
Deterministic computations
whose history is independent

of the order of asynchronous updating

Peter Gács*

Boston University
gacs@bu.edu

June 12, 2018

Abstract

Consider a network of processors (sites) in which each site x has a �nite
set N (x) of neighbors. There is a transition function f that for each site x
computes the next state ξ (x) from the states in N (x). But these transitions
(updates) are applied in arbitrary order, one or many at a time. If the state of
site x at time t is η(x, t) then let us de�ne the sequence ζ (x, 0), ζ (x, 1), . . . by
taking the sequence η(x, 0), η(x, 1), . . ., and deleting each repetition: each
element equal to the preceding one. The function f is said to have invariant
histories if the sequence ζ (x, i), (while it lasts, in case it is �nite) depends only
on the initial con�guration, not on the order of updates.

This paper shows that though the invariant history property is typically
undecidable, there is a useful simple su�cient condition, called commutativ-
ity: For any con�guration, for any pair x, y of neighbors, if the updating
would change both ξ (x) and ξ (y) then the result of updating �rst x and then
y is the same as the result of doing this in the reverse order. This fact is
related to the con�uence property of term-rewriting systems, and well as
sandpile theory in statistical physics.

We will also show a simple simulation of an arbitrary synchronous com-
putation by a commutative asynchronous one.

*Partially supported by NSF grant CCR-920484

1 Introduction

Consider a set C of sites (processors) in which each site x has a set S of possible
local states. An arbitrary function ξ ∈ SC is called a space-con�guration (or simply
“con�guration”, or “global state”). The value ξ (x) is the state of site x in ξ . A
neighborhood function N : C → 2C assigns to each site x, a set N (x) called its
neighborhood. A function f : SC → SC is called a transition function if f (ξ)(x)
depends only on ξ � N (x):

ξ1 � N (x) = ξ2 � N (x) ⇒ f (ξ1)(x) = f (ξ2)(x).

The transition function determines a possible “next” con�guration from the “cur-
rent” one. The 4-tuple

A = (C, S, N , f) (1)

will be called an automaton (not necessarily a �nite one). If all sets N (x) are �nite
then the system is said to have �nite neighborhoods. This is actually a property of
the transition function f itself. Let Z+ = Z ∩ [0,∞).

Examples 1.1 (Cellular automata) 1. On the set of integers: Let C = Z, N (x) =
{x − 1, x, x + 1}. The result of transition at site x is

f (ξ)(x) = g(ξ (x − 1), ξ (x), ξ (x + 1))

where g(x, y, z) is a local transition function. In this example, the function f
depends only on the sequence of values of ξ � N (x): it is homogenous. The
present paper will not rely on homogeneity.

2. On the set of natural numbers, with free boundary condition: LetC = Z+,N (x) =
{x − 1, x, x + 1} for x > 0 and {0, 1} for x = 0. Given are local transition
functions g(x, y, z), g0(x, y). Now the result of transition at site x is g(ξ (x −
1), ξ (x), ξ (x + 1)) for x > 0 and g0(ξ (0), ξ (1)) for x = 0.

y

Let us �x an automaton A as in (1). An arbitrary function η : C × Z+ → S is
called a space-time con�guration. This can also be viewed as a sequence η : Z+ → SC
of space-con�gurations. We will say that η is a synchronous trajectory if for all x, t
we have η(·, t + 1) = f (η(·, t)), that is

η(x, t + 1) = f (η(·, t))(x). (2)

Each site is “updated” every time by the function f (though the update may not
change the state).

2

We are interested in situations when at any one time, only some of the sites
are updated. We will say η is an asynchronous trajectory if (2) holds for all x, t with
η(x, t+1) , η(x, t): each site in η at each time is either updated or left unchanged.
From now on, a “trajectory” without quali�cation will mean an asynchronous tra-
jectory. Let the update set

U (t, η)

be the set of sites x with η(x, t + 1) , η(x, t). The initial con�guration and the
update setsU (t, η) determine the whole space-time con�guration η . For any set
A, let

χ(x, A) =

{
1 if x ∈ A,

0 otherwise.

For a space-time con�guration η(x, t) we de�ne the e�ective age function τ(x, t) =
τ(x, t, η) as

τ(x, 0) = 0,

τ(x, t + 1) = τ(x, t) + χ(x,U (t, η)).

This is the number of e�ective updatings that x underwent until time t. Given
an initial con�guration ξ , we say that the transition f (and thus the automaton A)
has invariant histories on ξ if there is a function ζ (x, u) = ζ (x, u, ξ) such that for
all asynchronous trajectories η(x, t) with η(·, 0) = ξ we have

η(x, t) = ζ (x, τ(x, t, η), ξ). (3)

This means that after eliminating repetitions, the sequence ζ (x, 0), ζ (x, 1), . . . of
values that a site x will go through in η does not depend on the update sets, only on
the initial con�guration (except that the sequence may be �nite if there is not an
in�nite number of successful updates). The update sets in�uence only the delays
in going through this sequence. We say that an automaton has invariant histories
if it has such on all initial con�gurations.

Remark 1.2 The sequence ζ (x, 0), ζ (x, 1), . . . is a sequence of local states but
ζ (·, n) may not be a space-con�guration (global state) that appears at any time in
a typical asynchronous trajectory. y

Theorem 1 It is undecidable whether a one-dimensional cellular automatonA with some
state space S = {0, . . . , n − 1} for some natural number n, has invariant histories.

The theorem justi�es looking for some extra su�cient condition for the in-
variant history property. For us, this condition will be monotonicity: updating

3

some sites should never hold up progress at other sites. Let us elaborate. The set
of free sites x in a con�guration ξ is de�ned by

L(ξ) = {x : f (ξ)(x) , ξ (x)}

(the site is called free since its update is not “held up”). For a space-time con�gu-
ration η , let

L(t, η) = L(η(·, t)).

For a con�guration ξ and a set E of sites, let

f (ξ , E)(x) =

{
f (ξ)(x) if x ∈ E

ξ (x) otherwise.

f (ξ , E, F) = f (f (ξ , E), F).

With this notation, we have f (ξ) = f (ξ , C) = f (ξ , L(ξ)). Now we can express the
condition that η is an asynchronous trajectory by saying that for every t there is a
setU with

η(·, t + 1) = f (η(·, t),U), (4)

and the condition that η is synchronous by requiringU (t, η) = L(t, η) for each t.
We call a transition rule f monotonic if L(t, η) \U (t, η) ⊆ L(t + 1, η): updating a
site cannot take away the freedom of other sites. We call a transition rule f (and
thus the automaton A) commutative if for all con�gurations ξ and all disjoint sets
of sites A, B ⊆ L(ξ) we have

f (ξ , A, B) = f (ξ , A ∪ B). (5)

We call f locally commutative when this property is required just for the special case
where A, B are one-element sets. The following fact shows that commutativity is
locally checkable. It is easy to see, but we give the proof for completeness.

Proposition 1.3 If the transition function f has �nite neighborhoods then its local com-
mutativity implies commutativity.

Proof. Let us �rst show

f (ξ , {x1}, . . . , {xn}) = f (ξ , {x1, . . . , xn}). (6)

Local commutativity implies for each k,

ξ ′ = f (ξ , {x1}, . . . , {xn}) = f (ξ , {xk}, {x1}, . . . , {xk−1}, {xk+1}, . . . , {xn}).

4

Therefore ξ ′(xk) = f (ξ , {x1, . . . , xn})(xk). Now, let us show

f (ξ , {x1, . . . , xn}, {y}) = f (ξ , {x1, . . . , xn, y}). (7)

Using (6), we have f (ξ , {x1}, . . . , {xn}) = f (ξ , {x1, . . . , xn}), hence
f (ξ , {x1, . . . , xn}, {y}) = f (ξ , {x1}, . . . , {xn}, {y}). Using (6) again concludes
the proof.

Let us return to the general case. Obviously, it is su�cient to check (5) for
sites y ∈ B. Clearly, f (ξ , A, B)(y) = f (ξ , N (y) ∩A, {y}). The latter is f (ξ , (N (y) ∩
A) ∪ {y}) according to (7). �

Remarks 1.4 1. For the cellular automaton example above, local commutativity
is equivalent to saying that if g(r0, r1, r2) , r1 and g(r1, r2, r3) , r2 then

g(g(r0, r1, r2), r2, r3) = g(r1, r2, r3)

g(r0, r1, g(r1, r2, r3)) = g(r0, r1, r2).

2. If f does not have �nite neighborhoods then local commutativity does not
always imply commutativity. For an example, let C = {0, 1}, C = Z, N (x) =
C, and let

f (ξ)(x) =

{
1 if ξ (y) = 0 for all but �nitely many y,

0 otherwise.

Now f is obviously locally commutative. On the other hand, let ξ0(x) = 0 for
all x, and let Then f (ξ0, Z)(−1) = 1 and f (ξ0, Z+, Z \ Z+)(−1) = 0.

y

Theorem 2 A transition function is commutative if and only if it is monotonic and has
invariant histories.

It seems that Theorem 2 has been discovered in various frameworks several
times, since the invariant histories property is similar to the property of “con�u-
ence” in term rewriting (see for example [2]), and to properties of the “sandpile”
models in statistical physics. However, the present context probably justi�es a
self-contained proof.

Theorem 3 Let A1 = (C, S1, N , f1) be an arbitrary (not necessarily commutative)
automaton with �nite neighborhoods N (x). Then there is a locally commutative automaton
A2 = (C, S1 × R, N , f2), where for s ∈ S1 × R we write s = (s. F , s.G), with the
following property.

Let ξ1 be an arbitrary con�guration of f1 and let ξ2 be a con�guration of f2 such
that for all x we have ξ2(x) = (ξ1(x), 0 · · · 0). Then for the synchronous trajectory η2

5

of f2, with initial con�guration ξ2, the space-time con�guration (x, t) 7→ η2(x, t). F is a
synchronous trajectory of f1. Moreover, in this trajectory, the state of each cell changes in
each step.

In other words, as long as we update synchronously the rule f2 behaves in its
�eld F just like the arbitrary rule f1. But f2 has invariant histories: it is more robust.

2 Commutativity implies invariant histories

Lemma 2.1 Suppose that f has invariant histories and is monotonic: then it is commu-
tative.

Proof. Let U1(0) = U2(1) = {x}, U1(1) = U2(0) = {y}, and U1(t + 2) = U2(t +
2). This de�nes η1 and η2 from initial con�guration ξ by U1,U2 as usual. By
monotonicity, η1(y, 1) , η1(y, 2) and η2(x, 1) , η2(x, 2), so τ ’s values satisfy

τ(x, 2, η1) =

1∑
t=0

χ(w,U1(t, η1))

which is 1 ifw ∈ {x, y} and 0 otherwise. The same value is obtained for τ(x, 2, η2).
By invariant histories, there is a ζ such that

η1(w, 2) = ζ (w, τ(w, 2, η1)) = ζ (w, τ(w, 2, η2)) = η2(w, 2)

and

f (ξ , x, y) = f (ξ ,U1(0),U1(1))

= η1(w, 2) = η2(w, 2) = f (ξ ,U2(0),U2(1)) = f (ξ , {y}, {x}).

Thus, f is commutative. �

What remains to prove after Lemma 2.1 is that commutativity implies mono-
tonicity and invariant histories.

Lemma 2.2 If f is commutative then it is monotonic.

Proof. By commutativity f (ξ ,U (t, η), L(t, η) \U (t, η)) = f (ξ , L(r, η)). Therefore
L(t, η) \U (t, η) ⊆ L(t, η) implies that f is monotonic. �

We say for two asynchronous trajectories η0, η1 with the same initial con�g-
uration that η1 dominates η0 until time u if the following conditions hold:
a) τ(·, t, η0) ≤ τ(·, t, η1) for all t ≤ u

b) for all t0, t1 ≤ u, if τ(x, t0, η0) = τ(x, t1, η1) then η0(x, t0) = η1(x, t1).

6

When η1 dominates η0 up to time u for all u then we simply say that η1 domi-
nates η0. Domination is, of course, a transitive relation. If the rule has invariant
histories then condition (a) implies (b), but otherwise this may not be the case.

Proof of Theorem 2. Let f be a commutative transition rule. It remains to prove
that it has invariant histories.
1. Let η be an asynchronous trajectory and A0 ⊆ L(0, η) \U (0, η). Then there

is an asynchronous trajectory η ′ dominating η with initial con�guration η(·, 0)
andU (0, η ′) =U (0, η) ∪ A0.
Proof. Let ξ0 = η(·, 0). We build, for each u, a trajectory η ′ with the given
properties that dominates η up to time u. When u → ∞ then η ′ will converge
to a trajectory with the same properties that dominates η . For u = 0 we can
choose η ′(·, 0) = η(·, 0). We assume that η ′ can be constructed for all v < u and
prove it for u. Let ξ1 = η(·, 1), and A1 = A0 \U (1, η). Let the trajectory η1 be
de�ned by η1(x, t) = η(x, t + 1). The inductive assumption gives a trajectory η ′1
with initial con�guration ξ1 dominating η1, with

U (0, η ′1) = A1 ∪U (0, η1). (8)

Using this trajectory de�ne, for t > 0:

η ′(·, t) =

{
f (ξ0, A0 ∪U (0, η)) if t = 1,

η ′1(·, t − 1) otherwise.

1.1. η ′ is an asynchronous trajectory.

Proof. Let us show that η ′ satis�es (4). This holds by de�nition for t = 0 and
t > 1. Let us show that it also holds for t = 1 withU =U (1, η) \A0. We have

η ′(·, 2) = η ′1(·, 1) by def.,

= f (ξ1, A1 ∪U (0, η1)) by (8),

= f (ξ1, A1 ∪U (1, η)) by def. of η1,

= f (ξ1, (A0 \U (1, η)) ∪U (1, η)) by def. of A1,

= f (ξ1, A0 ∪ (U (1, η) \ A0))

= f (ξ0,U (0, η), A0,U (1, η) \ A0) by def. of ξ1

and commutativity,

= f (η ′(·, 1),U (1, η) \ A0).

(9)

For domination, we must check two properties.

7

1.2. We have τ(x, t, η) ≤ τ(x, t, η ′).

Proof. By the de�nition of τ , for t > 0,

τ(x, t, η) =

{
χ(x,U (0, η)) if t = 1,

τ(x, 1, η) + τ(x, t − 1, η1) if t > 1.

By the de�nition of η ′1, η , for t > 0, using (9), we have

τ(x, 1, η ′1) = χ(x, A1 ∪U (1, η)) = χ(x, A0 ∪U (1, η)). (10)

Further,

τ(x, t, η ′) =


χ(x, A0 ∪U (0, η)) if t = 1,

τ(x, 1, η ′) + χ(x,U (1, η) \ A0) if t = 2,

τ(x, 2, η ′) + τ(x, t − 1, η ′1) − τ(x, 1, η
′
1) if t > 2.

(11)

By the above de�nition,

τ(x, 1, η ′) = τ(x, 1, η) + χ(x, A0),

τ(x, 2, η ′) = τ(x, 1, η) + χ(x, A0) + χ(x,U (1, η) \ A0)

= τ(x, 1, η) + χ(x, A0 ∪U (1, η)) ≥ τ(x, 1, η) + χ(x,U (1, η))

= τ(x, 2, η).

Also, from here and (10),

τ(x, 2, η ′) = τ(x, 1, η) + χ(x, A0 ∪U (1, η)) = τ(x, 1, η) + τ(x, 1, η ′1). (12)

By domination, τ(x, t − 1, η ′1) ≥ τ(x, t − 1, η1) and hence for all t ≥ 2, we
have, combining (11) with (12),

τ(x, t, η ′) = τ(x, 1, η) + τ(x, t − 1, η ′1)

≥ τ(x, 1, η) + τ(x, t − 1, η1) = τ(x, t, η).
(13)

1.3. If τ(x, s, η) = τ(x, s′, η ′) then η(x, s) = η ′(x, s′).

Proof. If τ(x, s, η) = 0 then clearly η ′(x, s) = η ′(x, s′) since this means that in
both processes, no progress has been made in x from the initial con�guration.
Assume therefore τ(x, s, η) > 0 and hence s, s′ > 0.

Assume s′ = 1. Then τ(x, s, η) = τ(x, 1, η ′) = 1 and hence x ∈ A0 ∪U (0, η).
If x ∈ U (0, η) then s = 1 and hence the same transition that gives η ′(x, 1)

8

also gives η(x, 1). Otherwise s > 1 hence τ(x, s − 1, η1) = 1. Also, x ∈
A0 ⊆ U (0, η ′1), hence τ(x, 1, η

′
1) = 1. The inductive assumption implies

η ′1(x, 1) = η1(x, s − 1) = η(x, s). On the other hand, (9) and x < U (0, η)
implies η ′1(x, 1) = η

′(x, 1) which concludes this case.

Assume now s′ > 1. Since η(x, t) changes if and only if τ(x, t) does we can
assume that x ∈ U (s, η) since otherwise we can decrease s without changing
η(x, s). The same is true for s′. Under these assumptions we have s ≥ s′. By
(13),

τ(x, s′, η ′) = τ(x, 1, η) + τ(x, s′ − 1, η ′1).

We assumed this to be equal to τ(x, s, η) = τ(x, 1, η) + τ(x, s − 1, η1). Hence
τ(x, s′−1, η ′1) = τ(x, s−1, η1). Also η(x, s) = η1(x, s−1), η ′(x, s′) = η ′1(x, s

′−

1), and hence the inductive assumption implies the statement.
2. Let η be a trajectory. Then the synchronous trajectory with initial con�gura-

tion η(·, 0) dominates η .
Proof. Let A0 = L(0, η)\U (0, η). By 1 above, there is a trajectory η ′ with initial
con�guration η(·, 0) dominating η such thatU (0, η ′) =U (0, η) ∪ A0 = L(0, η).
This just means that η ′ is a synchronous trajectory up to time 1. Continuing the
application of 1, we can dominate η by a synchronous trajectory η ′′ up to time
2, and so on.

Now we can conclude the proof of the theorem as follows. Let η be a trajectory
with initial con�guration ξ and let η ′ be the synchronous trajectory with the same
initial con�guration. Let us de�ne

σ(x, s, ξ) = min{t : τ(x, t, η ′) = s},

ζ (x, s, ξ) = η ′(x, σ(x, s)).

To prove (3), note that due to domination, τ(x, t, η) ≤ τ(x, t, η ′) and hence for
every x, y, t there is a t′ ≤ t with τ(x, t, η) = τ(x, t′η ′). Let t′ be the �rst such:
t′ = σ(s, τ(x, t, η)). By domination, η(x, t) = η ′(x, t′) = ζ (x, t). �

3 A rich example of commutative transitions

In this section, we will prove Theorem 3.
We will use the following notation:

b amod m

is the integer x with x ≡ b (mod m) and −m/2 < x ≤ m/2.

9

Proof. Let S2 = S2
1 × {0, 1, 2}. The three components of each state s of S2 will be

written as
s. Cur , s. Prev ∈ S1, s. Age ∈ {0, 1, 2}.

The statement of the theorem will obtain by s. F = s. Cur, s.G = (s. Prev , s. Age).
The �eld Age ∈ {0, 1, 2} will be used to keep track of the time of the simulated
cells mod 3, while Prev holds the value of Cur for the previous value of Age.

De�ne s′ = f2(ξ)(x). If there is a y ∈ N (x) with (ξ (y). Age − ξ (x). Age) amod
3 < 0 (that is some neighbor lags behind) then s′ = ξ (x), there is no e�ect. Oth-
erwise, let σ(y) be ξ (y). Cur if ξ (y). Age = ξ (x). Age, and ξ (y). Prev otherwise.

s′. Cur = f1(σ)(x),
s′. Prev = ξ (x). Cur ,
s′. Age = ξ (x). Age + 1 mod 3.

Thus, we use the Cur and Prev �elds of the neighbors according to their meaning
and update the three �elds according to their meaning. It is easy to check that this
transition rule simulates f1 in the Cur �eld if we start it by putting 0 into all other
�elds.

Let us check that f2 is locally commutative. If two neighbors x, y are both are
allowed to update then neither of them is behind the other modulo 3, hence they
both have the same Age �eld. Suppose that x updates before y. In this case, x
will use the the Cur �eld of y for updating and put its own Cur �eld into Prev.
Next, since now x is “ahead” according to Age, cell y will use the Prev �eld of x
for updating: this was the Cur �eld of before. Therefore the e�ect of consecutive
updating is the same as that of simultaneous updating. �

The commutative medium of the above proof is also called the marching sol-
diers scheme since its handling of the Age �eld reminds one of a chain of soldiers
marching ahead in which two neighbors do not want to be separated by more than
one step. It is shown in [1] that if the update times obey a Poisson process then
the average computation time of this simulation within a constant factor of the
computation time of the synchronous computation.

Remark 3.1 In typical cases of asynchronous computation, there are more e�-
cient ways to build a commutative rule than to store the whole previous state in
the Prev �eld. Indeed, the transition function typically does not use the complete
state of cells in N (x). Rather, the cells only “communicate” in the sense that there
is a message �eld and the next state of x depends only on this �eld of the neighbor
cells. In such cases, it is su�cient in the above construction to store the previ-
ous value of this message �eld. We can sometimes decrease the message �eld by
taking several steps of f2 to simulate a single step of f1. y

10

In case of one-dimensional systems, as in Example 1.1, the “marching soldiers”
scheme has the following strengthening, saying that every asynchronous trajectory
η codes a synchronous computation, no matter what its initial con�guration:

Theorem 4 For an arbitrary one-dimensional cellular automaton A1 = (C, S1, N , f1)
given, as in Example 1.1, via a local transition function g, de�ne automaton A2 =

(C, S1×R, N , f2) as in the proof of Theorem 3. For an arbitrary asynchronous trajectory
η of A2, de�ne the “delay function” δ(x) and the “straightened” space-time con�guration
η̄(x, u), as follows. Let δ(0) = 0, and

δ(x + 1) = δ(x) + η(x + 1, 0). Age − η(x, 0). Age (not reducing modulo 3),

τ̄(x, t) = τ(x, t) + δ(x),

η̄(x, u) = ζ (x, u − δ(x)). Cur

for all u of the form τ̄(x, t). Also, let η̄(x, δ(x) − 1) = η(x, 0). Prev. Then τ(x, t) > 0
implies with u = τ̄(x, t) − 1 that

η̄(x, u + 1) = g(η̄(x − 1, u), η̄(x, u), η̄(x + 1, u)),

and all terms in this equation are de�ned.

The proof is straightforward veri�cation. The synchronous trajectory of A1

derived from the asynchronous trajectory η of A2, is η̄(x, u) = ζ (x, u− δ(x)). Cur.
The delay function δ(x) shows how much “ahead” or “behind” is η(·, 0) in simu-
lating the synchronous trajectory.

Remark 3.2 This theorem fails in in networks containing cycles: there, only cer-
tain initial con�gurations η(·, 0) allow the construction of the delay function δ(x).
In the ones that do not allow it, there is some inconsistency in the timing function
η(x, 0). Age (a loop along which the sum of local increments of Age is not 0). In a
connected network, this loop will imply that each cell can have only �nitely many
state changes, even in an in�nite trajectory. y

4 Undecidability

This section proves Theorem 1.

Lemma 4.1 Consider one-dimensional commutative cellular automata with sites on the
set of natural numbers, with free boundary condition, as in Example 1.1.2 by a set of
states S = {0, . . . , n − 1}, transition functions g : S3 → S and g0 : S2 → S, with
g(0, 0, 0) = 0, g0(1, s) = 1 (for all s). The following problem is undecidable, as a
function of n, g, g0: Is there any synchronous trajectory of this cellular automaton, with
η(x, 0) = 0 for all x and η(0, t) = 1 for some t > 0?

11

Proof. There is a standard construction to simulate Turing machines with such
cellular automata, so the question reduces to the question whether an arbitrary
Turing machine will halt when started on an empty tape. �

Lemma 4.2 Consider one-dimensional commutative cellular automata over the set of
natural numbers, with free boundary condition, set of states S = {0, . . . , n−1}, transition
functions g : S3 → S and g0 : S2 → S as in Example 1.1.2.

The following problem is undecidable, as a function of n, g, g0: Is there any asyn-
chronous trajectory of this cellular automaton, with η(0, 0) = 0 and η(0, t) = 1 for some
t > 0?

The main di�erence between this lemma and the previous one is that we do
not require the initial con�guration η(x, 0) to be 0 for all x, only for x = 0. Other-
wise, since the automaton is commutative it does notmatter whether the trajectory
asked for is synchronous or asynchronous.

Proof. From now on, without danger of confusion, let us write g(r, s) = g0(r, s)
and forget about g0. Let us be given a cellular automaton g like in Lemma 4.1,
with state set S = {0, . . . , n −1}. We construct a new cellular automaton over the
set of states S′ = S ∪ {n}, with the following transition function g ′. Over states
s < n, the functions g ′ behave as g. Further, we have the following rules for g ′

when at least one of the arguments is n.

(n, s) 7→ g(0, 0),

(s, n) 7→ g(s, 0) for s < n,

(n, r, s) 7→ n,

(r, n, s) 7→ g(r, 0, 0) for r < n,

(r, s, n) 7→ g(r, s, 0) for r, s < n,

and (r, s, n) 7→ s, (r, s) 7→ r in all remaining cases. By these rules, the symbol
n “sweeps” right and in its wake the rule g will operate as if it had started from
the a con�guration of all 0’s. Thus, let η be the synchronous trajectory of g with
η(x, 0) = 0 for all x. Then clearly if η ′ is any synchronous trajectory of g ′ with
η ′(0, 0) = n then for all t > 0, for all x ≤ t we have η ′(x, t) = η(x, t).

Let us now apply the construction of the proof of Theorem 3 to g ′ to obtain
commutative rule g ′′ over the set of states S′′ = (S′)2 × {0, 1, 2}. We will prove
that g ′′ has an asynchronous trajectory η ′′ with η ′′(0, 0) = (n, 0, 0) and η ′′(0, u) =
(1, 1, 0) for some u, if and only if g has a synchronous trajectory η with η(0, x) = 0
for all x and η(0, u) = 1 for some u. Since we know that the question whether
this happens is undecidable from g , we will have proved that the question whether

12

some cellular automaton has an asynchronous trajectory η with η(0, 0) = s0 and
η(0, u) = s1 for some s0 , s1 is undecidable; this will complete the proof.

The “if” part: Suppose �rst that g has a synchrounous trajectory η with η(0, x) =
0 for all x, and and η(0, u) = 1 for some u. As mentioned above, then the syn-
chronous trajectory η ′ of g ′ has η ′(x, t) = η(x, t) for all x ≤ t. Consider the
synchronous trajectory η ′′ of g ′′ started from η ′′(x, 0) = (n, 0, 0) for all x. Then
for all t > 0 and all x ≤ t we have

η ′′(x, t) = (η ′(x, t), η ′(x, t − 1), t mod 3) = (η(x, t), η(x, t − 1), t mod 3).

Let v be the �rst number > u + 1 divisible by 3. We have

η ′′(0, v) = (η(0, v), η(0, v − 1), 0) = (1, 1, 0).

The “only if” part: Assume that η ′′ is an asynchronous trajectory of g ′′ with
η ′′(0, 0) = (n, 0, 0) and η ′′(0, w) = (1, 1, 0) for some w. Then τ ′′(0, w) > 0
and de�ning u = τ̄ ′′(0, w) − 1, Theorem 4 implies

η̄ ′′(0, u + 1) = g ′(η̄ ′′(0, u), η̄ ′′(1, u)).

Applying the theorem repeatedly, we obtain

η̄ ′′(0, v + 1) = g ′(η̄ ′′(x − 1, v), η̄ ′′(x, v), η̄ ′′(x + 1, v))

or, if x = 0, the same relation with the �rst argument of g ′ omitted, for v =
0, . . . , u and x ≤ min{v, (u−v)}. Now, if η ′′(0, w) = (1, 1, 0) then η̄ ′′(0, u+1) = 1
while η̄ ′′(0, 0) = n. We have just found that η̄ ′′(x, v) develops according to g ′ for
v = 0, . . . , u and x ≤ min{v, (u−v)}. As discussed above, therefore η̄ ′′(0, u+1) =
1 if and only if g computes 1 at (0, u + 1) from an all-0 initial con�guration. �

Proof of Theorem 1. Let the local state space be the set of integers S = {0, . . . , n +
2}. Let g : S3

0 → S0 and g0 : S2
0 → S0 be the rules for a commutative cellu-

lar automaton transition rule with state set S0 = {0, . . . , n − 1}. We de�ne the
transition function f . We will write f (x, y, z) = y′ as (x, y, z) 7→ y′. We require

(s, n, 0) 7→ n + 1, (14)

(s, n, 1) 7→ n + 2, (15)

(r, s, t) 7→ g0(s, t) for all r ≥ n, r, s < n, r , 1, (16)

(r, s, t) 7→ g(r, s, t) for all r, s, t < n, (17)

(r, s, t) 7→ g(r, s, 0) for all r, s < n, t ≥ n, (18)

and (r, s, t) 7→ s in all remaining cases. Let us show that f has invariant histories
if and only if g has no asynchronous trajectory η0 over C = Z+ with η0(0, 0) = 0

13

and η0(0, t) = 1 for some t. Assume �rst that g has such a trajectory. Let us de�ne
the initial con�guration ξ of f as ξ (x) = n if x = −1 and 0 otherwise. We may
apply rule (14) �rst to get η(−1, 1) = n + 1. Or, we may apply rules (16),(17),(18)
�rst to cells x > 0 on the right repeatedly. Sooner or later we have η(0, t) = 1,
which allows η(−1, t + 1) = n + 2 by rule (15) in the next step. Thus, depending
on the order of rule application, we obtained in cell −1 the sequence n, n + 1 or
n, n + 2.

Suppose now that g has no such trajectory and let ξ be an arbitrary con�g-
uration of f . Each occurrence of a state ≥ n remains such an occurrence. On
segments between them, the commutative rule g works. The only other transi-
tions possible are (r, n, 0) 7→ n + 1 and (r, n, 1) 7→ n + 2. Assume η(x, 0) = n
and consider the sequence of di�erent values in η(x + 1, t). Let us show that 0
and 1 cannot both occur in this sequence and hence only one of the transitions is
possible. Indeed, if 0 occurs before 1 then our assumption about g excludes the
occurrence of 1 in the sequence any later. If 1 occurs in the sequence before 0
then our rules (in particular (16)) do not allow any change of the state of x + 1
after that. �

Acknowledgment I thank Robert Solovay for pointing out several errors in the
�rst version, Wayne Snyder for calling my attention to the con�uence literature
and Deepak Dar for pointing to the sandpile literature.

Bibliography

[1] Piotr Berman and Janos Simon. Investigations of fault-tolerant networks of
computers. In Proc. of the 20-th Annual ACM Symp. on the Theory of Computing,
pages 66–77, 1988. 3

[2] Gerard Huet. Con�uent reductions: Abstract properties and applications to
term rewriting systems. J. of the Assoc. for ComputingMachinery, 27(4):797–821,
October 1980. 1

14

	Introduction
	Commutativity implies invariant histories
	A rich example of commutative transitions
	Undecidability

