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The problem

Imagine two infinite 0-1 sequences x, y running in parallel, like a
conversation.

Definition
We call x, y compatible if we can delete some 0’s from both, so that in
the resulting sequences x′, y′, we never have a collision
x′(i) = y′(i) = 1.
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The problem

Example
The following two sequences are not compatible:

x = 0001100100001111 . . .,
y = 1101010001011001 . . ..

The x, y below are. (We insert 1 in x instead of deleting the
corresponding 0 of y.)

x = 0000100100001111001001001001001 . . .,
y = 0101010001011000000010101101010 . . .,
x′ = 000010011000011110010101001001001 . . .,
y′ = 01010100010110000000101011011010 . . ..
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The problem

The problem

Given two independent, i.i.d. random 0-1 sequences X, Y.
P [ X(i) = 1 ] = P [ Y(i) = 1 ] = p.
They are never compatible with probability 1, since
P [ X(1) = Y(1) = 1 ] > 0. It is easy to see that for p > 1/2 they are
compatible with probability 0.

Problem
Is there a threshold for p below which they are compatible with positive
probability?
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The problem

An “application”

A leisurely, erratic conversation (say, in a retirement home), between X
and Y.

X(i) = 1: X is talking at turn i.
X(i) = 0: he is listening.

Leisurely, since it lasts forever. Erratic, since determined by the
i.i.d. sequences X, Y.
A nurse wants to help. She can only put, say, X to sleep temporarily,
while Y is only listening (she inserts 1 into the sequence X). This only
postpones the actions of X. She wants that every time one party talks,
the other one listens.
The nurse is a fairy, she is clairvoyant, sees both infinite sequences
X, Y. She can do this iff X, Y are compatible.
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The problem

Phase transition

Theorem (Winkler, Kesten)
If p > 0.44 then X, Y are incompatible with probability 1.

Proof sketch. X, Y are compatible iff we can delete 0’s from both, so
that they become complementary. If p ≈ 1/2 then we cannot delete
much. So, by changing the two sequences just a little bit, X′ would
completely determine Y′, making the joint entropy of n bits of both X′

and Y′ only ≈ n; but it is really ≈ 2n.

Theorem (Main)
If p is sufficiently small then with positive probability, X, Y are compatible.

So, there is some critical value pc. Computer simulations by John
Tromp suggest pc ≈ 0.3. My lower bound is about 10−300.
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The problem

An oriented percolation

The graph G(X, Y).
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The problem

This sort of percolation, where two infinite random sequences X, Y are
given and the openness of a point or edge at position 〈i, j〉 depends on
the pair 〈X(i), Y(j)〉, is called Winkler percolation.
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The problem

Power-law behavior

Theorem

P [ 〈0, 0〉 is blocked at distance n but not closer ] > n−c

for some constant c > 0 depending on p.

In typical percolation theory, this probability decreases exponentially
in n.
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The problem
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The problem

Related synchronization problems

0

1
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Y : WAIT

X : GO

X, Y are tokens performing
independent random walks on the
same graph: say, the complete
graph Km on m nodes. In each
instant, either X or Y will move. A
demon decides every time, whose
turn it is. She is clairvoyant and
wants to prevent collision.
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The problem

Example

X = 233334002 . . .,
Y = 0012111443 . . ..

The repetitions are the demon’s insertions.
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The problem

Clairvoyant demon percolation: random walk on the complete graph
K4.

X

Y

0→ , 1→ , 2→ , 3→ .

Péter Gács (Boston University) Compatible sequences April 9, 2008 13 / 30



The problem

This problem (also by Winkler) had been open for 10 years, and the
current problem was designed as a similar but easier one. By now I
have solved it, by a similar (somewhat more complex) method.
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The problem

Related results

In the color percolation problem, we may ask: how about the
undirected percolation? (Allowing the demon to move backward on
the schedule, as well as forward.)
This problem has been completely solved by Winkler and,
independently, by Balister, Bollobás, Stacey. It is known exactly for
which Markov processes does the corresponding undirected
percolation actually percolate. For random walks on Km, there is
undirected percolation for m > 3 .
The undirected color percolations have exponential convergence; their
methods will probably not apply to the directed case, which has
power-law convergence (by an argument similar to the one for the
“chat” percolation).
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The problem

The color percolation problem is harder. In the present work we can
rely on monotonicity (and the FKG inequality, and there is a natural
concept of “wall” (see below).
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Renormalization

Method: combinatorial renormalization

Messy, laborious, crude (forget exact constants!), but robust. For
“error-correction” situations.
For appropriate ∆1 < ∆2 < · · · , define the square �k = [0, ∆k]2. Let Fk
be some ultimate bad event in �k. (Here, the fact that (0, 0) is blocked
in �k.) We want to prove P(

⋃
k Fk) < 1 .

1 Identify simple bad events and very bad events: the latter are
much less probable.

2 Define a series M1,M2, . . . of models similar to each other, where
the very bad events of Mk become the simple bad events of Mk+1.

3 Prove Fk ⊆
⋃

i6k F ′
i where F ′

k says that some simple bad event of
Mk happens in �k+1.

4 Prove ∑k P(F ′
k) < 1.
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Mazeries

Mazeries

Bad event: a wall in �k+1. We also need good events: to each wall, a
fitting hole (see “power-law”).

The model Mk is built on abstract walls of various types, and fitting
holes. Mk itself is called a mazery (a system for making mazes).
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Mazeries

Walls are the simple bad events; what are the very bad events?

When two (vertical) walls occur “too close” to each other (some
parameter says how close), we get a compound wall of Mk+1,
penetrable only at a fitting (horizontal) compound hole.
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Mazeries

The other kind of (say, horizontal) very bad event occurs if a certain
type of hole is completely missing on a (some parameter says how)
“large interval”. This gives rise to a (vertical) wall of Mk+1

0 called an
emerging wall. A fitting (horizontal) hole is an interval of comparable
size in Mk+1

0 without any wall at all.
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Mazeries

M1

↑

M2

↑

M3
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Mazeries

Renormalization

The operation Mk 7→ Mk+1: remove isolated walls (and holes),
introduce the new, higher-level walls.
Classical renormalization: Say, when the Ising model is subdivided
into large blocks, and the spins of each block are summed up into
super-spins.
Combinatorial renormalization is more complex: the system of
concepts delivering self-similarity is different in each situation.
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Mazeries

Distilled leftovers

Some parts of the model Mk function as the still needed effects of
suppressed details of M1, . . . ,Mk−1. These are the notions of clean
points and a slope constraint.
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Mazeries

We will have the following properties, with a

σ < 1/2.

Condition (Reachability)
Lack of walls, cleanness and the slope constraints imply reachability.

(x1, y1)

clean

No walls
(x2, y2)

clean

σ ≤ y2−y1

x2−x1

≤ 1/σ
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Mazeries

Condition (Enough clean points)
Every interval of size 3∆k that does not contain walls, contains a clean
point in its middle part.

Condition (Inherited cleanness)

The event that 0 is not clean is in Mk is in
⋃

i<k F ′
i .
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Mazeries

Walls and holes are shown with size 0. There are two wall types. Holes
appear 10 times more frequently than walls. The minimum slope is
0.2. Cleanness not shown. Only the clean dark points are really
reachable. Black: compound walls?
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Main lemma

Main lemma

Lemma (Main)

If p is sufficiently small then the sequence Mk can be constructed, in such a
way that it satisfies Conditions 1,2,3 and ∑k P(F ′

k) < 1.

Proof of the theorem from the lemma: Assume
⋃

k F ′
k does not hold.

By the Inherited Cleanness condition, 0 is clean in each Mk.
By the condition on Enough Clean Points, for each k, there is a point
〈xk, yk〉 in [∆k, 2∆k]2 that is clean in Mk.
For each k, it also satisfies the slope constraint 1/2 6 yk/xk 6 2. Hence,
by the Reachability Condition, is reachable from 〈0, 0〉.
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Main lemma

3∆1

∆2

2∆2

(x1, y1)

(x2, y2)
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Main lemma

Remarks on the proof

The challenging parts of the proof are the following.
To give the combinatorial definitions of walls, cleanness, and so on
in a way that provides the independence and monotonicity
properties needed for the probability estimates.
There will be a constant 0 < γ < 1 (independent of the level k) with
the property that if a wall has probability upper bound p then the
corresponding hole has probability lower bound pγ. The proof of
the probability lower bound on holes is a little delicate.
Wall types have to be defined carefully, to avoid a proliferation of
them (that would cause problem with probability bounds).

Péter Gács (Boston University) Compatible sequences April 9, 2008 29 / 30



Main lemma

Open problems

Simplify!
Improve the lower bound on the threshold pc! (Mine is only 10−300.)
Three sequences?
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