representation of integers

Recall the binary (base 2) representation of integers, for example

5= 1012 = 1 ·22 +0 ·21 +1 ·20.

How do we find the binary representation (bnbn−1 · · ·b1b0) of a
natural number x? Here is a way, starting from the least
significant digit.

1 If x = 0 return (0)2. Else let x0 = x.
2 While xi 6= 0 do:

ai := the remainder of xi after division by 2
(ai = xi mod 2).

xi+1 := (xi −ai)/2.
i := i+1.

Péter Gács (Boston University) CS 131 Fall 09 74 / 201

Systematic enumeration Number of subsets

And here is a way, starting from the most significant digit.
1 If x = 0 return (0)2. Else let n be the largest such that 2n É x.

Set an = 1, xn−1 = x−2n.
2 For i = n−1 downto 0 do:

ai := 1 if 2i < xi, and 0 otherwise.
xi−1 := xi −ai ·2i.

Péter Gács (Boston University) CS 131 Fall 09 75 / 201

Systematic enumeration Number of subsets

To make binary integers all the same length n, pad them by 0’s in
front. This is a bijection, a one-to-one correspondence between
numbers 0, . . . ,2n−1 and binary strings of length n.
Combining the two bijections:

0↔ 000↔; 4↔ 100↔ {a}

1↔ 001↔ {c} 5↔ 101↔ {a, c}

2↔ 010↔ {b} 6↔ 110↔ {a,b}

3↔ 011↔ {b, c} 7↔ 111↔ {a,b, c}

Now what is the 233th subset of a 10-element set?
Why two proofs? We learned something from each: decision trees,
bijections.

Péter Gács (Boston University) CS 131 Fall 09 76 / 201

Systematic enumeration Number of subsets

Approximate number of subsets

How large is 2n?

23 = 8< 10, 299 < 1033, 2100 < 2 ·1033.

210 = 1024> 1000= 103, 2100 > 1030.

(Note that “kilobyte” means 1024 bytes, not 1000 bytes.) So 2100

has between 31 and 34 digits. More precisely, we want to know
the k for which

10k−1 É 2100 < 10k.

Using x = log10 2100 = 100log10 2, the number of digits is

k = bxc+1= b100log10 2c+1.

Since log10 2= 0.30103, we get k = 31.

Péter Gács (Boston University) CS 131 Fall 09 77 / 201

Systematic enumeration Sequences

Sequences

A string, sequence: obtained by putting things one after the
other: first, second, and so on. When elements of the string are
coming from a set (an alphabet), it is assumed that each element
can be used any number of times:

aabacb.

Theorem
The number of strings of length n composed of k given elements is
kn.

Péter Gács (Boston University) CS 131 Fall 09 78 / 201

Systematic enumeration Sequences

When there are k1 choices for the first element, k2 choices for the
second one, and so on, then the number of strings of length n is
k1 ·k2 · · ·kn.

Example
How many nonnegative integers have exactly length n in
decimal? 9 ·10n−1.

Péter Gács (Boston University) CS 131 Fall 09 79 / 201

Systematic enumeration Sequences

Cartesian product

Ordered pair (x, y), unordered pair {x, y}. Ordered tuple: (a,b, c).
The Cartesian product of sets

A×B×C = { (a,b, c) : a ∈ A,b ∈ B, c ∈ C }.

For example

{1,2,3}2 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3))}.

We have |A×B×C| = |A|× |B|× |C|.
In particular, |A3| = |A|3.

Notation
The (x, y) notation conflicts with the same notation for open
intervals. So, sometimes 〈x, y〉 is used for tuples or the scary
notation]x, y[for an open interval.

Péter Gács (Boston University) CS 131 Fall 09 80 / 201

Systematic enumeration Sequences

The Cartesian product {2,4}× {1,3,4}.

Péter Gács (Boston University) CS 131 Fall 09 81 / 201

Systematic enumeration Permutations, ordered subsets

Permutations, ordered subsets

An ordered subset of set A is a sequence of elements of A in
which no two elements are the same.
We could use a decision tree again to illustrate the counting of
ordered subsets of size k of a set of element n:

n(n−1) · · · (n−k+2)(n−k+1).

.

Péter Gács (Boston University) CS 131 Fall 09 82 / 201

Systematic enumeration Subsets of given size

Subsets of given size

Binomial coefficient(
n
k

)
= n(n−1) · · · (n−k+1)

k!
= n!

k!(n−k)!
.

Values of
(0
0
)
,
(n
1
)
,
(n
n
)
.

Péter Gács (Boston University) CS 131 Fall 09 83 / 201

Systematic enumeration Subsets of given size

Theorem
Identities for binomial coefficients:(

n
k

)
=

(
n

n−k

)
.

For n,k > 0: (
n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
,(

n
0

)
+

(
n
1

)
+

(
n
2

)
+·· ·+

(
n

n−1

)
+

(
n
n

)
= 2n.

Péter Gács (Boston University) CS 131 Fall 09 84 / 201

Systematic enumeration Subsets of given size

Pascal triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Péter Gács (Boston University) CS 131 Fall 09 85 / 201

Functions

Functions

Notation f : A → B. We say that f is a function, or a mapping
from A into B. A function from A to A is also called a
transformation. We call the value f (x) ∈ B also the image of the
point x ∈ A under the function f .

x f (x)

A B

Péter Gács (Boston University) CS 131 Fall 09 86 / 201

Functions

When f : A → B then A is called the domain of f , and B (less
frequently) the codomain.
Also (especially in computer science) in the expression f (x), we
call x the argument (sometimes even the parameter), or input,
and f (x) the output.
A function f (x, y) of two arguments x ∈ A, y ∈ B with values
f (x, y) ∈ C can be viewed as a one-argument function from A×B
to C, and this is how we denote it:

f : A×B → C.

Péter Gács (Boston University) CS 131 Fall 09 87 / 201

Functions

Example

g(x)= 1
x2−1 . It maps from R\{−1,1}, to R, so

g : R\{−1,1}→R.

Domain(g)=R\{−1,1}.

In general,
Range(f)= { f (x) : x ∈Domain(f) }.

In the example,

Range(g)= (−∞,−1]∪ (0,∞)=R\ (−1,0].

Note that (0,∞) is an open interval.
Sometimes we will use the notation

x 7→ 1
x2 −1

to define a function like g(x).
Péter Gács (Boston University) CS 131 Fall 09 88 / 201

Functions Indicator function

Indicator function

Sets can also be described by functions. Let X be some set (our
universal set) and A ⊆ X . We define the indicator function
IA : X → {0,1} of the set A by the fomula

IA(x)=
{

1 if x ∈ A
0 otherwise.

The indicator function has a nice relation to set operations:

IA∩B(x)= IA(x) · IB(x), IA(x)= 1− IA(x),

|A| = ∑
x∈X

IA(x).

Using this and De Morgan’s rule we can conclude

IA∪B(x)= 1− (1− IA(x))(1− IB(x))= IA(x)+ IB(x)− IA(x) · IB(x).

Péter Gács (Boston University) CS 131 Fall 09 89 / 201

Functions Inverse image, partition

Inverse image

Whether a function f : A → B is invertible or not, for an arbitrary
subset D ⊆ B we will write

f −1(D)= { x : f (x) ∈ D }.

Note that f −1(D) is always a set, and it may be empty. So if
f : A → B then

f −1 : 2B → 2A

where 2B denotes the set of subsets of B.

Example
If f : Z→Z is the function with f (x)= 2bx/2c then we have

f −1({0})= {0,1}, f −1({1})=;= {}, f −1({2})= {2,3}, f −1({3})=;,

Péter Gács (Boston University) CS 131 Fall 09 90 / 201

Functions Inverse image, partition

Partitions

An ordered partition of a set A is a finite sequence (A1, . . . , An) of
pairwise disjoint subsets of A such that A1 ∪·· ·∪ An = A. Given
any function f : A → {1, . . . ,n}, it gives rise to an ordered partition
(f −1({1}), . . . , f −1({n})). And every ordered partition defines such a
function.
An unordered partition, or simply partition, is just a set
{A1, . . . , An} of dijoint subsets of A, whose union is A.

Example
The subdivision of 6 people into 3 chess-playing pairs is an
unordered partition into sets of size 2.

Péter Gács (Boston University) CS 131 Fall 09 91 / 201

Functions Inverse image, partition

1 2 3 4 5 8 9 12 136 10 147 11 15

1 2 30

The function g : {1, . . . ,15}→ {0, . . . ,4} defined by

g(x)= x mod 4 = the remainder of x after division by 4.

The partition into inverse images is

{1, . . . ,15}= g−1({0})∪ g−1({1})∪ g−1({2})∪ g−1({3})

= {4,8,12}∪ {1,5,9,13}∪ {2,6,10,14}∪ {3,7,11,15}.

Péter Gács (Boston University) CS 131 Fall 09 92 / 201

Functions Invertibility

Surjective (onto) property

Sometimes for a function f : A → B, and a set C ⊆ A we will write

f (C)= { f (x) : x ∈ A }.

For example, Range(f)= f (A). Example: 2Z is the set of even
numbers.
A function f : A → B is called onto (surjective), that is a mapping
from A onto B, if Range(f)= B.

Example
The function g : R\{−1,1}→R defined in the above example as
g(x)= 1/(x2 −1) is not surjective, its range is R\ (−1,0]. It
becomes surjective if we define it as g : R\{−1,1}→R\ (−1,0].

Péter Gács (Boston University) CS 131 Fall 09 93 / 201

Functions Invertibility

Injective (one-to-one) property

A function is one-to-one, injective, or 1-1 if x 6= y implies
f (x) 6= f (y) (or equivalently, f (x)= f (y) implies x = y for all x, y).

Example
An ordered subset of size 4 of a set A is an injective mapping from
the set {1,2,3,4} to A.

Example
A one-to-one function that is not onto: the function f : Z→Z
defined by f (x)= 2x.
An onto function g : Z+ →Z+ that is not one-to-one:

g(x)=
{

x−1 if x > 0,
0 otherwise.

Péter Gács (Boston University) CS 131 Fall 09 94 / 201

Functions Invertibility

Invertible functions

A function is called invertible, or a bijection, if it is onto and
one-to-one. For an invertible function f : A → B, the inverse
function f −1 : B → A is always defined uniquely: f −1(b)= a if and
only if f (a)= b.
An invertible function is also called a one-to-one correspondence.
We have used this notion already several times in counting: if
there is a one-to-one correspondence between two finite sets A
and B then, of course, |A| = |B|. (For infinite sets A, B, this is
taken as the definition of the relation |A| = |B|.)
An invertible function f : A → A is also called a permutation.

Péter Gács (Boston University) CS 131 Fall 09 95 / 201

Functions Invertibility

Example
I am in Manhattan, at the corner of the Eighth Avenue
and 25th Street, and want to get to the corner of the
Second Avenue and 80th Street. How many different
shortest paths do I have?

Each shortest path makes 6 moves eastward and and 55 moves
north, so it corresponds to a sequence of the sort
enneennnnnnn · · ·n of length 61 with 6 occurrences of e and 55
occurrences of n. This correspondence between the set of shortest
paths and the set of such sequences is 1-1.
Similarly, each such sequence corresponds to a subset of size 6 of
the set {1,2, . . . ,61}, namely to the set of positions in which the
letter is e. This correspondence is also 1-1. We learned that the
number of subsets of size 6 of a set of size 61 is

(61
6
)
.

The discovery of the two 1-1 correspondences helped reduce the
original problem to a problem whose solution we already know.

Péter Gács (Boston University) CS 131 Fall 09 96 / 201

Functions Invertibility

Theorem
Let A = {a1, . . . ,am}, B = {b1, . . . ,bn} be finite sets. For a function
f : A → B the following holds.

a Suppose that f is one-to-one (injective). Then m É n, and
m = n implies that f is onto (surjective).

b Suppose that f is onto (surjective). Then m Ê n, and m = n
implies that f is one-to-one (injective).

c It follows that if m = n then f is injective if and only if it is
surjective.

The contrapositive of a says that if m > n then f is not
one-to-one: this is called the pigeonhole principle: If you put
m pigeons into fewer holes, one hole contains more than one
pigeon.

As the earlier examples show, the theorem is false for infinite
A.

Péter Gács (Boston University) CS 131 Fall 09 97 / 201

Functions Invertibility

Proof. Point a follows since each ai gets a distinct image in
f (ai). Listing the elements of B we can start with f (a1), . . . , f (am),
so we cannot get more than n. If m = n then we listed all
elements of B as some f (ai), so f is surjective.
To see point b , look at the partition of A into inverse images
f −1({b j}) of elements of B. Pick an element a′

j ∈ f −1({b j}) for each
j. Listing the elements of A we can start with a′

1,a′
2, . . . ,a′

m, so we
cannot get fewer than m. If m = n then each set f −1({b j}) contains
only one element, so f is injective.

Péter Gács (Boston University) CS 131 Fall 09 98 / 201

Functions Invertibility

An application

Let us apply the above theorem to show the following.

Theorem
Let A = {1, . . . ,16}. For every pair of integers x, y ∈ A there is an
integer z ∈ A such that x · z mod 17= y.

Proof. We will use the fact that 17 is a prime number. Let us fix
x and look at the map g defined by g(z)= x · z mod 17. We know
that x · z mod 17 ∈ A: indeed, since 17 does not divide x, z it does
not divide x · z either. So g is a map from A to A. The theorem
says that g is surjective.
By the previous theorem, it is sufficient to show that g is
injective. Assume g(u)= g(v), we will show u = v. Now if
x ·u mod 17= x ·v mod 17 then 17 divides x ·u− x ·v = x · (u−v).
The primality of 17 implies that then 17 divides u−v, which can
happen only if u = v.

Péter Gács (Boston University) CS 131 Fall 09 99 / 201

Functions Invertibility

Non-constructive proof

Note that this proof did not give any method for computing the
number z whose existence is claimed in the theorem. Such proofs
are called existential proofs. Of course, trying out all candidates
1, . . . ,16 for z is a method. But the theorem is true for all prime
numbers p in place of 17, and the exhaustive search becomes too
costly for a p with, say, 100 digits.

Péter Gács (Boston University) CS 131 Fall 09 100 / 201

Functions Invertibility

Composition of functions

If f : A → B and g : B → C are functions then we can always define
the composition h : A → C, written as h = g ◦ f by

(g ◦ f)(x)= h(x)= g(f (x)).

Example
With f , g : R→R are defined as f (x)= x+1, g(y)= 3y, we have

(g ◦ f)(x)= 3x+3, (f ◦ g)(x)= 3x+1.

Péter Gács (Boston University) CS 131 Fall 09 101 / 201

Relations

Relations

A binary relation is a set R ⊆ A×B. We will write (x, y) ∈ R also
as R(x, y) (with Boolean value). Thus

R(x, y)⇔ (x, y) ∈ R.

We sometimes call A the domain and B the codomain of the
relation.

Examples

L ⊆R2, L(x, y)⇔ x < y. Relations are frequently written with
the infix notation, like here: thus, “x < y” also expresses the
relation <, we may even write <⊆R×R.

Let G = {Alice,Bob,Carl,Diana,Eve,Frank,George}. S ⊆G2,
where S(x, y) means that x, y are siblings.

Let H ⊆G2 where H(x, y) means that x is husband of y. Of
course, we could have defined H ⊆GM ×GF where
GM = {Bob,Carl,Frank,George}, GF = {Alice,Diana,Eve}.

Péter Gács (Boston University) CS 131 Fall 09 102 / 201

Relations

Ternary relation: R ⊆ A×B×C.

Example

M ⊆Z3, where M(x, y, z)⇔ z|y− x. This relation is sometimes
written as

x ≡ y (mod z),

and is equivalent to x mod z = y mod z.

Péter Gács (Boston University) CS 131 Fall 09 103 / 201

Relations

Let f : A → B be a function, then we can define the relation
G f ⊆ A×B as

G f (x, y)⇔ y= f (x).

This relation is called the graph of function f .

Example

Recall the function R\{−1,1}→R defined by g(x)= 1
x2−1 . Its

graph in the usual sense is the set of points in the plane defined
by

Gg =
{(

x,
1

x2 −1

)
: x ∈R\{−1,1}

}
.

Péter Gács (Boston University) CS 131 Fall 09 104 / 201

Relations

Question
When is a relation R ⊆ A×B the graph of a function?

When the following two properties hold:

∀x ∈ A ∃ y ∈ B R(x, y).

∀x ∈ A ∀ y, z ∈ B R(x, y)∧R(x, z)⇒ y= z.

In words, if for all x ∈ A there is a unique y with R(x, y). The
expression “there is a unique y” is sometimes denoted by ∃! y :

∃! x P(x)⇔∃x P(x)∧∀x, y (P(x)∧P(y)⇒ x = y).

Thus, R is a function iff ∀x ∈ A ∃! y ∈ B R(x, y).

Péter Gács (Boston University) CS 131 Fall 09 105 / 201

Relations

A B

The arrow diagram of a relation R. The red parts show how it
may differ from the arrow diagram of a function A → B:

Some elements of A are not related to any element of B.

Some elements of A are related to more than one element of B.
Péter Gács (Boston University) CS 131 Fall 09 106 / 201

Relations

Some frequent properties of binary relations
Reflexivity

Relation R ⊆ A2 is reflexive if R(x, x) always holds.

Examples
Let A be the set of cities in Massachusetts.

The relation

C = { (x, y) ∈ A2 : x is closer than 10 miles to y }

is reflexive.

The relation

F = { (x, y) ∈ A2 : x is farther than 10 miles to y }

is not reflexive.

Péter Gács (Boston University) CS 131 Fall 09 107 / 201

Relations

Symmetry

Relation R ⊆ A2 is symmetric if R(x, y) implies R(y, x).
Relation it is antisymmetric if R(x, y),R(y, x) implies x = y.

Examples
Let A be the set of cities in Massachusetts. Both of the above
relations C,F are symmetric.

The relation x É y among real numbers is antisymmetric.

In the group of people {Alice, . . . ,George}, the relation H(x, y)
expressing that x is the husband of y is antisymmetric (in an
uninteresting way).

In the set Z the relation x|y is not symmetric, but not
antisymmetric either. Indeed, 3|6 but 6 6 | 3. On the other
hand, 3 | −3 and −3 | 3.

Péter Gács (Boston University) CS 131 Fall 09 108 / 201

Relations

Transitivity

Relation R ⊆ A2 is transitive if R(x, y) and R(y, z) implies R(y, z).

Examples

Let B = 2A for a set A. The relation X ⊆Y for X ,Y ∈ B (that is
X ,Y ⊆ A) is transitive.

Let P the set of all people. The relation S ⊆ P2 where S(x, y)
holds if x is a sibling of y, is transitive. The relation S′ ⊆ P2

where S′(x, y) holds if x is a half-sibling of y, is not transitive.

Péter Gács (Boston University) CS 131 Fall 09 109 / 201

Relations Equivalence

Equivalence relation

A relation R ⊆ A2 is calle an equivalence relation if it is reflexive,
symmetric and transitive.

Examples
For a function f : A → B, let R(x, y)⇔ f (x)= f (y).

For x, y ∈Z let x ∼ y if 3|x− y. We will denote this also as x ≡ y
(mod 3). Special case of the previous example, since
x ∼ y⇔ x mod 3= y mod 3.

Let N be the set of necklaces of size 10, made up of 2 red
beads and 8 blue beads. We say x ∼ y for x, y ∈ N if x can be
obtained by a rotation from y.

The 15-puzzle. For two arrangements we write x ∼ y if one can
be transformed into the other using shifts, without taking out
any pieces.

Péter Gács (Boston University) CS 131 Fall 09 110 / 201

Relations Equivalence

5 7 1 12

14 4 3 2

10 9 6

15 8 11 13

1 2 3

4 5 6 7

8 10 11

12 13 14 15

9

If you want to play the puzzle without having a physical copy, go
for example to
http://www.cut-the-knot.org/pythagoras/fifteen.shtml.

Péter Gács (Boston University) CS 131 Fall 09 111 / 201

Relations Equivalence

Equivalence under a set of permutations

More generally, let P be a set of permutations of a set A such that
if p ∈ P then p−1 ∈ P. Write x ∼P y if there is a sequence
p1, p2, . . . , pn ∈ P with y= pn(pn−1(· · · p1(x) · · ·)).
Example
Set of permutations Q = {σ,%} of Z where σ(x)= x+3, %(x)= x−3.
Then x ≡ y (mod 3) iff x ≡Q y.

We call P a group of permutations if also for all p, q ∈ P we have
p ◦ q ∈ P and p−1 ∈ P.

Proposition
If P is a group then x ∼P y iff ∃ p ∈ P y= p(x).

Example
Necklaces: the combination of any two rotations is a rotation.

Péter Gács (Boston University) CS 131 Fall 09 112 / 201

Relations Equivalence

Rays

Let A =R2 \{(0,0)}, and define T ⊆ A as follows: We say
T((x1, y1), (x2, y2)) if x1 y2 = x2 y1. (We want to write x1

y1
= x2

y2
but

cannot since y1 or y2 may be 0.) We will show that T is an
equivalence.
For every α ∈R, let pα : A → A be the mapping defined by

pα((x, y))= (αx,αy).

Whenever α 6= 0, this is a permutation. Let P = { pα :α 6= 0 }. Note
that P is a group: if α,β 6= 0 then pα ◦ pβ = pαβ, and p−1

α = pα−1 .
The fact that T is an equivalence relation follows from the
following characterization:

Proposition
We have T((x1, y1), (x2, y2))⇔∃α 6= 0 pα((x1, y1))= (x2, y2).

Péter Gács (Boston University) CS 131 Fall 09 113 / 201

Relations Equivalence

Theorem
A relation R ⊂ A× A is an equivalence relation if and only if there
is a partition P of the set A into nonempty subsets such that
R(x, y)⇔∃B ∈P (x, y ∈ B).

Proof. If R is defined by a partition as in the theorem, it is easy
to check that the three properties hold.
Suppose the three properties hold, we define a function f : A → 2A

as follows: f (x)= { y ∈ A : R(x, y) }. We will show that the range of
f is the desired partition.

If f (x)∩ f (y) 6= ; then
x ∈ f (y), y ∈ f (x), f (x)= f (y).

The sets f (x) for x ∈ A form a
partition of A.

R(x, y)⇔ f (x)= f (y).

x

y

z

f(x)

f(y)

Péter Gács (Boston University) CS 131 Fall 09 114 / 201

Relations Equivalence

Elements (the individual sets) of the partition obtained from the
equvalence relation are called its equivalence classes.

Péter Gács (Boston University) CS 131 Fall 09 115 / 201

Relations Equivalence

Example application: look at the example of the relation T
defined above, on R2 \{(0,0)}. The equivalence classes of this
relation are called rays.

L

In a partition, we frequently pick a representative in each class
(black points on the figure). For a ray (x, y) if y 6= 0 we can pick(

x
y ,1

)
(intersection with horizontal at height 1). If y= 0 pick, say,

(1,0).

Péter Gács (Boston University) CS 131 Fall 09 116 / 201

Relations Equivalence

Recall the necklaces of size 10, with 2 red and 8 blue beads.

Necklace with class size 10. Necklace with class size 5.

Péter Gács (Boston University) CS 131 Fall 09 117 / 201

Relations Equivalence

Examples
The number of equivalence classes of the 15-puzzle is 2, and
they both have the same size. (I will give homework problems
which will help seeing this.) So if you spill out the puzzle and
put it back randomly, there is a 50% chance that it will not be
solvable.

The corresponding number of equivalence classes for Rubik’s
Cube is 12, and they all have the same size. So if you take
apart Rubik’s Cube and put it together randomly, there is only
a 1/12 chance to obtain a solvable cube.

Péter Gács (Boston University) CS 131 Fall 09 118 / 201

Relations Order

Preorder, partial order

Preorder É: reflexive, transitive.

Example
For x, y ∈Z the relation x|y.

A preorder is a partial order if it is antisymmetric.

Examples
É among real numbers.

⊆ among subsets of a set.

{1,2,3}

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

Péter Gács (Boston University) CS 131 Fall 09 119 / 201

Relations Order

Proposition
In a preorder, we can introduce a relation ∼: x ∼ y if x É y and
yÉ x. This is an equivalence relation, and the relation induced by
É on the equivalence classes is a partial order.

Example
The equivalence classes of the preorder x|y among integers are
the sets {x,−x}, for x ∈Z.

A partially ordered set is a pair (A,¹), where A is a set and ¹ is a
partial order defined on it. Element x is minimal if y¹ x implies
y= x for all y.

Examples
Nonempty subsets of a set A, ordered by inclusion. Minimal
elements: the one-element subsets.

Integers > 1, ordered by x|y. Minimal elements: prime
numbers.

Péter Gács (Boston University) CS 131 Fall 09 120 / 201

Relations Order

A partial order ¹ is an order if for all x, y we have x ¹ y or y¹ x.
We say that a relation R′ extends a relation R if R ⊆ R′, that is
R(x, y)⇒ R′(x, y).

Theorem
Let A be finite set, with a partial order ¹ defined on it. Then ¹ can
always be extended to a complete order ¹′.

Proof. Take a minimal element x1 (in a finite partially ordered
set, there is always one). Set x1 ¹′ y for all y ∈ A. Let A1 = A \{x1}.
Let x2 be a minimal element of A1. Set x2 ¹′ y for all y ∈ A1. And
so on.

Péter Gács (Boston University) CS 131 Fall 09 121 / 201

More counting Inclusion-exclusion

Inclusion-exclusion

In a class of 40 students (set X), say

18 have a picture of the Beatles (set A)

16 have a picture of the Rolling Stones (set B)

12 have a picture of Elvis Presley (set C)

7 have a picture of the Beatles and the Rolling Stones

5 have a picture of the Beatles and Elvis Presley

3 have a picture of the Rolling Stones and Elvis Presley

2 have all these pictures

How many students have no picture of any of these? Answer:

|X |− (|A|+ |B|+ |C|)+ (|A∩B|+ |A∩C|+ |B∩C|)−|A∩B∩C|
= 40− (18+16+12)+ (7+5+3)−2= 7.

Naive explanation via repeated corrections.

Péter Gács (Boston University) CS 131 Fall 09 122 / 201

More counting Inclusion-exclusion

Let us deduce the formula using indicator functions (recall!). By
the De Morgan rule:

(A∪B∪C)= A∩B∩C.

The indicator function of this set is

(1− IA(x))(1− IB(x))(1− IC(x))= 1− (IA(x)+ IB(x)+ IC(x))

+ (IA(x)IB(x)+ IA(x)IC(x)+ IB(x)IC(x))− IA(x)IB(x)IC(x)

= 1− (IA(x)+ IB(x)+ IC(x))+ (IA∩B(x)+ IA∩C(x)+ IB∩C(x))

− IA∩B∩C(x).

Summing up by x we get the inclusion-exclusion formula.

Péter Gács (Boston University) CS 131 Fall 09 123 / 201

More counting Inclusion-exclusion

Example
In how many ways can we color n cards in red, green, blue, if we
have to use all three colors?
Let S be the set of all colorings, SR the set of colorings not using
red, similarly for green and blue. Let SRG be the set of colorings
not using either red or green (so, using only blue), and so on.
Notice SR ∩SG = SRG , and so on. We want to know
|S \ (SR ∪SG ∪SB)|. By inclusion-exclusion, it is

|SRGB|− (|SR |+ |SG |+ |SB|)+ (|SRG |+ |SRB|+ |SGB|)
= 3n −3 ·2n +3.

Péter Gács (Boston University) CS 131 Fall 09 124 / 201

Mathematical induction

Mathematical induction

Sometimes we can guess a result from examples, but proving it
still seems complicated. In many of these cases, a method called
mathematical induction helps.

Example
You may notice

1+3= 4, 1+3+5= 9, 1+3+5+7= 16,

This suggests the identity 1+3+·· ·+ (2n−1)= n2.

How to prove this?

Péter Gács (Boston University) CS 131 Fall 09 125 / 201

Mathematical induction

Theorem
Let P(k) be a predicate on integers with the following properties:

a P(1) holds. (This is called the base case.)
b For all k, if P(1),P(2), . . . ,P(k−1) holds then also P(k) holds.

(This is called the induction step.)

Then P(n) is true for all n.

P(1) P(2) . . . P(k−1) P(k)

This theorem is also sometimes called strong induction, since we
assumed not only P(k−1) but all of P(1)∧·· ·∧P(k−1). But we
can indeed assume all of that, so I will not distinguish between
these two kinds of induction.

Péter Gács (Boston University) CS 131 Fall 09 126 / 201

Mathematical induction

Application to the example: Here, P(n) asserts
∑n

i=1(2i−1)= n2.
Base case: The statement P(1) just says 1= 1, so it is true.
Induction step: Assume P(k), we will prove that then P(k+1). So
we know

1+3+·· ·+ (2k−1)= k2.

Adding 2(k+1)−1= 2k+1 to both sides:

1+3+·· ·+ (2(k+1)−1)= k2 +2k+1= (k+1)2.

But this is the statement P(k+1). So assuming P(k) we proved
P(k+1). The example shows the usefulness of mathematical
induction: we can assume additional things in the proof, making
it frequently much easier to carry out.
(Recall that looking for proof by contradiction had a similar
advantage.)

Péter Gács (Boston University) CS 131 Fall 09 127 / 201

Mathematical induction

Theorem
Consider square of size 2n, subdivided into 2n ×2n unit squares,
from which one unit square has been removed. The remaining
area can be covered by L-shaped figures consisting of 3 unit
squares each.

A B

C D

Péter Gács (Boston University) CS 131 Fall 09 128 / 201

Mathematical induction

Towers of Hanoi

This game is described in almost every text on recursive
programs. Let f (n) be the minimum number of moves to move a
tower of size n from one pin to the other. The inductive proof gives

f (1)= 1, f (n+1)É 2 f (n)+1.

Can you prove the inequality f (n+1)Ê 2 f (n)+1?

Péter Gács (Boston University) CS 131 Fall 09 129 / 201

Mathematical induction

Ramsey numbers

Theorem

Let s Ê 0 be an integer. In a company with
(2n−2

n−1
)

people there are
either n people who all know each other, or n people who do not
know each other.

For example, in a company with 6= (4
2
)

people, either there are
3= 2+1 people who all know each other, or 3 people who do not
know each other.

Péter Gács (Boston University) CS 131 Fall 09 130 / 201

Mathematical induction

In order to prove this theorem by induction, we generalize it:

Theorem
Let s, t Ê 0 be integers. In a company with(

s+ t
s

)

people, there are either s+1 people who all know each other, or
t+1 people who do not know each other.

Since
(2s

s
)< 4s, this theorem generalizes the previous one.

It is clearly true for s = 0 or t = 0. We will prove it by induction on
s+ t.

Péter Gács (Boston University) CS 131 Fall 09 131 / 201

Mathematical induction

Note (
s+ t

s

)
=

(
s+ t−1

s−1

)
+

(
s+ t−1

s

)
=

(
s+ t−1

s−1

)
+

(
s+ t−1

t−1

)
.

Consider a company of
(s+t

s
)

people. Pick a person x, and let K be
the set of those he knows, D the set he does not know. Then we
have |K |+ |D| = (s+t

s
)−1. One cannot have |K | < (s+t−1

s−1
)

and
|D| < (s+t−1

t−1
)

since this would imply |K |+ |D| < (s+t
s

)−1. So for
example |K | Ê (s+t−1

s−1
)
. By the inductive assumption, K either

contains a set K ′ of s people that know each other a set D′ or t+1
people who don’t. In the former case, {x}∪K ′ is a set of s+1 people
who know each other. In the latter case, D′ is a set of t+1 people
who don’t know each other. The case |D| Ê (s+t−1

t−1
)

is similar.

Péter Gács (Boston University) CS 131 Fall 09 132 / 201

Mathematical induction

Winning strategy in a game

Look at a typical game of strategy, say the Nim game.

There are two players, Alice and Bob, and Alice starts.

Players take turns, each making a move.

Start with 3 piles of pennies, of sizes 10, 10, 10.

A move means taking off some pennies.

The player having to take off the last penny loses.

A strategy of a player is a a function S : N3 → {1,2,3}×N.
S(n1,n2,n3)= (i,k) says that if it is your turn and the piles have
sizes n1,n2,n3 then take off k from pile i. A strategy is winning if
it leads to winning no matter what the other player does.

Péter Gács (Boston University) CS 131 Fall 09 133 / 201

Mathematical induction

Theorem
In this game, either Alice has a winning strategy or Bob has one.

To prove this theorem, we generalize it to the set of all possible
games in which the initial piles have sizes n1,n2,n3, the starting
player is X (may be Bob, too), the other player is Y .

Proposition
In the generalized game, either Alice has a winning strategy or
Bob has one.

Péter Gács (Boston University) CS 131 Fall 09 134 / 201

Mathematical induction

Let us prove the proposition by mathematical induction on
n = n1 +n2 +n3.
Base case: For n = 1, the starting player loses.
Induction step: Suppose that the proposition is true for all games
where the sum of piles is < k, we will prove that it is also true for
all games with the sum of piles equal to k1 +k2 +k3 = k.
Ways to take off some coins: m1, . . . ,mm. For example, move m15
says take off 5 from pile 1, resulting in k1,k2 −5,k3. New game,
with these starting piles, starting player Y . Since here the sum is
smaller, we already know that one player has a winning strategy.
If move mi gives a winning strategy for X then write f (mi)= X ,
otherwise f (mi)=Y .
Now if there is an i with f (mi)= X then X has a winning
strategy: choose move mi and follow that winning strategy from
there. Otherwise Y has a winning strategy no matter what X
does: to move mi, just answer with the winning strategy of Y for
the resulting new game.

Péter Gács (Boston University) CS 131 Fall 09 135 / 201

Asymptotic analysis

Asymptotic analysis

We have learned some counting formulas, but in order to have a
useful understanding of them, we should learn to estimate how
they relate to each other. For this in many cases, we will need an
approximate, simplified classification of functions according to
how fast they grow.

Compare n and
(n
2
)
.

Compare n2 and 2n.

Compare 2n and n!.

Stirling’s formula for n! (without proof):

n ∼
(n

e

)np
2πn.

Later we will see how to find easily a weaker version of this.

Péter Gács (Boston University) CS 131 Fall 09 136 / 201

Asymptotic analysis The birthday (twin) paradox

The birthday (twin) paradox

There are 50 students in a class. What is the probability that two
of them have the same birthday?
Assume a fixed (say alphabetic) order of the students. There are
36550 possible arrangements of birthdays (ignore the problem of
February 29). It is reasonable to assume that these are all
equally probable.
There are 365 ·364 · · ·316 possible arrangements with no two
equal birthdays. So the probability is

365 ·364 · · ·316
36550 .

Péter Gács (Boston University) CS 131 Fall 09 137 / 201

Asymptotic analysis The birthday (twin) paradox

It sounds daunting to compute this exactly, though nowadays the
the program Mathematica spits back the answer 0.0296264 in no
time:

In[6]:= Binomial@365, 50D *50! �365^50
Out[6]= 216450947969980945018737813684477840905760489196842�

126408358251528094692173081574234555525510294790�

233562316563021824�

7306010813549515310358093277059651246342214174497�

508156711617142094873581852472030624097938198246�

993124485015869140625

In[7]:= % �� N

Out[7]= 0.0296264

An ordinary program will also compute it well, since the
round-offs in the floating-point operations behave well here. But
we want more insight than what is given by just a number.

Péter Gács (Boston University) CS 131 Fall 09 138 / 201

Asymptotic analysis The birthday (twin) paradox

More generally, we want to approximate

p = n(n−1) · · · (n−k+1)
nk =

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k−1

n

)
.

A useful trick when estimating products: take logarithm, then we
will work with sums:

ln p = ln
(
1− 1

n

)
+ ln

(
1− 2

n

)
+·· ·+ ln

(
1− k−1

n

)
.

In analysis, it is always more practical to use natural logarithm
ln, that is logarithm with base e = 2.718. . . .

Péter Gács (Boston University) CS 131 Fall 09 139 / 201

Asymptotic analysis The birthday (twin) paradox

Later we will prove the estimate: x
1+x É log(1+ x)É x. Applying it

here:

ln
(
1− 1

n

)
+ ln

(
1− 2

n

)
+·· ·+ ln

(
1− k−1

n

)
É−1

n
− 2

n
−·· ·− k−1

n
=−k(k−1)

2n
.

The other side, using −i/n
1−i/n = −i

n−i :

ln
(
1− 1

n

)
+ ln

(
1− 2

n

)
+·· ·+ ln

(
1− k−1

n

)
Ê− 1

n−1
− 2

n−2
−·· ·− k−1

n−k+1
Ê− k(k−1)

2(n−k+1)
.

Péter Gács (Boston University) CS 131 Fall 09 140 / 201

Asymptotic analysis The birthday (twin) paradox

So we have, with n = 365, k = 50:

0.0207215≈ e−
k(k−1)

2(n−k+1) É p É e−
k(k−1)

2n ≈ 0.0348687.

By this approximation, the probability of not having a common
birthday is at most 3.5%.
This form is much more useful than the exact formula: it shows
that the probability becomes ≈ 1/e when

k ≈p
n.

So if there are n days in a year then among
p

n people it is
already likely to have a common birthday.

Péter Gács (Boston University) CS 131 Fall 09 141 / 201

Asymptotic analysis The birthday (twin) paradox

Estimating the logarithm

The inequality ln(1+ x)É x is very important and comes from the
concavity of the logarithm function:

Péter Gács (Boston University) CS 131 Fall 09 142 / 201

Asymptotic analysis The birthday (twin) paradox

This same inequality can be used to get a bound from the other
side:

− ln(1+ x)= ln
1

1+ x
= ln

(
1− x

1+ x

)
É− x

1+ x
,

ln(1+ x)Ê x
1+ x

.

Combining the two estimates:

x
1+ x

É ln(1+ x)É x.

Péter Gács (Boston University) CS 131 Fall 09 143 / 201

Asymptotic analysis Rates of growth

Strong and weak domination

Rough comparison of functions.
f (n)¿ g(n) means limn→∞ f (n)/g(n)= 0: in words, g(n) grows
faster than f (n). Other notation:

f (n)= o(g(n))⇔ f (n)¿ g(n).

Example: n−4À 116
p

n+80. We may also write

116
p

n+80= o(n).

Generally, when we write f (n)= o(g(n)) then g(n) has a simpler
form than f (n) (this is the point of the notation).

Péter Gács (Boston University) CS 131 Fall 09 144 / 201

Asymptotic analysis Rates of growth

f (n)
∗< g(n) means supn f (n)/g(n)<∞, that is f (n)É c · g(n) for

some constant c. Other (the common) notation:

f (n)=O(g(n))⇔ f (n)
∗< g(n).

(The notation
∗< is mine, you will not find it in your books.)

This is a preorder. If f
∗< g and g

∗< f then we write f ∗= g,
f =Θ(g), and say that f and g have the same rate of growth.
Example: n2 −5n and 100n(n+2) have the same rate of growth.
We can also write

100n(n+2)=O(n2), 100n(n+2)=Θ(n2).

On the other hand, n+p
n =O(n2) but not Θ(n2).

Péter Gács (Boston University) CS 131 Fall 09 145 / 201

Asymptotic analysis Rates of growth

Important special cases:

O(1) denotes any function that is bounded by a constant, for
example (1+1/n)n =O(1).

o(1) denotes any function that is converging to 0 as n →∞.
For example, another way of writing Stirling’s formula is

n!=
(n

e

)np
2πn(1+ o(n)).

Péter Gács (Boston University) CS 131 Fall 09 146 / 201

Asymptotic analysis Rates of growth

Some function classes

Important classes of increasing functions of n:

Linear functions: (bounded by) c ·n for arbitrary constant c.

Polynomial functions: (bounded by) nc for some constant c > 0,
for n Ê 2.

Exponential functions: those (bounded by) cn for some
constant c > 1.

Logarithmic functions: (bounded by) c · logn for arbitrary
constant c. Note: If a function is logarithmic with log2 then it
is also logarithmic with logb for any b, since

logb x = log2 x
log2 b

= (log2 x)(logb 2).

These are all equivalence classes under ∗=.

Péter Gács (Boston University) CS 131 Fall 09 147 / 201

Asymptotic analysis Rates of growth

Some simplification rules

Addition: take the maximum, that is if f =O(g) then
f + g =O(g). Do this always to simplify expressions. Warning:
do it only if the number of terms is constant! This is wrong:
n+n+·· · (n times) · · ·+n 6=O(n).

f (n)g(n) is generally worth rewriting as 2g(n) log f (n). For
example, nlogn = 2(logn)·(logn) = 2log2 n.

But sometimes we make the reverse transformation:

3logn = 2(logn)·(log3) = (2logn)log3 = nlog3.

The last form is the most meaningful, showing that this is a
polynomial function.

Péter Gács (Boston University) CS 131 Fall 09 148 / 201

Asymptotic analysis Rates of growth

Examples

n/ loglogn+ log2 n ∗= n/ loglogn.

Indeed, loglogn ¿ logn ¿ n1/2, hence n/ loglogn À n1/2 À log2 n.

Péter Gács (Boston University) CS 131 Fall 09 149 / 201

Asymptotic analysis Rates of growth

Order the following functions by growth rate:

n2 −3loglogn ∗= n2,

logn/n,

loglogn,

n log2 n,

3+1/n ∗= 1,
p

5n/2n,

(1.2)n−1 +p
n+ logn ∗= (1.2)n.

Solution:
p

5n/2n ¿ logn/n ¿ 1¿ loglogn

¿ n/ loglogn ¿ n log2 n ¿ n2 ¿ (1.2)n.

Péter Gács (Boston University) CS 131 Fall 09 150 / 201

Asymptotic analysis Rates of growth

Sums of series

You must know the following three sums:

Arithmetic series 1+2+3+·· ·+n = n(n+1)
2 .

Geometric series 1+ q+ q2 +·· ·+ qn−1 = 1−qn

1−q .

Infinite geometric series If |q| < 1 then 1+ q+ q2 +·· · = 1
1−q .

Péter Gács (Boston University) CS 131 Fall 09 151 / 201

Asymptotic analysis Rates of growth

Simplification of sums

For rates of growth, the following is more important:
Geometric series grows as fast as its largest element:

6+18+·· ·+2 ·3n ∗= 3n

Even more true of series growing faster, say,

1!+2!+·· ·+n! ∗= n!.

Sum of nc (for example arithmetic series) For rate of growth,
replace each term with the maximal one:

22 +52 +82 +·· ·+ (2+3n)2 ∗= (n+1)(2+3n)2 ∗= n3.

Even more true of a series growing slower:

logn!= log2+ log3+·· ·+ logn ∗= n logn.

Péter Gács (Boston University) CS 131 Fall 09 152 / 201

Asymptotic analysis Rates of growth

Let us derive formally, say 12 +22 +·· ·+n2 ∗= n3. The upper bound
is easy.
Lower bound, with k = dn/2e:

12 +·· ·+n2 Ê k2 + (k+1)2 +·· ·+n2

Ê (n/2−1)(n/2)2 ∗= n3.

Péter Gács (Boston University) CS 131 Fall 09 153 / 201

Asymptotic analysis Rates of growth

Infinite series

We will prove the following, via rough estimates:

1/3+2/32 +3/33 +4/34 +·· · <∞.

Since any exponentially growing function grows faster than the
linear function, we know n

∗< 3n/2. Therefore
n ·3−n ∗< 3n/2 ·3−n = 3−n/2, and the whole sum is

∗< 1+ q+ q2 +·· · = 1
1− q

where q = 3−1/2.

Péter Gács (Boston University) CS 131 Fall 09 154 / 201

Asymptotic analysis Rates of growth

Another example:

1+1/2+1/3+·· ·+1/n =Θ(logn).

Indeed, for n = 2k−1, upper bound:

1+1/2+1/2+1/4+1/4+1/4+1/4+1/8+·· ·
= 1+1+·· ·+1 (k times).

Lower bound:

1/2+1/4+1/4+1/8+1/8+1/8+1/8+1/16+·· ·
= 1/2+1/2+·· ·+1/2 (k times).

Péter Gács (Boston University) CS 131 Fall 09 155 / 201

Binomial coefficients The binomial theorem

Binomial coefficients
The binomial theorem

Let us see some more uses and properties of the binomial
coefficients.
The binomial theorem (say, for the case of power 5):

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y)

=
(
4
0

)
x4 +

(
4
1

)
x3 y+

(
4
2

)
x2 y2 +

(
4
3

)
x1 y3 +

(
4
4

)
y4.

In (x+ y)n, each term xn−k yk corresponds to a set A ⊆ {1, . . . ,n} of
size k in which we choose y from the ith bracket if i ∈ A. This is a
one-to-one correspondence, so there are

(n
k
)

such terms.

Péter Gács (Boston University) CS 131 Fall 09 156 / 201

Binomial coefficients The binomial theorem

Some uses:

n∑
k=0

(
n
k

)
= 2n,

n∑
k=0

(−1)k

(
n
k

)
= 0.

Péter Gács (Boston University) CS 131 Fall 09 157 / 201

Binomial coefficients Identities in Pascal’s Triangle

Identities in Pascal’s Triangle

New proof of
(n
0
)− (n

1
)+ (n

2
)+·· · = 0 reveals more. Represent each

term as the sum of the two terms above it in the triangle:(
n
0

)
−

(
n
1

)
+

(
n
2

)
−·· ·

=
(
0+

(
n−1

0

))
−

((
n−1

0

)
+

(
n−1

1

))
+

((
n−1

1

)
+

(
n−1

2

))
−·· ·

This gives more:(
n
0

)
−

(
n
1

)
+

(
n
2

)
−·· ·+ (−1)k

(
n
k

)
= (−1)k

(
n−1

k

)
.

Péter Gács (Boston University) CS 131 Fall 09 158 / 201

Binomial coefficients Identities in Pascal’s Triangle

Another interesting indentity:(
n
0

)2

+
(
n
1

)2

+·· ·+
(
n
n

)2

=
(
2n
n

)
.

Combinatorial interpretation easier if writing it as(
n
0

)(
n
n

)
+

(
n
1

)(
n

n−1

)
+

(
n
2

)(
n

n−2

)
+·· · =

(
2n
n

)
.

Let A = {1, . . . ,n}, B = {n+1, . . . ,2n}. Then a subset C of size n of
A∪B can be written as the disjoint union C = (C∩ A)∪ (C∩B).
For each 0É k É n, there are

(n
k
)

ways to choose C with |C∩ A| = k
and

(n
n−k

)
ways still to choose C∩B.

Péter Gács (Boston University) CS 131 Fall 09 159 / 201

Binomial coefficients Identities in Pascal’s Triangle

Diagonal sums

The elements of each diagonal are the sums of the elements of the
previous diagonal. For example:(

3
3

)
+

(
4
3

)
+·· ·+

(
n
3

)
=

(
n+1

4

)
,

1 ·2 ·3+2 ·3 ·4+·· ·+ (n−2)(n−1)n = (n−2)(n−1)n(n+1)
4

.

These are the left-sloping diagonals. The right-sloping diagonals
give other, also interesting, identities.

Péter Gács (Boston University) CS 131 Fall 09 160 / 201

Binomial coefficients Distributing presents

Distributing presents

There are k children and n presents. We give n1 presents to the
first child, n2 to the second one, and so on. How many ways?

n!
n1!n2! · · ·nk!

.

Interesting special cases:

n = k, n1 = n2 = ·· · = nk = 1.

n1 = n2 = ·· · = nk−1 = 1, nk = n−k+1.

k = 2.

n = 2k, n1 = nk = ·· · = nk = 2.

An equivalent problem: anagrams.

Péter Gács (Boston University) CS 131 Fall 09 161 / 201

Binomial coefficients Distributing money

Distributing money

Distribute m pennies to k children, each must get at least 1.
Solution:

¢ ¢ ¢︸ ︷︷ ︸
Alice

| ¢ ¢︸︷︷︸
Bob

| ¢ ¢︸︷︷︸
Carl

|¢ ¢ ¢ ¢ ¢︸ ︷︷ ︸
Diane

Dividing lines show which pennies go to which children: we give
mi presents to child i. (

m−1
k−1

)

ways to place the lines.

Péter Gács (Boston University) CS 131 Fall 09 162 / 201

Binomial coefficients Distributing money

A different problem: there are n children and k presents. Some
children are allowed to get nothing.

Lend them 1 each and take it back at the end. This reduces
the problem to the previous one with m = n+k:(

n+k−1
k−1

)
.

More detail: a distribution (n1,n2, . . . ,nk) with no restriction
is in 1-1 correspondence with distribution

(m1,m2, . . . ,mk)= (n1 +1,n2 +1, . . . ,nk +1)

restricted to mi Ê 1.

Another way: the n pennies and k−1 dividing lines come in
arbitrary order, so there are

(n+k−1
k−1

)
possibilities.

Péter Gács (Boston University) CS 131 Fall 09 163 / 201

Binomial coefficients Distributing money

Multinomial theorem

There is a multinomial theorem, analogous to the binomial
theorem, an expression for (x1 + x2 +·· ·+ xk)n.

How many terms does this have after expansion?

What does each term look like?

Example:

(x1 + x2 + x3)n = ∑
n1+n2+n3=n

n!
n1!n2!n3!

xn1
1 xn2

2 xn3
3 .

There are
(n+k−1

k−1
)= (n+2

2
)

terms. Another way of writing the sum
is as

n∑
n1=0

n−n1∑
n2=0

n!
n1!n2!(n−n1 −n2)!

xn1
1 xn2

2 xn−n1−n2
3 .

Péter Gács (Boston University) CS 131 Fall 09 164 / 201

Recursive equations

Recursive equations

Leonardo of Pisa (“Fibonacci”, 13th century):

A farmer raises rabbits. Each rabbit gives birth to one
rabbit when it turns 2 months old, and then to one rabbit
each month thereafter. (Rabbits never die, and we ignore
male rabbits.) How many rabbits will the farmer have in
the nth month if he starts with one newborn rabbit?

1,1,2,3,5,8,13,

If there are Fn rabbits at month n, then we get

F1 = F2 = 1, (1)

Fn+1 = Fn +Fn−1, (2)

This is a recursive definition, or recurrence, an algorithm for
computing Fn, but not a simple formula. Equations (1) give the
initial conditions.

Péter Gács (Boston University) CS 131 Fall 09 165 / 201

Recursive equations

Other problem leading to the same recursive equation:

A staircase has n steps. You walk up taking one or two
steps at a time. How many ways can you go up?

Let Jn be the number of ways. We have

J1 = 1, J2 = 2,

Jn+1 = Jn + Jn−1.

The recursive part is the same, the initial conditions are slightly
different, we get

1,2,3,5,8,13, . . . ,

so Jn = Fn+1.

Péter Gács (Boston University) CS 131 Fall 09 166 / 201

Recursive equations

Defining F0 = 0 keeps the equation valid. Experimentation
discovers the relation:

F0 +F1 +·· ·+Fn = Fn+2 −1.

Once we discovered it, proving by induction is not hard. A more
complicated case is the following pair of equations:

F2
n +F2

n−1 = F2n−1,

Fn+1Fn +FnFn−1 = F2n.

Each by itself is difficult to prove by induction, but we can prove
the two simultaneously.

Péter Gács (Boston University) CS 131 Fall 09 167 / 201

Recursive equations

Other initial conditions

Look at the sequence

E0 = A, E1 = B,

En+1 = En +En−1. (3)

We can guess and prove by induction the formula

En = Fn−1 A+FnB.

We will see an easier way to prove this formula based on
linearity. But first, a beautiful consequence, if we substitute
A = Fa, B = Fa+1:

Fa+b+1 = FaFb +Fa+1Fb+1.

Péter Gács (Boston University) CS 131 Fall 09 168 / 201

Recursive equations

Solving the recurrence

Experimentation suggests that Fn grows exponentially, moreover,
Fn+1/Fn converges to a limit.
Idea: find a geometric progression satisfying the same recurrence:

c ·ϕn+1 = c ·ϕn + c ·ϕn−1,

ϕ2 =ϕ+1.

Solution: ϕ1 = 1+p5
2 = 1.618034, ϕ2 = 1−p5

2 =−0.618034. The
equation can also be written as

ϕ= 1+1/ϕ.

In this form, it is known as the equation of the golden ratio, a
proportion with special significance for geometry, art and even
natural history, since classic Greek times.

Péter Gács (Boston University) CS 131 Fall 09 169 / 201

Recursive equations

From Wikipedia

Euclid: “A straight line is said to
have been cut in extreme and
mean ratio when, as the whole
line is to the greater segment, so
is the greater to the less.”

The line segments of various
colors in the figure below are
related by the golden ratio.

11/12/08 2:58 PMhttp://upload.wikimedia.org/wikipedia/en/3/30/Pentagram-phi.svg

Page 1 of 1

Péter Gács (Boston University) CS 131 Fall 09 170 / 201

Recursive equations

We have found many solutions to the recurrence: c1ϕ
n
1 , and c2ϕ

n
2 ,

for arbitrary c1, c2. But notice that the recurrence equation

Fn+1 = Fn +Fn−1

is linear: if X1, X2, . . . is a solution and Y1,Y2, . . . is a solution then
X1+Y1, X2+Y2, . . . is also a solution. So we can look for a solution
in form of

c1ϕ
n
1 + c2ϕ

n
2 .

The initial conditions require c1+ c2 = 0, c1ϕ1+ c2ϕ2 = 1. The first
one gives c2 =−c1. Using it for the second one:

c1(ϕ1 −ϕ2)= c1
p

5= 1.

So, c1 = 5−1/2, giving the formula

Fn = 1p
5

((
1+p

5
2

)n

−
(

1−p
5

2

)n)
.

Péter Gács (Boston University) CS 131 Fall 09 171 / 201

Graphs

Graphs

A graph from now on is similar to the diagram of a relation
E ⊆V ×V . (It has nothing to do with the graph of a function.) It is
undirected if the relation is symmetric. But it is more convenient
to introduce graphs as a new kind of objects. We start with
undirected graphs.

Example
In a group of 51 people, show that there is somebody who know
an even number of others. More generally, this is true of any
group of an even number of people.

Péter Gács (Boston University) CS 131 Fall 09 172 / 201

Graphs

Represent each person by a
point (vertex, node),
acquaintance between any pair
by a line or edge. Graph

G = (V ,E),

where V is the set of vertices, E
is the set of edges, our
(symmetric) relation. So
{u,v} ∈ E if persons u,v are
acquainted, if there is an edge
between u and v.

E

A

B

D C

(On the drawing, the crossing of
two edges is not a node if not
marked as such.)

The degree d(v) of a node v is the numbef of edges leaving (or
entering, this is the same now) a node. So A has degree 4, C has
degree 3, as Alice knows 4 people, Carl knows 3.

Péter Gács (Boston University) CS 131 Fall 09 173 / 201

Graphs

An edge entering (leaving) a node is said to be incident on the
node.

Two nodes are adjacent, or neighbors if they are connected by
an edge.

A loop edge is an edge from a node to itself.

Parallel edges are several edges going between the same pair
of nodes.

If we do not allow loop edges or parallel edges, we speak of a
simple graph, otherwise of a multigraph.

Péter Gács (Boston University) CS 131 Fall 09 174 / 201

Graphs

Going back to the party problem, let us add up the degrees of all
the nodes.

Theorem
In a graph with vertex set V , the sum of all degrees

∑
v∈V d(v) is

twice the number of edges.

Proof. Each edge contributes 2 to this sum, at its two ends.

Corollary
In a graph, the number of nodes with odd degree is even.

It follows that if the graph has an odd number of nodes, then the
set of nodes with even degree has odd size, and so is nonempty.
This proves the original statement about the group of 51 people.

Péter Gács (Boston University) CS 131 Fall 09 175 / 201

Graphs Paths, cycles, connectivity

Paths, cycles

Some special graphs:

The complete graph Kn, or clique, the edgeless graph or
anticlique.

The complement G of a graph G.

A star, with n−1 edges on n nodes.

A subgraph G′ = (V ′,E′) of a graph has V ′ ⊆V , E′ ⊆ E, (of
course, all edges of E′ are between nodes of V ′).

Péter Gács (Boston University) CS 131 Fall 09 176 / 201

Graphs Paths, cycles, connectivity

A path, with n−1 edges on n nodes, with length n−1. Its
endpoints.

A cycle of length k called a k-cycle.

A walk in G is a sequence of nodes v0,v1, . . . ,vk where vi,vi+1
are adjacent for all i. It is like a path or cycle, but may
self-intersect. “Cut out the loops” to convert it into a path or
cycle with the same endpoints.

Péter Gács (Boston University) CS 131 Fall 09 177 / 201

Graphs Paths, cycles, connectivity

Connectivity

An equivalence relation on nodes of a graph G: two points are
connected if some walk connects them. (Allow the trivial walk
consisting of one point.) We get the same relation requiring that
some path connect them.

Equivalence classes: connected components. The graph is
connected if it has only one component.

If you have a graph and want to show it is connected, typically
you need to find a point and show that it has paths to all other
points.

If you have a graph and want to show it is not connected,
typically you need to split the graph into two subsets and
show that there are no edges between them.

Péter Gács (Boston University) CS 131 Fall 09 178 / 201

Graphs Trees

Trees

A tree is a connected graph with no cycles. The following theorem
shows that it is also a maximal graph with no cycles and a
minimal connected graph.

Theorem
The following are two other ways to characterize trees.

a A graph is a tree if and only if it is connected, but deleting any
of its edges results in a disconnected graph.

b A graph is a tree if and only if it contains no cycles, but
adding any new edge creates a cycle.

Spanning trees.

Cut edges.

Forests.

Péter Gács (Boston University) CS 131 Fall 09 179 / 201

Graphs Trees

Rooted trees

A rooted tree has a distinguished node, the root. It is generally
drawn with the root on top:

Father, sons, internal nodes, leaves.

Every function f : V \U →V defines a set of rooted trees, with
roots in U , where f (x) is the father of x.

Péter Gács (Boston University) CS 131 Fall 09 180 / 201

Graphs Trees

Growing trees

Theorem
Every tree with at least 2 nodes has at least two nodes of degree 1.

Tree-growing procedure
Start with a single node.

Repeat any number of times: Create a new node and connect
it by a new edge to any existing node.

Theorem
Every graph obtained by the Tree-growing Procedure is a tree, and
every tree can be obtained this way (thus has n−1 edges on n
nodes).

Useful for proving facts about trees by induction.

Péter Gács (Boston University) CS 131 Fall 09 181 / 201

Graphs Euler walks

Euler walks

The Königsberg bridges
(from Wikipedia):

Is there a walk passing
through all the bridges
exactly once?

Euler’s solution relies on a
(multi) graph (without saying
so).

He noticed that in the graph of a
desired walk all nodes except
possibly the start and the end
would have even degrees.

Péter Gács (Boston University) CS 131 Fall 09 182 / 201

Graphs Euler walks

Euler walk. : a walk passing through each edge of the (multi)graph
exactly once.

Theorem
Consider a connected (multi)graph G = (V ,E).

a More than 2 nodes with odd degree: no Euler walk.
b Exactly 2 nodes with odd degree: there is an Euler walk

starting at one of these and ending at another.
c No nodes with odd degree: there are Euler walks, all these are

closed.

We proved a . Let us prove c .

Péter Gács (Boston University) CS 131 Fall 09 183 / 201

Graphs Euler walks

Euler stroll: like a closed Euler walk, but does not have to pass
through all edges of the graph.

1 The set of edges of an Euler graph is the disjoint union of
some closed Euler strolls. This remains true even if the graph
is not connected.

2 Any two strolls Ci,C j having a common point can be replaced
with one stroll covering the same edges.

3 Continue this process of replacement as long as you can. At
the end, only a single stroll remains, since the original graph
is connected.

Péter Gács (Boston University) CS 131 Fall 09 184 / 201

Graphs Euler walks

Combining two strolls. The first one is (1,2,3,4,5,6,7,8,9,1), the
second one is (10,2,4,9,10).

1

2
3

4

5
6

7

8
9

10

Inserting the second stroll into the first one at the point of first
meeting:

(1,2,4,9,10,2,3,4,5,6,7,8,9,1).

Péter Gács (Boston University) CS 131 Fall 09 185 / 201

Graphs Hamilton cycles

Hamilton cycles

A cycle that contains all nodes of a graph.
It is much harder to decide whether a graph has a Hamilton cycle
than whether it has an Euler walk. Examples from LPV:

7.3 Eulerian Walks and Hamiltonian Cycles 139

FIGURE 7.12. Which of these graphs has an Eulerian walk?

7.3.2 When does a connected graph contain two walks such that every edge is
used by exactly one of them, exactly once?

A question similar to the problem of the Bridges of Königsberg was raised
by another famous mathematician, the Irish William R. Hamilton, in 1856.
A Hamiltonian cycle is a cycle that contains all nodes of a graph. The
Hamilton cycle problem is the problem of deciding whether or not a given
graph has a Hamiltonian cycle.

Hamiltonian cycles sound quite similar to Eulerian walks: Instead of
requiring that every edge be used exactly once, we require that every node
be used exactly once. But much less is known about them than about
Eulerian walks. Euler told us how to decide whether a given graph has an
Eulerian walk; but no efficient way is known to check whether a given graph
has a Hamiltonian cycle, and no useful necessary and sufficient condition for
the existence of a Hamiltonian cycle is known. If you solve Exercise 7.3.3,
you’ll get a feeling about the difficulty of the Hamiltonian cycle problem.

7.3.3 Decide whether the graphs in Figure 7.13 have a Hamiltonian cycle.

FIGURE 7.13. Two famous graphs: the dodecahedron graph (cf. Chapter 12) and
the Petersen graph.I will not spoil your fun of figuring these out on your own.

Péter Gács (Boston University) CS 131 Fall 09 186 / 201

Graphs Matchings

Matchings

Example
At a dance party, with 300 students, every boy knows 50 girls and
every girl knows 50 boys. Can they all dance simultaneously so
that only pairs who know each other dance with each other?

Bipartite graph: left set A (of girls), right set B (of boys).
Matching, perfect matching.

Theorem
If every node of a bipartite graph has the same degree d Ê 1 then it
contains a perfect matching.

Examples showing the (local) necessity of the conditions:
Bipartiteness is necessary, even if all degrees are the same.
Bipartiteness and positive degrees is insufficient.

Péter Gács (Boston University) CS 131 Fall 09 187 / 201

Graphs Matchings

Example
6 tribes partition an island into hunting territories of 100 square
miles each. 6 species of tortoise, with disjoint habitats of 100
square miles each.
Can each tribe pick a tortoise living on its territory, with different
tribes choosing different totems?

Bipartite graph: left set A of tribes, right set B of tortoises. For
S ⊆ A let

N(S)⊆ B

be the set of all neighbors of the nodes of A. Special property:
For every S ⊆ A we have |N(S)| Ê |S|.
Indeed, the combined hunting area of any k tribes intersects with
at least k tortoise habitats.

Péter Gács (Boston University) CS 131 Fall 09 188 / 201

Graphs Matchings

Example (Workers and jobs)
Suppose that we have n workers and n jobs. Each worker is
capable of performing some of the jobs. Is it possible to assign
each worker to a different job, so that workers get jobs they can
perform?

Theorem (The Marriage Theorem)
A bipartite graph has a perfect matching if and only if |A| = |B|
and for every S ⊆ A we have |N(S)| Ê |S|.

The condition is necessary.

Proposition
The condition implies the same condition for all S ⊆ B.

Péter Gács (Boston University) CS 131 Fall 09 189 / 201

Graphs Matchings

Proof

Good graph: one that satisfies the conditions.

A good graph of size 2 clearly has a matching.

Plan: partition any good graph of size > 2 into two smaller
good graphs.

Try partitioning into an edge (a,b) and the remaining graph
on A \{a}, B\{b}. If the graph on (A \{a})∪ (B\{b}) is good, we
are done.

Péter Gács (Boston University) CS 131 Fall 09 190 / 201

Graphs Matchings

Else there is an

S ⊆ A \{a}, b ∈N(S)=: T,

|S| = |T|.

Then partition into S∪T,
(A \ S)∪ (B \ T).

S

T

a b

Goodness follows from:

∀S′ ⊆ S |N(S′)| Ê |S′| (by the goodness of G).

∀U ′ ⊆ B \ T |N(U ′)| Ê |U ′| (by the Proposition).

Péter Gács (Boston University) CS 131 Fall 09 191 / 201

Graphs Matchings

Generalization

A matching is any (possibly empty) set of disjoint edges. Let us
abandon the condition |A| = |B|: we still get a theorem.

Theorem
A bipartite graph has a matching that covers each node of A if
and only if for every S ⊆ A we have |N(S)| Ê |S|.

Proof. We will reduce the problem to the original one.
The condition implies |B| Ê |A|, assume |B| > |A|. Let us add
|B|− |A| new points to A to get the set A′. Connect each new point
to every point of B. The Marriage Theorem implies that the new
graph has a matching. Deleting the points of A′ \ A solves the
original problem.

Péter Gács (Boston University) CS 131 Fall 09 192 / 201

Graphs Matchings

Finding a perfect matching

The proof of the Marriage Theorem that we gave is
non-constructive. It just shows that if there is no matching,
somebody could in principle convince us simply, by showing a
set whose shadow is smaller.

Let us now search for a method to find a perfect matching if it
exists. A matching Mis any set of disjoint edges.

Greedy matching method: just keep adding edges to M as long
as we can. We may get stuck with a maximal (unextendable)
matching that is not perfect, does not have the maximum
number of edges.

Péter Gács (Boston University) CS 131 Fall 09 193 / 201

Graphs Matchings

Augmenting paths

New way to increase the size of a matching M:

Alternating path: alternates
on M and non-M edges.

Augmenting path:
alternating path that starts
in A, ends in B, both outside
M. To augment, switch the
M and non-M edges.

Péter Gács (Boston University) CS 131 Fall 09 194 / 201

Graphs Matchings

Lemma
If M is not perfect and has no augmenting path, there is no perfect
matching.

Proof.

U := the unmatched points of A.

Almost augmenting path: alternating path of even size
starting in U .

S∗ ⊆ A := the points reachable from U on almost augmenting
paths.

T∗ ⊆ B := the points matched to those of S∗.

Then |S∗| = |T∗|+ |U |, and T∗ =N(S∗).

Péter Gács (Boston University) CS 131 Fall 09 195 / 201

Graphs Matchings

Algorithm 14.1: Augment a matching M

Will gradually build set S reachable on almost augmenting
paths, T = the points matched to those of S, and function
f : S \U → S where f (s)= previous point of S (“father”) on the
almost augmenting path.
S ←U , T ←;, f ← the empty function
while not stopped do

Look for an edge sr between s ∈ S and r ∈ B \ T
if there is none then

M is a maximum matching, return
else if r is unmatched then

find an augmenting path P from r, s to U using f (·)
apply P to increase M, return

else
r is matched to a q ∈ A
S ← S∪ {q}, T ← T ∪ {r}, f (q)← s

Péter Gács (Boston University) CS 131 Fall 09 196 / 201

Graphs Planar graphs

Planar graphs

A graph can sometimes be drawn in the plane, with
non-intersecting (possible curved or broken) lines representing
the edges. (Consider just connected graphs.) This drawing divides
the plane into connected regions that we can call countries and
those edges that are between different regions as borders. Using
a different terminology, we will sometimes call the regions faces
(in analogy with the faces of a polyhedron).

Each country can be described
as follows: walk around while
having it always on your left, list
the edges. (One edge may be
listed twice, if passed in
different directions.)

Péter Gács (Boston University) CS 131 Fall 09 197 / 201

Graphs Planar graphs

Let f = number of countries, e = number of edges, v = number of
nodes.

Theorem (Euler)
f − e+v = 2.

Proof. View the edges as dams, the infinite country outside as
the ocean. Remove, one-by-one, dams connecting dry land with
water. Since a country is connected, each dam removal floods one
country. We end up with a tree and a single country (water) by
the time we removed f −1 edges. The remaining graph is
connected since we always removed an edge from some cycle. So
it is a tree, with v−1 edges:

e = (f −1)+ (v−1).

Péter Gács (Boston University) CS 131 Fall 09 198 / 201

Graphs Planar graphs

Application

Proposition
In a planar graph of n points, there are at most 3n−6 edges.

As an application, we get that the graph K5 is not planar.

Proof. Each country has at least e boundary edges, so we have
(counting each edges twice)

3 f É 2e, f É 2e/3.

Substituting into Euler’s formula:

2= v− e+ f É v− e+2e/3,

6É 3v− e,

e É 3v−6.

Péter Gács (Boston University) CS 131 Fall 09 199 / 201

Graphs Planar graphs

Other ways of showing nonplanarity

Let A ⊆R2 be a subset of the plane. We will call two points
p, q ∈ A equivalent if they can be connected by a curve running
inside A. (In this class, we will not define the notion of the curve
precisely.)

Theorem (Jordan)
Let R2 be the plane and let C ⊆R2 be a simple closed curve. Then
R2 \ C consists of two equivalence classes: a bounded set of points
I inside C and the rest: the set of points O outside C.

We used this theorem implicitly in the notion of a face, which
is the inside set of its boundary curve.

Try to use the theorem to give a direct proof of the fact that
K5 is not planar.

Péter Gács (Boston University) CS 131 Fall 09 200 / 201

Graphs Planar graphs

Polyhedra

Consider polyhedra that can be blown up into a ball:
tetrahedron, cube, octahedron, dodecahedron,
icosahedron, triangular prism, etc.

These are all convex, but some non-convex ones would also
qualify, say a box (remove a smaller cube from one side of a
bigger cube). The graph of edges and vertices is always
planar, and so obeys Euler’s formula.

On the other hand, if the polyhedron has a hole passing
through (like a window frame) its graph is not planar. (See
exercise.)

Péter Gács (Boston University) CS 131 Fall 09 201 / 201

	Introduction
	Counting
	Some examples
	Sum and product notation

	Sets
	Propositional logic
	Factual statements
	Connectives
	Identities
	Simplification
	Tautology, contradiction, satisfiability
	Valid conclusions (rules)
	Proof by contradiction
	Proofs
	Local counterexample

	Predicate logic
	Quantifiers
	Proof by example

	Systematic enumeration
	Number of subsets
	Sequences
	Permutations, ordered subsets
	Subsets of given size

	Functions
	Indicator function
	Inverse image, partition
	Invertibility

	Relations
	Equivalence
	Order

	More counting
	Inclusion-exclusion

	Mathematical induction
	Asymptotic analysis
	The birthday (twin) paradox
	Rates of growth

	Binomial coefficients
	The binomial theorem
	Identities in Pascal's Triangle
	Distributing presents
	Distributing money

	Recursive equations
	Graphs
	Paths, cycles, connectivity
	Trees
	Euler walks
	Hamilton cycles
	Matchings
	Planar graphs

