
Causal Nets
or

What Is a Deterministic Computation?∗

Péter Gács†

Computer Science Department
University of Rochester

Rochester, NY 14627

Leonid A. Levin‡

150-3 Kenrick st.
Boston, MA 02135

Abstract

The network approach to computation is more direct and “physical” than the one based on some spe-
cific computing devices (like Turing machines). However, the size of a usual—e.g., Boolean—network does
not reflect the complexity of computing the corresponding function, since a small network may be very
hard to find even if it exists. A history of the work of a particular computing device can be described as a
network satisfying some restrictions. The size of this network reflects the complexity of the problem, but
the restrictions are usually somewhat arbitrary and even awkward.

Causal nets are restricted only by determinism (causality) and locality of interaction. Their geometrical
characteristics do reflect computational complexities. And various imaginary computer devices are easy
to express in their terms. The elementarity of this concept may help bringing geometrical and algebraic
(and maybe even physical) methods into the theory of computations. This hope is supported by the group-
theoretical criterion given in this paper for computability from symmetrical initial configurations.

0 Introduction

In this work, we propose a framework unifying various aspects of the theory of complexities of information
processing—also providing a language for some new problems. Presently, many results below the level of
abstraction provided by Blum’s axiomatic theory are seemingly dependent on specific machine models
(Turing machine, RAM, iterative network, etc.) or formulated in such models with some comment on the
measure of independence of the model. This leads to unnecessary specification and to awkward formal
constructions unusual in traditional mathematics.

We take the notion of computation itself as a primitive (causal net1) instead of considering the work
of a device performing this computation. Such an approach is less detailed since the same computation
can be implemented in various ways: on different devices, sequentially or parallelly, varying the order of
the operations and their distribution over parts of the device. Because of its potential for the avoidance
of details, we hope to set up a more unified framework providing simpler definitions and still preserving
concreteness and elementarity. A causal net can be interpreted as the time-space history of all elementary
operations accomplished in the computing process, with their mutual dependencies indicated. As an ad-
ditional advantage of this approach, a computation on each input is regarded as a separate finite object
independently of the context of a function over an infinite domain. In this way, we hope to facilitate the

∗Information and Control 51(1), 1981.
†Part of this work was done while this author was visiting Johann Wolfgang Goethe University, Frankfurt am Main in 1978 and

Stanford University in 1979.
‡The research of this author was supported by Boston University, Massachusetts Institute of Technology and NSF grants MCS

77-19754 and MCS-8104211.
1N. V. Petri in [2] is different from the inventor of Petri nets— which have no essential relation to our causal nets.

1

application of geometric and algebraic methods in complexity theory, and to preserve the advantages of the
theory of Boolean circuits.

Unlike other types of nets (e.g., Boolean circuits) the causal net constructs its logical structure in the
process of computation and thus it can be reconstructed from its input and the structure of the possible
neighborhoods in it (causal structure). All operations needed for this are taken into account. At a fixed
causal structure (playing the role of the program of the algorithm) the input nets can be arbitrarily large.
At a given size of the input, the size of the causal nets is a complexity of computation in the usual sense
(most similar to the product of time and space) in contrast to the size of the Boolean circuits which is
bounded (by 2n/n). The closeness of the definition of causal nets to some physical ideas gives hope of
finding a connection between the geometrical characteristics of these nets and the physical characteristics
of computations, as, e.g., the size of the net and the entropy increase caused by the computation in question.

The last years witnessed a large number of ad hoc models for parallel computation addressing special
problems like synchrony. Some of them, as also the classical Boolean circuits, are very different in nature
from Turing-machine-style sequential models. For sequential machines, Kolmogorov and Uspenskii [1]
made the first significant steps toward a model general enough so that most other models could be con-
sidered as its restricted forms. Their machine has a graph-like storage structure undergoing gradual local
changes in time, by the work of a constant number of active units.

In the next sections, we introduce the concept of causal nets and compare it with a more traditional
model of computations: Kolmogorov machines in parallel mode. We also consider the problem of com-
putability when input nets with arbitrary symmetries are allowed. This problem seems to be new because
it does not arise but for sufficiently general concepts of parallel computations like the ones presented here.
We give a complete characterization of the functions computable in these models —in terms of the automor-
phism group of the input. The result can be considered as some “Church Thesis” for symmetry-preserving
computations and is related to some combinatorial theorems of Babai and Lovász [5]. L. A. Levin originated
the concept of causal nets, P.Gács proved the result on the symmetric inputs.

1 Basic definitions

Causal nets

A net X is a directed labeled graph, i.e., a matrix θ : |X|2 7→ Θ defining the label θ(x, y) of the edge (or the
symbol ∞ of its absence) between any two nodes. The set of ancestors of any node x (i.e., of nodes connected
to x by a directed path) is assumed to be finite. A subnet is the restriction of θ to a subset of the nodes. The
input subnet is the union of all oriented cycles. The cause bxc of a node x is the subnet of nodes y for which
(y, x) is an edge. The immediate consequence A+ of a subnet A is A extended by all nodes (with ingoing
edges) the entire cause of which is contained in A.

A net represents the whole space-time history of a computation rather than its state at some time mo-
ment. A node of the net corresponds to an “elementary event” in the course of the computation, the edges
to “causal relations” between them. We can (and will) use multiple edges—simulated by adjusting the set
Θ, and states for the nodes—simulated by the states of the preceding edges.

Definition 1 A net is called local if the cause of each node is weakly connected (i.e., connected as an undirected
graph). A local net is called causal if any isomorphism between its two subnets A and B can be uniquely extended to
an isomorphism between A+ and B+.

The requirement of uniqueness is not essential and is imposed only for convenience. To check for causal-
ity and locality, only subnets isomorphic to causes of nodes should be considered. This is easy since all such
subnets are small and connected.

The requirement of causality is the way we represent physical determinism: the past uniquely deter-
mines the future. Another important physical principle, that of the locality of interaction requires that the
immediate cause of an elementary event should consist of events closely related to each other. The evidence
for this close relation is usually present in a chain connecting these events and should be considered as part
of the cause. Thus, nodes of the cause of a node have causal interconnection themselves and therefore cor-
respond to close but different moments of time (in some analogy to the formalism in mechanics where the

2

future positions of a system are determined by its present position and a position in the near past—giving
a speed).

The noninput nodes and the strongly connected components (packets) of the input form an acyclic graph
with a natural partial order ≤ on it. The base subnet consists of the input and all preceding nodes. The output
subnet consists of the noninput nodes adjacent to edges labeled by a distinguished output subalphabet ΘO.
Any graph can be converted to an input net by adding a loop to each node. These are the usual bases for
nets. Other types of base may be used to simulate fancy things, e.g., the use of “oracles” (input nodes whose
cause contains noninput nodes).

The nodes of a net can be objects of any kind. But a noninput node x can be naturally identified with
the function mapping y ∈ bxc to θ(y, x). In the case of a single-label alphabet, x can be identified with bxc.
Then the causality of a net X can be expressed as |X| ⊃ x'y ∈ |X| ⇒ x ∈ |X|.

Programming

A causal net can be usually described much more concisely than by listing the entire matrix θ. It is already
uniquely determined by its base and the types of neighborhoods occurring in it (unlike the Boolean circuits).
The neighborhood V(x) of a node x (its center) is the subnet consisting of x and all nodes connected to x. The
causal neighborhood C(x) contains x and bxc. The local [causal] structure (also called program) of a net is the set
of its [causal] neighborhoods or “commands” (up to isomorphism). A net X is said to be consistent with any
local [causal] structure containing the one of X.

For any B and causal program P , a unique (possibly infinite) causal net P(B) with base B exists whose
causal structure is the maximal one consistent with P . P is said to generate P(B) from B. If the net is finite
and the output exists in all connected components, we say that the output is computed from the base by the
program. Thus to implement computations by these concepts, take a finite causal program P and input A,
let the program start generating a causal net from it by subsequent extensions and take the output as the
result.

The requirement of consistency with some fixed local structure is a useful way to impose various local
restrictions on the net, e.g., boundedness of the degree of the nodes. The computation by a causal net is
monotone: from a part of the input, always a part of the output will be computed. To eliminate this effect,
one can always confine oneself to functions in whose domain no input net is a proper part of an other one.
Such a domain is, for example, the set of all nets consistent with a closed local structure as defined below.
Also, in a closed net, we can easily recognize the last moment when a node was used in generating other
nodes.

Definition 2 A net is locally asymmetric [closed] if none of its neighborhoods has a nontrivial isomorphism to
itself [to a proper part of another one]. A closed locally asymmetric net with one distinguished central node in each
(weakly) connected component is called marked.

The nodes of a connected marked net can easily be numbered in a canonical way: we construct a span-
ning tree with the central node as the root, proceeding on the edges of X from the root, e.g., in a breadth-first
manner. In the theory of information processing, we practically never encounter nonmarked nets, and the
permission of symmetric nets gives rise to serious special problems (like the problem to find an algorithm
deciding whether two given graphs are isomorphic).

Example: representation of a Turing machine

A Turing machine has a tape—a finite succession of cells numbered by subsequent integers, and a head
observing the cell with number c(t) at time t. A finite set of states is fixed and each cell k as well as the
head is at each moment t in one of these states p(t, k) and qt. The terminal cells have the distinguished
states R and L. The program of the machine is a finite function λ ordering certain actions to pairs of states.
Thus, λ(qt, p(t, c(t))) determines qt+1, p(t + 1, c(t)), c(t + 1) − c(t) = ±1 and p(t + 1, k) = p(t, k) for all
k 6= c(t). If the cell c(t + 1) does not exist yet, it will be created. If the head was at one of the ends it also
determines whether the cell c(t) has to be removed. The sequence p(0, k) is the input and c(0) = 0. Thus
always c(t) ≡ t mod 2, and since the state of a cell cannot change in steps of different parity, we can exclude

3

these from consideration. Let us agree that at the end of the computation, the head assumes a special state
τ, and going from one end of the tape to the other one, erases it. (This prevents the representing causal net
from being infinite.)

To represent the computations of this machine by causal nets, let s(t, k) denote (p(t, k), x), where x is qt
if c(t) = k, special symbol otherwise. Let the set V of nodes of the causal net be the set of time-cell pairs
(t, k) of equal parity where the cell k exists at time t. The edges run between nodes (t, k ± 1) and (t + 1, k).
Their label reflects the states s(t, k) of their adjacent nodes. Other edges, with some constant label, run
between (t − 1, k) and (t + 1, k). If the cell k does not exist at moment t − 1, this edge connects (t + 1, k) to
the terminal cell or forms a loop when t + 1 is 0 or 1. The output subalphabet contains the labels with states
s(t, k) having x = τ.

It can be easily checked that the above defined net is causal and local.

2 Complexity of computations

Time and space

One of the differences between the more traditional models and the computations as modeled by the causal
nets is that on the latter the elementary operations are not necessarily synchronized. Only the relative order of
those events is determined which are in a causal relation to each other. What results is a certain vagueness
in the definition of the storage requirement of a causal net.

Let us define the height d(x) of a node x of a causal net as the maximum length of a decreasing sequence
of nodes starting with x. The height of a whole connected net X is D(X) = maxx∈V d(x). The height can be
considered as the time required for the computation. Let Φ(x) be a monotone mapping of |X| to the axis of
time. (An example is d(X).)

Definition 3 The storage size sΦ(t, X) at moment t is the number of edges (x, y) with Φ(x) ≤ t and Φ(y) ≥ t.
Denote sΦ(X) = maxt sΦ(t, X). For an unconnected net, height and storage are defined componentwise, as a family
of numbers indexed by the connected components of X.

It seems to be unnatural to define the storage used at one moment in a way independent from the time
function Φ(x); apparently by the same considerations that in the theory of relativity show that there is no
invariant way to define the notion of two events occurring at the same time. (Note that any imaginable
relativistic computer is representable by a causal net.)

Minimizing the storage size over all possible monotone mappings we obtain the value s0 = minΦ sΦ(X)
that is similar to the number of stones needed to “pebble” the net (see [6]). However, s0 is not a realistic
measure of storage requirement. It seems to be reasonable to require that a timing be realized by the height
function of some net “implementing” X in some formal sense. And the minimizing timing may be hard to
compute and not implementable.

Time-space trade-off

Machines that actually build up a causal net of size n from its program and input cannot require less storage
than n. The situation changes if we are content with a machine that does not necessarily store a represen-
tation of the net, only gives θ(i, j) for any two nodes (their numbers) i, j on request. (The machine weakly
represents the net.) This may require only storage O(log n) instead of n (that it never requires more is another
formulation of the hypothesis of logarithmic time-space tradeoff). The next theorem was originally proved
by N. V. Petri [2] in terms of some concrete types of machines, but causal nets are the most natural setting
for formulating it. It says that the storage size for weak representation can be minimized (no speedups).

Theorem 1 For any causal structure P , there is a Turing machine T with the following property. For each input net
X, using a weak representation of X (by an oracle), it weakly represents a causal net Y generated by P from X. Any
other Turing machine M doing this (even only) for X will use storage no less than by a constant CM times the storage
used by T.

4

Sketch of proof. The optimal Turing machine T works as follows. It sets forth a certain amount of storage
s, then considers all possible other Turing machines M with a description shorter than s. Running over all
k-tuples of numbers less than 2s, where k is the maximum size of the elements of the causal structure P , T is
able to decide whether M while working within storage s weakly represents a net generated from X by P .
If it does not find any M doing that, it increases s. When it finally finds a fitting M, it uses M for answering
the questions it was asked.

Example: Characterization of Pointer Machine Complexity

Various models of computation with only one finitary operation at each step can be considered as essentially
a special case of Kolmogorov’s graph machine [1]. This differs from the “storage modification machine”
proposed later by Schönhage [3] and called “Pointer Machine” by Knuth only in that Schönhage works
with directed, Kolmogorov and Uspenskii with undirected graphs (forcing thereby both bounded in- and
outdegree). The storage structure, called pointer graph of the Pointer Machine (PM) is a directed labeled
graph with constant outdegree.

The program prescribes how the central node transforms its 2-neighborhood step-by-step, modifying
thereby gradually the whole graph. The initial graph is the input, the graph at halting is the output. They
are labeled by the disjoint alphabets Θ I , ΘO.

Barzdin and Kalnins generalized the model of Kolmogorov and Schönhage by introducing parallelism.
A program for the Parallel Pointer Machine (PPM) will be similar to the program of a PM but its meaning
is different: the local transformations must be simultaneously carried out by all nodes. A node x changes
only its outgoing edges, or disappears if they all loop. A common new node may be created by a maximal
clique formed by edges with a distinguished label ε. In determining the next action, edges with output
labels do not count. The computation is finished when all edges have output labels. A PPM is a parallel
Kolmogorov machine (PKM) if its pointer graphs are undirected at each step (i.e., their matrix is symmetric)
and each node has a loop with a special constant label. The set of nonempty undirected pointer graphs is
denoted by T(Θ).

The functions defined on undirected connected marked input graphs computable by the PM and PPM
are exactly the recursive functions. With respect to computing time, the PPM is a powerful generalization
of the PM and is able to solve, e.g., any NP problem in polynomial time (but possibly with exponential
space). This model can claim to be able to efficiently simulate any other model of parallel computation.

A function f computable by a PPM—just as the complexities in Definition 3—is componentwise, i.e., it
commutes with disconnected union: f (X ∪ Y) = f (X) ∪ f (Y) if |X| ∩ |Y| = ∅. We associate a pointer graph
Z′ with a (possibly acyclic) net Z by identifying all nodes connected by edges with a special label η.

Note. The above version of the PPM is more general than usual in order to extend Theorem 2 to sym-
metric inputs. For usual computations, the inputs should be assumed marked.

Theorem 2 For componentwise functions f , u, v over T(Θ I) these properties are equivalent.
(a) A PKM exists computing f (X) for each X in time O(u(X)) and storage O(v(X)).
(b) For each X a closed causal net Y exists with bounded degrees of nodes, with input X, output Z with Z ′ = f (X)

, D(Y) = O(u(X)), sd(Y) = O(v(X)).

The proof will be given in the Appendix.
Open problem. Find out which traditional complexity corresponds to the size of causal nets. It is known

that the size of the smallest causal net computing a function is between the time required on a PM and the
time required on an ”address-machine” (a PM with a tree-like storage structure). The second complexity
may exceed the first one only by a logarithmic factor.

3 Symmetric inputs

In this section, we will characterize the functions computable by causal nets. Of course, every such func-
tion is partial recursive. But it turns out that partial recursive functions that are defined on certain very
symmetric inputs are not computable in models preserving this symmetry.

5

Let us try, e.g., to compute n mod 2 from a “circle X of length n”: some net with the automorphism
group Zn (the cyclic group of order n). We ask for a program generating a one-edge output z from X
with state equal to n mod 2. Thinking in terms of parallel pointer machines, we can imagine the input
as a circular array of identical automata—capable of unlimited local organization and creation—trying to
merge into a single node. There is no leader among them to organize the process. Since all have similar
initial neighborhood, the first merge can divide them only into small groups of identical size—which is
impossible if their number is prime. Indeed, it turns out that the existence of such a program implies that n
cannot have any large prime divisors. (Such numbers are sometimes called “smooth”, in reference to smooth
sand containing only fine grains.)

The functions computable on the Pointer Machine are exactly the partial recursive functions. However,
the input to a PM must always be a marked pointer graph. Theorem 2 sets up a correspondence between
functions computable by causal nets and those computable by the Parallel Pointer Machine. Hence for
marked inputs, the functions computable by causal nets are just the partial recursive functions. On the other
hand, functions that are not computable by causal nets will therefore be not computable by the Parallel
Pointer Machine (a version of Theorem 2 holds also without the restriction that the PPM be a Kolmogorov
machine). We now proceed to formulate the criterion for a recursive function without the markedness
requirement to be computable by a causal net. We assume the nodes of nets to be constructive objects (say
integers).

A partial componentwise function f from nets with a loop-edge at each node to output nets with uni-
formly bounded indegree will be called standard.

Let P be a causal structure generating causal nets X0, X1 with outputs B0, B1 from input nets A0, A1.
Suppose further that there exists an embedding ι of A0 into A1. By causality, this embedding will generate
an embedding of the whole causal net X0 into X1 and thereby an embedding ιP of B0 into B1. Notice that
the image of B0 will be an ideal C of B1 (y < x ∈ |C| implies y ∈ |C|). For different causal structures
P computing f this correspondence of embeddings on the outputs to embeddings on the inputs can be
different, but its existence is a serious restriction implying among others the monotonicity of f . Hence the
first condition on the standard partial function f is the following. Let idA,B be the identical embedding of
A ⊂ B into B.

(i) There exists a recursive correspondence F which orders an isomorphism ιF of f (A0) onto an ideal of
f (A1) to each embedding ι : A0 7→ A1. F is a functor, i.e., (ι0 ◦ ι1)

F = ιF
0 ◦ ιF

1 . Let A0, A1 be subnets of net
C, A2 = A0 ∩ A1, Bj = idF

Aj ,C(f (Aj)). Then B2 = B0 ∩ B1.
This intersection property of the functor F reflects the fact that the net B2 computed by a program P

from the intersection A2 of two nets A0, A1 is the intersection of the nets B0, B1 computed from A0 and A1,
respectively. Indeed, B2 ⊂ B0 ∩ B1 is evident from monotonicity. But the ancestors in the input of each node
of B0 ∩ B1 are all both in A0 and A1, hence also in A2. This proves B2 = B0 ∩ B1.

The above property implies that for a subnet B of an output net f (A) we can find the smallest part of
A still producing B. For any subnet A0 of A define f (A0; A) = idF

A0,A(f (A0)); this is the subnet of f (A)

computed from the subnet A0 of A. The set of ancestors f −1(B; A) of B is the intersection of all subsets A0
of A with f (A0; A) ⊃ B. (Notice that this notion is defined only by the functor F, without causal nets.) It
follows from (i) that f (f −1(B; A); A) ⊃ B. In a causal net X, of course, a node a of the input A is the ancestor
of a subset C ⊂ |X| if a ≤ y for some y ∈ C. Notice that since the image of ιF is always an ideal, a < b
implies f −1({a}; A) ⊂ f −1({b}; A).

(ii) For each input A, the set of ancestors of each node of f (A) is connected.
The most interesting property F must have is connected with possible symmetries of the inputs. The

functor λ 7→ λF is a homomorphism from the group of automorphisms of A to that of f (A). For any node
x of f (A), let us denote by G(x, A, F) the factorgroup of the group of all automorphisms λ that leave x
invariant (i.e., for which λF(x) = x) by the normal subgroup of the automorphisms that fix all elements of
f −1({x}; A). (This divisor is the unity if x depends on the whole input.)

For any finite group G, let a(G) be the minimum of the indices of proper subgroups in G, b(G) the
maximum of a(H) over all subgroups of G. b(G) is sometimes called the smoothness of G in analogy to the
above-mentioned notion of smoothness of natural numbers.

(iii) b(G(x, A, F)) is bounded for all inputs A.

Theorem 3 For a standard partial function f , the following two conditions are equivalent.

6

(a) For all nets A in the domain of f , there are finite causal nets with input A, output f (A), and with bounded
indegrees of noninput nodes.

(b) f satisfies (i-iii).

The proof will be given in the Appendix.
Remarks. (1) The recursiveness of the functor in (i) cannot be replaced by the weaker requirement of

the recursiveness of the function f . In the Appendix, we give an example of a recursive function f with
a nonrecursive functor satisfying the rest of (i-iii) which has no recursive functor (even without the rest of
(i-iii)).

(2) Of most interest are functions in whose domain no net is a proper part of an other one, and which
are invariant, i.e., their functor F maps any automorphism of the input into the identity on the output. In
this case, (iii) requires the automorphism groups of inputs to be uniformly smooth.

(3) The smooth groups play an important role in the newly discovered isomorphism-testing algorithms
of graphs of bounded valence [7]. We plan to follow up the consequences of [7] in a following work. Notice
also that the automorphism group of a connected graph of bounded valence is smooth if one of its orbits is
small.

4 Conclusion

Causal nets might become a simple and universal concept in the theory of computation: they provide an
easy and natural way to describe the work of different real and imaginary computing devices since noth-
ing occurs in their definition but the most general physical ideas concerning the processes going on in the
machines. The causal net can be constructed already on the basis of the computation to be accomplished
without specifying the type of machine used. Different characteristics of the computing resources corre-
spond to simple geometric characteristics of the causal nets. Besides their universality, the causal nets have
the advantage of a simple definition and give the possibility of considering each computation as a single
finite object independently from the context of all possible computations of the same algorithm on different
inputs. This makes common geometrical and algebraic methods available for the study of computations. At
the same time, the theory of causal (in contrast to the Boolean) nets is equivalent to the theory of algorithms
via the fact that a net is uniquely reconstructable from its input net if its local structure is known.

Proof of Theorem 2

The computation of the PPM is a series of pointer graphs X = X1, . . . , Xu = f (X). Let pt(x, y) be the label of
the edge (x, y) in Xt (∞ if this edge does not exist). We construct a causal net A over the nodes (t, x) for all
x ∈ Xt having at time t − 1 nonoutput outgoing edges. Put θ((t, x), (t′, y)) = pt(y, x) for all x, y in Xt where
t′ = t + 1 or t′ = t = 0. Connect also, by edges having some new constant label, all pairs (s, y), (t, x) where
y is at time t − 2 in the 2-neighborhood of x—or of a node that created x if x is new and s = t − 1, t − 2. If
x has an outgoing output edge, connect (x, t) and (x, t + 1) with an η-edge. A can be seen to be causal and
closed. Its input graph is X. Its output graph Z contains a path of η-edges for each node of f (X). After the
contraction of these paths, we get Z′ = f (X).

It remains to prove (b) ⇒ (a). For a closed local structure Q, let us call its c-domain the set of all
input graphs X from which Q computes a net Y with output Z satisfying Z ′ = f (X), D(Y) ≤ cu(Y),
sd(Y) ≤ cv(Y). By the assumption of the theorem, any X is in the domain of some Q with maximal degrees
of nodes bounded by some natural number k. Notice also that if X1 ∪ X2 is in the domain of Q then so is
X1. It follows that a local structure Q exists whose domain is the set of all nets.

We can therefore suppose that Y(X) is generated from X by Q applying subsequent extensions. We have
to show that Y can be built up by a PPM (within the required time and storage bounds) level-by-level. In
this construction, we will first use some temporary output labels α when some edge of the net should occur
with output label α. η-edges will be contracted as soon as possible.

Let At be the subnet of nodes of height ≤ t in Y. Let us omit from At all nonoutput nodes which are
closed: whose neighborhood is isomorphic to an element of Q. (These nodes cannot occur in the cause of any
new node, so they are no longer needed.) The resulting subnet is Bt. The program for the PPM computes
Bt+1 from Bt in a constant number of steps in the following stages.

7

Stage 1. For all nodes x, the machine looks up all copies U of the cause of some command Z of Q
containing x. This needs only constantly many steps since the the degree of the nodes of Bt is bounded by
k. For each such U and Z, a new auxiliary node v(x, Z, U) is added, with pointers having the same values
as the pointers at x.

Stage 2. Each v(x, Z, U) and v(y, Z, U) is connected by a pointer with label ε in both directions forming
thereby ε-cliques M(Z, U) for the third stage.

Stage 3. The ε-cliques are replaced by single nodes with the corresponding pointers.
Stage 4. If a node x is closed do the following. If x is not an output node and has no adjacent η-edge

then delete it. If x is connected to an other closed node by an η-edge then merge them. Thereafter, if x is an
output node, convert all temporary output edges leaving x to the corresponding final ones (which are also
output edges of the PKM we are just defining).

Do chips need wires?

A physical device (like a chip) realizing a parallel Kolmogorov pointer machine should have its active
elements (nodes) attached to a 2-dimensional surface, for the purposes of energy exchange. Thus, we
assume the device to be a plane square, and the nodes to be subsquares with integer corners. Each node x
at each moment has k links (dx is the maximum of their lengths) to other nodes (the partners of x). We do not
care, for the moment, about the physical realization of the links, and do not assume that they occupy any
separate place on the chip. We require, however, that a node occupies at least k log dx in area (to store the
relative addresses of the partners), and its elementary operation takes time proportional to dx (the speed
of communication is bounded). Moreover, this time is dx logc dx for devices called c − chips, where c > 1
is a constant. A chip is called primitive if all numbers dx are bounded by a constant. One can prove the
following.

Note. Every c-chip can be simulated in the same time by a primitive chip of the same size.
This result is in contrast to current chips where wires occupy most of the area and to the theorems that

for most graphs of bounded valence, in any realization, the average link length and the diameter of the chip
is proportional to the amount of nodes.

Proof of Theorem 3

1. To prove that (a) implies (b) it is enough to show that (a) implies (iii): the rest has been shown already.
Let Y be any command of a causal structure P . It can have automorphisms of its own, which divide the
cause of Y into orbits (transitivity classes). Denote by k(P) the maximum size of orbits in all commands in
the program P .

Suppose that (a) holds, i.e., that some causal structure P generates from every input net A a causal net
X with output B = f (A). Let x be a node of B. Let F be the functor naturally provided by the net. We will
show that G(x, A, F) has a k(P)-bounded smoothness.

Let C be any subset of X. Let G(C) be the group of automorphisms of A leaving each node of C fixed.
Let C0 be the set of ancestors of C in A. We will show that b(G(C)/G(C0)) ≤ k. We will use induction over
the following partial ordering ≺ of sets of nodes of X. C1 ≺ C2 if C1 ⊃ C2 and every element x of C1 is
majorized by an element y ≥ x of C2. A set C is minimal in this order only if it contains C0. In this case,
G(C) is the one-element group. Suppose that the assertion is true for all C ′ ≺ C. If the cause of every node
of C is in C then C contains C0. Suppose that C contains a node x for which bxc 6⊂ C. Let y ∈ bxc − C. Put
C′ = C ∪ {y}. By our inductive assumption, b(G(C′)) ≤ k, since C′ ≺ C. We show that |G(C) : G(C′)| ≤ k.
G(C′) consists of all elements of G(C) that leave y fixed. To each coset of G(C ′) in G(C), a different node
of bxc will correspond which is, moreover, in the orbit of y. Therefore the number |G(C) : G(C ′)| of cosets
is bounded by the maximum of the sizes of orbits in bxc— which is bounded by k(P). This completes the
proof that (a) of the theorem implies (b).

2. To prove the positive part, we will describe the way a causal structure generates the causal net X from
any input net A to get output net B = f (A). This description will make it clear how to formally define the
actual causal structure. Besides properties (i)-(iii), the only property of our functor F we can use is that it
is (partial) recursive. However, the way a recursive function is computed does not help us immediately to
construct the causal net, because it also uses some knowledge about the individuality of the nodes of the

8

input (we may assume that each node is a natural number), i.e., some numbering of the nodes. The causal
nets, on the other hand, work in an invariant way from the beginning, without knowing about anything
but the structural properties of the input. Our way to solve this difficulty (certainly not the most effective
way) is to generate all possible numberings of a certain sort for the input, use them to compute the function
value and then get rid of them. We need property (iii) for the third step. Also, it will be seen that k(P) for
the causal structure can be made as small as the maximum of b(G(x, A, F)) over all inputs A and output
nodes x.

Put Nk = {1, . . . , k}. Let A be a connected net with n elements. Any one-to-one function u : Nn 7→ A
will be called a numbering. Let our label alphabet Θ be ordered in some fixed way: Θ = {θ1, . . . , θr, ∞}. We
also fix some pairing function 〈i, j〉 with inverse 〈k〉1, 〈k〉2, with the property that for each k, Nk2 = {〈i, j〉 :
1 ≤ i, j ≤ k}. We order the matrices with elements from {θ1, . . . , θr, ∞} lexicographically: X = (xij) < Y =

(yij) if the sequence {x〈k〉1〈k〉2
: 1 ≤ k ≤ n2} is lexicographically smaller than {y〈k〉1〈k〉2

: 1 ≤ k ≤ n2}.
Each numbering u of an n-node net A orders to A a matrix θ(u(i), u(j)). This is the matrix of the net Au
over Nn in which the connection of i and j is the same as of u(i) and u(j) in A. The numberings for which
the corresponding matrix is lexicographically smallest will be called frames. The net A∗ = Au will be the
same for each frame u. By restricting ourselves to frames we can reduce the set of numberings that we have
to consider. Frames can be considered as coordinate systems: a transition to a different frame is always
accompanied by an automorphism of A. Let, namely, σ be a permutation of Nn, u a frame. Then uσ is
a frame again if and only if the transformation u(i) 7→ u(σi) of A is an automorphism. Therefore fixing
any frame u will establish an isomorphism φ = u ◦ σ ◦ u−1 between the automorphism group G of A and
the group G∗ of permutations carrying frames into frames (the dual group). We can suppose w.l.o.g. that
A = A∗ (remember that on one hand, our nodes are numbers, on the other hand, a causal structure does
not use these numbers anyway). In this case, the identical mapping is a frame and G = G∗.

Let now A be some net with possibly more than n nodes. An n-frame of A is a frame for some connected
subnet C of A with n nodes. Let u be an n-frame. For any k < n, we denote by u|k the restriction of the
function u : Nn 7→ A to Nk. It is easy to see that if u is an n-frame then u|k is a k-frame for each k < n. This
is due to our special lexicographical ordering of the matrices: if a matrix is minimal then so are all its upper
left corner submatrices. We define now a sequence of nets

A = C0 ⊂ C1 ⊂ · · ·

representing the k-frames for each k ≤ n. Suppose that Cn−1 is defined. To get Cn we add a new node u
for each n-frame u, together with two new edges: an α-edge from u(n) to u and a β-edge from u|n − 1 to u
where α, β are labels not used for other purposes.

Remark 1. Suppose that some encoding E(σ) of permutations σ of Nn by nets is given. An appropriate
program will be able to do the following. Whenever a code E(σ) of some permutation is brought into
a certain connection with a node u of Cn representing an n-frame, a new node v will be generated and
connected by some new edges (labeled by two new symbols used only for this purpose) to u and uσ. In
other words, it is possible to go from u to uσ effectively. Moreover, it is possible to do this simultaneously
for all n-frames u.

The subnet of nodes of B with n or less ancestors will be called the n-th floor Bn of B. The construction
of the output proceeds in many stages. In stage n, the n-th floor will be constructed.

Let Xn be the part of the causal net built up through the n-th stage. It will contain the following parts
(besides, possibly, many auxiliary nodes, from which these are distinguishable):

The input A.
The first n floors of the output B.
The net Cn.

Our objective is to find a causal structure constructing Xn from Xn−1. The first step is to construct Cn
from Cn−1 which does not present any difficulties. Bn − Bn−1 consists of all nodes which have exactly n
ancestors. For an n-element subset L of A, let B(L) be the set of all nodes of B whose set of ancestors is
L. Then Bn − Bn−1 = ∪LB(L) and this union is disjoint. If L1 6= L2 then no edge goes between B(L1) and
B(L2), otherwise the upper node on the edge would have more than n ancestors. (Here we used the fact
that ιF is an embedding into ideals.) Therefore for a given n, all B(L)’s can be generated independently

9

from each other. In this way we reduced the problem to the case where

#A = n, B = Bn, Bn − Bn−1 = B(A)

This case is considered further. We also have already the structure Cn of frames of A.
The group GF = {σF : σ ∈ G} is a group of automorphisms of B. Two nodes x and y of B are called

equivalent if σx = y for some σ ∈ GF. The equivalence classes are called orbits in B. Let U and V be two
orbits. We write U < V if x < y for some x ∈ U, y ∈ V.

Lemma 1 The relation < is a strict partial ordering of the orbits and (hence) the orbits are independent sets of nodes.

Proof. First we show that U < V and V < W implies U < W. Let x, y0, y1, z be elements of U, V, V, W,
respectively, with x < y0, y1 < z and σy0 = y1. Then σx < σy0 = y1 < z which proves U < V. Now we
show that U < U does not hold for any orbit U. Indeed: if x < σx held then for some i we would have in
our acyclic graph a cycle x < σx < σ2x < · · · < σix = x.

Remark 2. The set Bn − Bn−1 consists, of course, of whole orbits.
Now we introduce an invariant numbering for the orbits of B. Remember that we supposed that A =

A∗. The nodes of B are natural numbers, therefore the orbits of B can be lexicographically ordered as sets
of natural numbers. Let us use this order together with the partial order U < V defined above to generate
a complete order Bn1, . . . , Bnp of orbits of B(A) for which if Bni < Bnj then i < j. The orbits Bnk of B(A) will
be constructed one-by-one: we construct a sequence of nets

Xn−1 = Xn0 ⊂ · · · ⊂ Xnp = Xn

where Bnk ⊂ Xnk. Suppose that Xn k−1 has already been constructed. Our goal is to construct the nodes of
D = Bnk and to connect them to the previously constructed nodes of B as required in Bn.

Let b be the node of D that is the smallest as a number. Let H be the group of automorphisms h of A with
hFb = b. We call two frames u and v equivalent if v = uh with some h ∈ H. The equivalence classes uH
thus defined are our candidates for the elements of D: we will construct single nodes uH to represent them.
The node uH will represent the node uFb: for any previously constructed element y of B, the connection of
y and uH will be the same as that of y and uFb in B.

Now we show how to connect all nodes uh to all previously constructed nodes y of B with an edge
expected between y and uFb. An agent sitting at node u has his own view of the net constructed until now.
He represents x ∈ A by the number u−1x and y by the number (u−1)Fy. He connects y therefore to a new
version of u in the way (u−1)Fy should be connected to b in B. This is the same connection as between y
and uFb. Thus we created a new net Yn k−1 that essentially looks like Xn k−1 except that a new copy of every
node u has been created (we denote the new copy by the same symbol) with the connections to the previous
parts of the net that uH should have. It remains to “merge” the nodes in {uh : h ∈ H} into a single node
uH for each class uH.

Now we must use condition (ii). It says that for some number k that is constant for our function f that
we want to compute, the group H has a k-bounded chain

e = G1 ⊂ · · · ⊂ Gr = H

where |Gi+1 : Gi| ≤ k. Let G1, . . . , Gr be the first (in some lexicographical order) among those chains of H
with the smallest possible bound. We will construct a sequence of nets

Yn k−1 = D1 ⊂ · · · ⊂ Dr = Xnk

Di will contain, besides Di−1 and some auxiliary nodes, a node uGi for each equivalence class uGi which
has the same connections to nodes in Bn k−1 as u in Yn k−1. We also have an edge with some special label
from each node uGi−1 to uGi. Suppose that Di−1 has already been constructed.

Two nodes uGi−1 and vGi−1 are considered equivalent if v = uh for some h ∈ Gi. An equivalence class
will be of the form {uhGi−1 : h ∈ Gi}. Thus the elements in an equivalence class will correspond to the
cosets of Gi−1 in Gi. Let e = h1, . . . , hki

be some canonical representatives of these cosets (e.g., let each be
the least in its coset in a lexicographical order of the permutations).

10

To construct Di, we build up a sequence

Di−1 = Di(1) ⊂ · · · ⊂ Di(ki)

of nets. Di(j) contains, in addition to Di−1, for each permutation hp (p ≤ j) and each class uGi−1 a new
node z which is connected by edges to uGi−1 and uhpGi−1. These edges are labeled by a symbol λ used
only for this purpose. The node z together with the two λ-edges will be called a λ-connection. If we have
Di(ki) the construction of Di takes only one step: each set of nodes {uhGi−1 : h ∈ Gi}, together with their
causes and the nodes added to get Di(ki) will form the cause of one new node, uGi. In this same step, this
new node can be made to have the same connections to Bn k−1 as uGi−1.

Our only remaining task is therefore to construct Di(j) from Di(j − 1). This will happen through a
sequence of nets

Di(j − 1) ⊂ E1 ⊂ · · · ⊂ Ei−1 = Di(j)

Em will have, in addition to Di(j − 1), a λ-connection between each node uGi−1 and uhjGm. To construct E1
from Di(j − 1) we must first construct for each frame u a new node representing u (we denote it also by u)
together with a λ-connection from node uGi−1 to this new node. Then we make a λ- connection from the
node u to uhj using Remark 1. This connection can be used to generate a λ-connection between uGi−1 and
uhj. It is easy to see that the construction of Em from Em−1 will take only one step for each m.

A recursive function with no recursive functor

The domain of our function f will be the set of certain 0-1 sequences. There is an obvious encoding of
these sequences into nets. We will suppose that, e.g., the sequences 01 and 10 are isomorphic (reversal is an
isomorphism). f is defined over all {ank = 101n0k : n, k > 0} and {bnk = 1101n0k : n, k > 0}. We will use
the µ-operator from recursion theory. If for some function g, g(k) = 0 for all k < n then we put µk<n(g(k) 6=
0) = n. Let g(n, k) be a number-theoretical function for which the predicate P(n) ⇔ g(n, µkg(n, k) 6= 0) = 1
is undecidable. Put G(n, k) = g(n, µ j<kg(n, j) 6= 0). Put

f (ank) =

{

001 if G(n, k) = 0
0001 otherwise

f (bnk) =

c = 00101100 if G(n, k) = 0
0c if G(n, k) = 1
c0 otherwise

Obviously, the only embeddings in this domain are the unique embeddings of ank to ank+1, bnk to bnk+1,
ank to bnk and the combinations of these. The functor F must correspond an embedding from f (ank) to
f (bnk) to the last type mentioned. If G(n, k) = 0, the functor has two possible values: we can embed 001 to
the front or the end of c. But if G(n, k) 6= 0, there is only one embedding: either to the front or to the back.
Notice that an1 can also be embedded to ank. Therefore, the functor property implies that the embedding of
f (ank) to f (bnk) must be a continuation of the embedding of f (an1) to f (bn1), and f (an1) will be embedded
to the front or back of f (bn1) depending on P(n), i.e., in a nonrecursive way.

References

[1] A. N. Kolmogorov, V. A. Uspenskii: On the Definition of an Algorithm, Uspekhi Mat. Nauk 13(1958) 3–28;
AMS Transl. 2nd ser. 29 (1963) 217–245.

[2] N. V. Petri: Personal communication (1972).

[3] A. Schönhage: Storage Modification Machines, SIAM J. on Computing 9/3 (Aug. 1980) 490-508.

[4] Ja. M. Barzdin’, Ja. Ja. Kalnin’s: A Universal Automaton with Variable Structure, Automatic Control and
Computing Sciences 8(2) (1974) pp. 6-12.

11

[5] L. Babai, L. Lovász: Permutation Groups and Almost Regular Graphs, Studia Sci. Math. Hung. 8 (1973)
141-150.

[6] S. A. Cook: An Observation on Time-Storage Trade-Off, Proc. Fifth Ann. ACM Symp. on the Theory of
Computing, (1973) 29-33.

[7] E. M. Luks: Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time, Proc. of the
21th Symp. on FOCS, Syracuse 1980.

12

