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COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

P. GACS and J KORNER
(Budapest)
(Reecived February 5, 1972)

1. Introduction

Up to now mutual iformation has no immediate interpretation.
It appears nowhere as the result of a coding problem. Imre Csiszér raised the
problem whether there 15 any connection between the mutual information
E‘log_.fp‘t* =)

P(§ =) P(n=y)

them which allows to discern all their common mformation. More precisely:
gven the 1andom variables & and 5 we ‘are looking for a code consisting of
three parts: 4, B and C where £ can be decoded from 4 and C, while 7 can be
decoded if B and C are known. We shall call such a code a Y-scheme n the
sequel

Our results are of negative character. Prescribing for the total length
of the codes 4, B and € that 1t should not excced too much the optimum length
of & common code of the puir (&, 1), the optimum taken without any structural
condition on the encoding, we shall prove m the case of memoryless sources
that common mformation always corresponds to some deterministic interde-
pendence of the two sources. Thus our aim s to show that common information
has nothing to do with mutual mformation.

One can formulate the same question also m terms of Kolmogorov’s
“complexitv” and “mutual information” of mdividual sequences. Our results
remam here valid (See § 6 of the present paper).

of two random variables and such a coding of

2. Formulation of results

First of all let us introduce some notations and defimitions.

Definition 1. A discrete memoryless stationary information source
(DMSS) with fimite alphabet X 1s a seq {&r} =1 of independ identi-
cally distributed random variables &, with values in the finite set X. We denote
the source by %.
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‘Wo shall often use the following notations:

P& =z): the probability of the event [§ = z]
H(&): the entropy of the random vanable &.
=5
X" the n-th Cartesian power of the set X.
I={0,1}: the set consisting of 0 and 1.
= (I

k=0
U(f): the length of the bmary word f.

Definition 2. A mapping ¢: X" — I*1s called a (binary) block-code. g is
an e-code (0 << & < 1) of the DMSS % = {£,),-, if there exists a mapping
@' I* — X" such that the inequality P[¢’(¢(x)) = 2] holds. P(¢’(p(x)) 5 2]
is the probability of error of the code described above. <g

All the log’s in this paper are to the base 2.

After these generally adopted definitions let us turn to the concepts of
Y-scheme and common information.

Definition 3. Let % = {£,}5, and ¥ = {n,}5, be two DMSS's with
finite alphabets X and Y. The joint distribution of the pair (£,, £,) — where
the pairs (£, 7,) are supposed to be independent for different i's, — and
e>0, 8 >0 are given. We call a Y{)-scheme (or simply Y-scheme) the
following coding scheme:

(i) f and f’ are binary block codes of the set X",
g and ¢’ are binary block codes of ¥" with
PIf(E) = g1 >1 — & (1)
(11) the juxtaposition ff’ of f and " 1s an e-code of % and similarly
gg' is an e-code of Y.
) Uff) = U+ U < 1+ 8 H(n"
Ugg') = Ug) + Ug") < (1 + &) H(7"). (2)
Definition 4. Let us write J,(¢, ) = max I(f) where the maximum 18
taken over all the Y, s-schemes coding the sources % and ¥. Ju(e, 8) is the
common information of &" and 7"
One could think that the quantity J.(e, 8) and the mutual information

I(&" A\ n") are closely related but this is not true. We shall show that in general
cases of dependence J,(¢, 8) is of smaller order of magmtude.
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In order to formulate our result let us introduce & notion of accessibility
with respect to the joint distribution of ¢, and 7y, Which 18 closely related to
the one introduced n the theory of Markov-chains (see [5]). We can assume
without loss of generality that for every « € X and y €Y Pl =12] >0and
P[n = y] > 0. We shall say that = € X and z’ € X are communicating (write
2 ~ ') if there exists some sequence zy,z, ... zy with z, € X, y, € ¥ and
Pl =2_,n=y]>0, Pl==z,n=y] >0, where z =z and zy = 2.
It 18 obvious that 2’ ~ a 1s an equivalence relation on X. Let the corresponding
equivalence classes be X, for i = 1,2,...,7. Simularly we define a relation
Y~y on Y equivalence classes ¥, i=1,2,...,5 It 15 easy to see that one
can pass from a given X, only to a single Y, with positive probability and vice
versa. Hence one has r = s. If we give the same index to these “communicat-
ing” classes, we obtain

PmeY;|é€X)=PteX [neY)=4, (3)
where 8,; denotes the Kronecker symbol.

Definition 5. We shall call the above unique partition of X and Y aner-
godic decomposition.

This terminology will be motivated later on. The introduction of a random
variable { taking its values from the set of the indices of the equivalence classes
and defined by

(=i if feX,

proves to be useful. One has obviously:
P[{ =i]=P[¢ € X, nevx) )

Passing to the product space the sequence (&}, 7,), .. ., (&n, 7,) defines a
sequence of random variables &y ... &pin a similar way. It 18 evident that the
¢i’s are independent and identically distributed. The different classes of the
ergodic decomposition of X" and ¥" correspond to the values of ¢" in a one-
to-one way.

It 1s clear that {" represents some “common information” of &" and 7'
The amount of this information is H(:") = nH(Z,). The following theorem states
that there is no more common iformation mn &" and 7".

Theorem 1. Two DMSS’s %€ and ¥ and ¢ (0 << &< 1) are given. If 6,
tends to 0, we have

b sup - J, (e, 8,) < H(Z,) (50)



Furthermore there eaists sequence 9, — 0 such that the equality
1
b -, (e,8,) = H(Z,) (5b)
new
holds We remark that the above it does not depend on e.
Origmally we were interested to know m which eases 1s equahity between
the Linut of (5b) and the mutual information lim LI(E" A"y =15 A ).
New N
The mequality H(:,) < 15, < ) 18 obvious.

Corollary 1. The limit H(S,) of the common information equals I(§, A\ 7,
only m the trivial case when & and 7, are “conditionally independent”, re. if
and only if &, and 7, are independent for any fixed value of {,.

Proof of the corollary. The stat is an i 1 of the
following trivial identity:

1(5A?7)=H(C)+2P(C=Z)‘I(EAM;:Z)-

Hence follows that I(& A ) = H(S) holds 1f and only 1f IEAD|E=2 =
= 0 for any fixed z

Proving Theorem 1 we shall answer also the following question which
we believe to be interesting m 1tself.

Definition 6. Given A0 < A< 1) we call a A-block a pair of sets (4, B)
with 4 € X" and B < Y" when

P €|y eB) > 2 P@"€B |8 €)= 1 (6)
holds.

Comparing (3) and (6) 1t 1s evident that our ergodic classes are A-blocks for
every 2.The question 1s whether a A-block may be essentially smaller than the
smallest ergodic class. According to Theorem 2 the answer 1s negative.

Theorem 2. Putting
Qn, A) = min P(&" € 4, o' ¢ B)
P ed | eB >
P €B|&€d)> 2

for any sequence 1, — 9~ with &, — 0 we have

Iim 71— «log Q(n, 4,) = mm P(l=2).
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In the following paragraphs we shall reduce the coding problem to a problem
concerning blocks and prove Theorems 1 and 2 by means of a pivotal lemma.
Wo shall often use a very clementary Markov-type mequahty for bounded
random variables. Throughout the paper 1t 1s referred to as the reverse Markov
mequality. A proof — if needed 15 to be found in Loeve [5] For the termino-
logy of Markov-chains see [1] and [5].

3. Blocks

The conseq of mequahty (1) are p

Proposition 1. The bmary block codes f and gof & and o" respectively
are supposed to have the same length { — {(f(¢")) and satisty (1). Denoting by
C(e) the set of those ¢'s i J' for which

PUIE" = 9" [ 1) = ) > 1 — Ve and
PUICE" = g(n") 9" = ) > 1 — V- (7)
we have P[/(") = g() € C(e)] > 1 — 4 V.
Proof. Let us introduce the sets
AE) = {c €1 Pgl) = c [[() =c) >1 e} and
B = e el PUE) =clgm=c)>1 ).
A reverse Markov inequality combined with (1) implies that P[/(%) ¢ A(e)] >
>1- Ei and Plg(n) € B(e') > 1 — ;i Choosing &’ = |5 we wnite C(e) —

= A(Je) N B(/?). Obviously for ¢ < C(e) one has (7).
On the other hand we obtain

2 PUE) =g(n") =] > (1~ Ve - PIE" € A > (1 =)o)z >1 —2|e

CeA()
and similarly: P[f(¢") = g(m"), g(n") € B(Je)]>1 -2 Ve.

For the intersection of A(/£) and B(} €) thus follows: P({(E") = g(n") €
€Ce1>1 4 V€. Proposition 1 says that a large part of (X", ¥") consists of
(I }/&)-block. In this Wway one can see that the number /(f) — 1.e. the length
of the “stem” of the ¥-scheme is related to the “number of blocks m (X", ¥")".
We shall show that every block 1s essentially an ergodic class or the union of
several ones. Before doing this we need one more proposition. We use the nota-
tions of Defimtion 3. Let us be given a sequence of ¥-schemes Yﬁf',,l with codes
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s Grs frr G and 8, tending to 0. Write [, = U(f,,). We want to obtain an upper
bound for lim sup %l,,. Dong this 1t will be useful to replace f, by a furtable
e

code of 1t.

Proposition 2. If J, = Un(fs) is any code of f, having error probability
less than A (where 2 < 1 — &), of some fixed length, the inequality

lim sup 1 1(f,) = lim sup 1 1, follows.
nea M new M

Proof. It 18 obvious that juxtaposing f, and f, we obtain a code f, f; of

&" with error probability less than & + A. Thus Shannon’s classical source

coding theorem implies that lim sup%l(}n fr) > H(£,). Since 8, — 0 implies

that hm %l(],. £ = H(£), we have hm sup%l(f,.) o> lim %I(/,.f,.). Henco
our assertion becomes trivial. Put e
PalEY) = (FalEM, 87 Poaln") = (guln™), ") (8)

Here {, 18 the random variable defmed in § 1. ¢, and y, are such refinements
of f, and g, which take different values in different ergodic classes. Obviously*

P(pa(§7) = ¥o(n) = P(fo(En) = gu(n™) > 1 — . 9)

Thus the codes g, and y, satisfy the conditions of Proposition 1 and so the
assertion remains valid for them. From now on, C(¢) corresponds to ¢, and yy.
Since @, 18 a refinement of f,, from Proposition 2 we obtain for any code n =
= Un(@s) having error probability less than 1 that

[ ) 1
llfy_ﬂ_}lp;  Ugpn) 2 lim sup o - Ufn) -

In the following we shall give an upper bound of l|m sup — + U@n) for asmtable
series of codes U,.
4. A lemma

First of all we prove that g, (defined by (8)) does not take too many
different values in a single ergodic class. The proof is based upon our man

Lemma. Suppose for the sets 4, — X" and B, C Y" that
P(E"€ A,|n"€B,) >2"* and P(y"€ B,|E"€ 4,) > 2" (10)
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where ¢, — 0. For the sake of simplicity let ¢, > -l~ A, C Ayand B, B,
where 4, and B, are ergodic classes, it follows tl:n;
P(E"€ A, 1" € B,)
P(ire 4, n"€B,)
where C is a constant depending only on the distribution of the pair (&, 7).

> 2-nC-ea-logten

Proof. The simple main idea of the proof is that if we get from 4, to B,
with a large probability and vice versa then applying formally both transitions
one after the other we get from 4, back to 4, with quite a large probability.
On the other hand iterating this formal transition many times, the set 4,
“‘spreads” over its whole ergodic class. Passing over to the demonstration, we
write

Wa'|o)= S P =2 |m=y)  Py=yl& =2 if zocX
Yy

Now we define Markov chains {&}i.,. Let &, = &, and P(nsny =
=2’ | én = 2) = W(z’ | 2). For different n's we suppose the varables &,
to be independent.” Let us write W®(z’ |2) = P(éy =2 | = 2). Tt 18
easy to see that the ergodic classes of the transition matrix W(z’ | ) just
coincide with the X s of (3). That 1s why they were called ergodic classes.
Especially the matrix W(z’ | z) has no transient element. This follows also
from the fact that P[¢,=x]— evidently an mvariant distribution of W — is
positive for every z € X. Moreover W(x | z) is positive for every « € X, hence
no ergodic class is cyclic. Thus we can apply the well-known theorem on con-
vergence of the transition probabilities to the case of W(z’ | ). It states that
there exist probability distributions I7,(x) for which I7,(z) > 0 if and only if
« € X, and also a 6 (0 < 6 < 1) depending only on the matrix W such that
| W®’ | ) — IT,(x") | < 8" for every z and «’ in X,. From the last inequality
we obtain

W®(2' | z) < 268 IT (") (11)

where C, 1s a constant depending only on the matrix W. Let us write &'¥ =
= &k bak - - - Eni and especially £ = &, We define

IWOE| 2 = P(em = 3| 570 = a7)

and especially W{'(E|x) = W (Z|z). Smularly W(4'|4) = P(E"*¢ 4’| € 4).
{&"}20 is a Markov chain with k-step transition probabilities W¥(z" | 2")
The identity

Wi, |2 = 3 PE" =" |5 = y)- Py =y &7 ==7)
e
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remains valid, hence W { plays the role of the matrix W(z’ | z) on the product
space. On the other hand

W@ |27 = [T WOE |2, . (12)
J=1

Every sequence = i,i,. . .4, of the indices correspond to the ergodic class
n
X9=X,x X,. .x X, X" We write [T&") = ][ II,,z,). The invariant
=
distribution I7, plays the role of I7, in the product space. From (11) and (12)
we obtam for every t = iy, . . . i, and 2", z" € X© that
W@ [ < 260 1,3
P(in = 2n) . R ®
Now { —> ——~— is an mvarant distribution on X', However every
P € XO) Jinexo

n
ergodic class has a unique invariant distribution and therefore B(;

P(EE X))

n

= IT(z"), 1e.
p P(E"=2")
PiEnexn)’

Let us now consider the set 4, of the lemma. 4, < A4, with 4, bemng an ergodic
class. Replacing X by A, (12) results 1n the mnequality

1 LN W ny . P(En —
PECA) ,.%‘n Wi, |z") - P(E" = 2") <
Pned,)
P(ned,)
We want to obtan a lower bound for W$(4, | 4,). Let us wnite 4, = 27"
Starting with the estimstion of W{’(A, | 4,) we have

W4, |4,) = 3 PE€d,|n"=y") « P =y"| "€ 4,) =
ey

WGE, |2") < 260m ¢

(13)

W4, | 4,) =

. 9Cien o

1
= S PrEned,\n"=y") = (14)
PEed) S I
1

— L > p@ea =y Por=y).
PEEA) o ‘"

From the conditions of the lemma we have

P =y")
W< 3 OPEEA "=y e
r%z. l P(n" € B")
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Applying u reverse Markov imequality we obtam

N Py =y
PPE A =y Pl € B)
Multiplying both sides by P(7" € B,) this gives

1
P =y") = 3 POreBy).

P E Anln) > I
Combining the last inequality with (14) and (10) we obtain

W, | 4y > DT EBD Ly PETE € B, (22

Pned,) 8" PEn€A,)

Now we iterate the above estimates. By mduction

Wi, 4 22 (2

Putting k = 2" and 4, = 27"
Wi (4, | 4,) > 2~ eeatd,

1 .
From the assumption that &, >—— we thus obtain
n

WA, | 4,) > 275 e,
Comparing this inequality with (13) we have

P(s"¢ 4,)
P@Ered,)

. 9enet

2-8n WA, | 4,) <

P "EA—)Zz R
P(ied,)
Finally let us choose & in the exponent of the n[,ht hand side in a sultable
manner. Let 8" = 27%* We preseribe for A th.xtﬁ ln;, — gl. < —Iog —
It 1s possible to choose k = 2" within these bounds. va
PiEred,)

“n) S, 9-n(C. eu tog?en)
Psred,) =
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Using (10) this yields

P(S"G{,.-n"élin) g-ne. P(E"GA:) 91 C e loghen
P(§"€ 4y, 0" € Br) P(&"ed,)

what we wanted to prove.
5. Proof of Th 1 and 2. Rand length

We have all the tools to finish the proofs of Theorems 1 and 2.

Proof of Theorem 2. This th is an i di q of the
lemma. Given any series 1, = 27" with ¢, tending to 0 one has the mequahity:

n

% < log@(n,4) > — C - € - logte, -+ mn |- - log P(E"€ X, 7 €Y )| .
1
Since ¢, - log? ¢, tends to 0 when &, — 0, evidently
tim inf L - log @(n, 4,) > min P(¢ = ).
bk i

On the other hand the choice (An, Ba) = X, Y,)" where z, is the index of

the ergodic class having minimum probability, gives that him llog Qny 4,) =
= min P({ = z]. e
z

End of the proof of Theorem 1. Now we turn to the proof of the inequality
(52). Let us consider the function ¢, defined in (8). Apart from a set of pro-
bability 4z this function is defined on (1 — V%)-blocks (see Proposition 1).
Let us choose 4 > 4 |/z. We shall prove that there exists a code @n = Uslgn)
of pa(én) with some fixed length and error probability less than 2, which per-

forms the inequality lim taupl < Uga) < H(EY)-
few M

The construction of the code U, is the following: let U, take a constant

value on the complementary set of C(e) defined in Proposition 1. On C(e)

we code the values of @n(8") = (fa(£"), L") in two steps. First we construct
4 (1 — 4 /) — code (see Defimtion 2) of ¢ with codewords’ length less than
nﬂ(l,) + &y Jn. According to the lemma g, takes less than 2K:©°#"
different values in an ergodic class, i.e. for any fixed value of ¢". This is so
because the different values of the restriction @n | C(e) are taken of different

(1 — V&)-blocks. Thus the whole code U, h:
+ K, Va4 K, login, n may have length less than nH((,) +
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So we obtain that hm sup%l((i,.)gli(cl)AThis proves (5a). The second

n
part of the theorem is rather trivial. It is enough to prove at this point that
any ¢;-code of the sequence {" with & < & can be completed by addition of a
complementary code of length nH(&, |{,) + K |/n to an & = ¢, + &,-code of
the sequence ¢". Although this is very simple to show we prefer to give a
reference where the proof 1s done (see [4]). Now our demonstration is complete.
We have shown that it 1s not possible in general to code two DMSS’s so that
the resulting codes have some fixed common length of order n. All the same
problem concerning the length of a possible random coincidence of codes has
remained open. Which is the behaviour of the maximum expected length of
random concidence? We shall show that this length is asymptotically equal
to nH((,). Let us formulate first an exact form of the question.

Definition 6. Let Fn(t") and G.(1") be e-codes of the DMSS's % —
= {&.} and Y = {n"} respectively. Suppose that
UFA(EN) < (14 8,) - HE and YG(n") < (L + 8,) - Hip") .

Let the integer valued random variable v, be the length of the maximum
common beginning segment of the binary sequences F,(¢") and G(7"). The
random variable v, is called the random common length of the codes F, and Q,.

Theorem 3. Let E(v,) denote the expected value of v,. Supposing that
8, — 0 we have

him sup E(v,) < H(Zy).

Proof. Let F, and @, be given. From a reverse Markov inequality we
obtain for 0 < z < 1 that

- E(v,)
P[V >1l—oc)‘Ev a n.
n o)1 > [(1+8,) - HEN — (1 —a) - B3,
By
2) a "

>

Let us fix independently of n. Put I, — (1—a)

i . = (1 —a) - B(y,). If f,(£") and g,(n")
denote the first /,, lette i " (1]
(15) yiolds etters of the binary sequences Fof&") and Go(n”) respectively,

Pl = goo] > % Bl)
! 2H(E) n
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Choosing for f} and g, the remammg segments of #, and G, we obtam Y-
L B

2H (&) n

common length 15 these Y-schemes is [, = (1 a) © E(r,). Thus Theorem 1

implies that

schemes having error probabilities equal to max [e, 1 —

E(v,)

n

hm sup
ne=

<)

The complexity interpretation of the result

This section will be understandable only for readers acquainted with the
notion of complexity of a finte word given by Kolmogorov [1, 2] (see also
3], [4]). Let X be a finite alphabet contaming 0 and 1, | X | = 8 Let 7 be
a umversal Turing machine the operation of which results in a partial function
T(p,x), T:I*x X* — X*. We define :

Kp(y|e)= mm (p).
Tp, =y

It 15 known that 1f 7' 1s another universal machine then | Ky — Kr | < Crp
where the constant Crr. depends only on the two machines Let us fix 7' once
for ever and denote K(y | ) = K(y | ) the “conditional compexity” of y
withrespect to z, K(x) = K(x | A) the “complexity” of x, K (x, y) the “common
complexity” of z and y. The last can be defined for example as the length of
the shortest program p € I* for which 7(0p, 1) = z, T(1p, A) = y. We defie
further I(x y) = K(x) — K(x | y), the “mutual mformation” of = and Y
We aite from [3] the following facts among which only (16) 1 not very easy
to see Let < resp < denote the inequality resp equality up to an additive
constant. By A we mean equahty up to an additive term 0(log K (x, y)). Then
we have

K| y) < Kx) < ) log s
K@y + Ky |2) > K |2)

hence denoting A(z, y) = K(x | y) + K(y | x) 4 has approximately the pro-
perties of a metrics. Further

K(x,y) ~ K@) + K(y | x) (16)

hence I(x:y)~ I(y : x).
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(@Y = (&) s a stationary source which is ergodic then for
almost all r= 2, ., y= Yy -

1 Iy — l_ n 1 LAY IR 1 0
i K(") = 1) = ’!gv‘l_ o HEn, :-Aw:;K(r 2y -'lll_rg 5 HE )

new

[ PR . dim L rn sy — i L gy

N 1L new B new P M

The approximate symmetry of I(x . y) suggested here the question: can we
#ive a symmetric definition of 1t? For example 1s there a triple a, b, ¢ ¢ I* of
programs with

Tlea, A) = x, T(ch, A) = Y
Ha) ~ K(x | y), I(b) ~ Ky |2), Ue) = I(x: y).

More generally let z,y € X", we shall say that z represents some common
mformation of x and yf K(z |#) ~ 0, K(z | y) ~ 0. Let us define
J(x, ) = max K(z)
2: Kz |2)~ 0
K(z|y)~0.

Here ~ must be given m a Int more exact sense but we do not wish to be quite
precise here. If K(z) ~ J(x, ¥) then z is almost determined in the sense that 1t
' 0 a given “sphere” of radius ~ 0 in the metrics 4. In this case we shall
sy that z is the common information of z and y. Our question was whether
S, y) ~ I(x y) The answer 1s negative in a rather general case. Let £ and
7" denote the random variables defined in § 2. (Suppose that X — Y.) Then in
the product space with a probability tending to 1 we have by Theorem 1 that

o

< ts the common mformation 1 & and 7"
We are indebted to lmre Csiszir sr. for his stating of the problem and
constant aid.
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