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Introduction

What the course is not

This is not about “heuristic algorithms”, and report on their
performance in practice. It is about algorithms for which exact results
are available. The “approximation” in the title just opens the range of
available algorithms much wider than when we insist on exact
solutions. The solution given by the algorithms will in general not be
exact, but the analysis still will be.
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Introduction

Plan:
Some examples
Duality of linear programming
Many examples using linear programming
Other topics as time permits:

Shortest vector
Network reliability
Hardness of approximation
Other special topics by demand.

I will start with the examples and the explanation of duality. Then
some of the topics will be given to student lecturers.
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Introduction

Grading

Student lecture. Some of the lectures will be given by students.
Problem solving. I will assign problems, but only nontrivial ones.
Solutions will not be graded, but I will ask people to present
solutions in class.
Paper report.
Possibly scribing, if there will be lectures on topics not following
the book.

The grade will be given using informal judgement, not a formula.
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Approximations

Approximations
The setting

In case of NP-complete problems, maybe something can be said about
how well we can approximate a solution. We will formulate the
question only for problems, where we maximize (minimize) a positive,
polynomial-time computable function. For object function f (x, y) for
x, y ∈ {0, 1}n, the optimum is

M(x) = max
y

f (x, y)

where y runs over the possible “witnesses”.
For 1 < β, an algorithm A(x) is a λ-approximation if

f (x, A(x)) > M(x)/λ.

For minimization problems, with minimum m(x), we require
f (x, A(x)) < m(x)λ.
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Local search

Local search

Try local improvements as long as you can.

Example 1 (Maximum cut)
Each edge has unit weight.
Repeat: find a point on one side of the cut whose moving to the other
side increases the cutsize.

Theorem 2
If you cannot improve anymore with this algorithm then you are within a
factor 2 of the optimum.

Proof.

The unimprovable cut contains at least half of all edges.
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Greedy algorithms

Greedy algorithms

“Build up your object” by always improving the objective function.

Example 3 (Maximum cut with weights)
Suppose that edges have weights and we are looking for the
maximum-weight cut. The local search might take exponential time.
But we can build up the two sides of the cut, adding points to them
one-by-one, this also gives a factor 2.

We will see that “semidefinite programming” gives a better
approximation.
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Vertex cover

Less greed is sometimes better

What does the greedy algorithm for vertex cover say?
The following, less greedy algorithm has better performance
guarantee.
Lower bound for vertex cover is given by any maximal matching,
since any optimum vertex cover must contain half of them. The
following algorithm just finds a maximal matching:

Approx Vertex Cover (G)
C← ∅
E′ ← E[G]
while E′ 6= ∅ do

let (u, v) be an arbitrary edge in E′

C← C∪ {u, v}
remove from E′ every edge incident on either u or v

return C
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Vertex cover

Analysis of vertex cover

1 Can the matching lower bound be used to get a better
approximation?

2 Any other method leading to better approximation guarantee?

Counterexample to 1: Kn for odd n.
Question 2 is a major open problem.
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Vertex cover

Approximation problems are not invariant

to simple transformations.
Min vertex cover is equivalent to max independent set, but the latter is
inapproximable (see later).
Approximating k is possible, approximating n− k is not.
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Vertex cover

Bipartite graphs

Theorem 4 (König-Egerváry)
In a bipartite graph, the size of the smallest vertex cover is equal to the the size
of the maximum matching.

This follows rather easily from the max-flow min-cut theorem
discussed later.
This relation shows that for bipartite graphs, the minimum vertex
cover question (and the maximum matching problem) is in
NP∩ co−NP. (We say the problem is well-characterized).
Max-flow theory also gives us a polynomial algorithm for computing
the optimum.
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Vertex cover

In general graphs, the matching lower bound on vertex cover may
reach a factor 2. Example: the complete graph with an odd number of
elements. In general graphs, the maximum matching problem (but
probably not the vertex cover problem) is also well-characterized, it
even has a polynomial solution. We will skip this.
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Vertex cover

A general strategy used in this course: transforming the problem into
an integer linear programming problem.

Example 5

Vertex cover problem for G = (V, E), with weigh wi in vertex i.

Introduce variables xi for vertex i where xi = 1 if vertex x is selected, 0
otherwise.
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Vertex cover

Linear programming problem without the integrality condition:

minimize wTx
subject to xi + xj > 1, (i, j) ∈ E,

x > 0.

Let the optimal solution be x∗.
Solving the integer programming problem by rounding: Choose xi = 1
if x∗i > 1/2 and 0 otherwise.

Claim 6
Solution x has approximation ratio 2.

Proof.

We increased each x∗i by at most a factor of 2.
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Set cover

The set-covering problem

Given (X,F ): a set X and a family F of subsets of X, find a min-size
subset of F covering X.
Example: Smallest committee with people covering all skills.
Generalization: Set S has weight w(S) > 0. We want a
minimum-weight set cover.
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Set cover

Greedy Set Cover (X,F )
U← X
C ← ∅
while U 6= ∅ do

select an S ∈ F that maximizes |S∩U|/w(S)
U← U r S
C ← C ∪ {S}

return C

If element e was covered by set S then let price(e) = w(S)
S∩U . Then we

cover each element at minimum price (at the moment).
Note that the total final weight is ∑n

k=1 price(ek).
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Set cover

Analysis

Let H(n) = 1 + 1/2 + · · ·+ 1/n(≈ ln n).

Theorem 7
Greedy Set Cover has a ratio bound maxS∈F H(|S|).
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Set cover

Lemma 8
For all S in F we have ∑e∈S price(e) 6 w(S)H(|S|).

Proof.

Let e ∈ S∩ Si r ⋃
j<i Sj, and Vi = S r ⋃

j<i Sj be the remaining part of S
before being covered in the greedy cover. By the greedy property,

price(e) 6 w(S)/|Vi|.

Let e1, . . . , e|S| be a list of elements in the order in which they are
covered (ties are broken arbitrarily). Then the above inequality implies

price(ek) 6
w(S)

|S| − k + 1
.

Summing for all k proves the lemma.
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Set cover

Proof of the theorem.

Let C∗ be the optimal set cover and C the cover returned by the
algorithm.

∑
e

price(e) 6 ∑
S∈C∗

∑
e∈S

price(e) 6 ∑
S∈C∗

w(S)H(|S|) 6 H(|S∗|) ∑
S∈C∗

w(S)

where S∗ is the largest set.
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Set cover

Is this the best possible factor for set cover?
The answer is not known.

Péter Gács (Boston University) CS 591 G1 Fall 06 20 / 112



Set cover

An alternative analysis

The result is interesting enough to deserve another analysis.
Simple fact:

Lemma 9

If ai, bi > 0, i = 1, . . . , n then mini
ai
bi

6 ∑i ai
∑i bi

.

Using part of the analysis as before, if Sk is the kth set of the greedy
cover, nk the number of elements it covers newly, and Vk the part of X
still to be covered, then the lemma and the greedy property implies

w(Sk)
nk

6
OPT
|Vk|

.
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Set cover

Hence, using V1 = X and assuming that the greedy cover has n sets:

nk >
w(Sk)
OPT

|Vk|,

|Vk+1| 6 (1− w(Sk)
OPT

)|Vk| 6 |Vk|e−
w(Sk)
OPT ,

|Vn| 6 |X|e−
∑i<n w(Si)

OPT ,

∑
i<n

w(Si) 6 OPT(ln |X| − ln |Vn|),

∑
i6n

w(Si)/OPT 6 ln |X|+ (w(Sn)/OPT− ln |Vn|).

So this analysis “almost” gives the ln |X| factor: the last term spoils it
somewhat, (but for example not much if all weights are 1).

Péter Gács (Boston University) CS 591 G1 Fall 06 22 / 112



Approximation schemes

Approximation scheme

An algorithm that for every ε, gives an (1 + ε)-approximation.

A problem is fully approximable if it has a polynomial-time
approximation scheme.
Example: see a version KNAPSACK below.
It is partly approximable if there is a lower bound λmin > 1 on the
achievable approximation ratio.
Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.
It is inapproximable if even this cannot be achieved.
Example: INDEPENDENT SET (deep result). The approximation
status of this problem is different from VERTEX COVER, despite
the close equivalence between the two problems.

Péter Gács (Boston University) CS 591 G1 Fall 06 23 / 112



Knapsack

Fully approximable version of knapsack

Given: integers b > a1, . . . , an, and integer weights w1 > . . . > wn.

maximize wTx
subject to aTx 6 b,

xi = 0, 1, i = 1, . . . , n.
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Knapsack

Dynamic programming: For 1 6 k 6 n,

Ak(p) = min{ aTx : wTx = p, xk+1 = · · · = xn = 0 }.

If the set is empty the minimum is ∞. Let w = w1 + · · ·+ wn. The
vector (Ak+1(0), . . . , Ak+1(w)) can be computed by a simple recursion
from (Ak(0), . . . , Ak(w)). Namely, if wk+1 > p then Ak+1(p) = Ak(p).
Otherwise,

Ak+1(p) = min{Ak(p), wk+1 + Ak(p−wk+1) }.

The optimum is max{ p : An(p) 6 b }.
Complexity: roughly O(nw) steps.
Why is this not a polynomial algorithm?
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Knapsack

Idea for approximation: break each wi into a smaller number of big
chunks, and use dynamic programming. Let r > 0, w′′i = bwi/rc.

maximize (w′′)Tx
subject to aTx 6 b,

xi = 0, 1, i = 1, . . . , n.
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Knapsack

For the optimal solution x′′ of the changed problem, estimate
OPT/wTx′′ = wTx∗/wTx′′. We have

wTx′′/r > (w′′)Tx′′ > (w′′)Tx∗ > (w/r)Tx∗ − n,

wTx′′ > OPT− r · n.

Let r = εw1/n, then

(w)Tx′′

OPT
> 1− εw1

OPT
> 1− ε.

With w = ∑i wi, the amount of time is of the order of

nw/r = n2w/(w1ε) 6 n3/ε,

which is polynomial in n, (1/ε).
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Knapsack

Look at the special case of knapsack, with wi = ai. Here, we just want
to fill up the knapsack as much as we can. This is equivalent to
minimizing the remainder,

b−∑
i

aTx.

But this minimization problem is inapproximable.
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Metric Steiner tree and TSP

The traveling salesman problem

Given a complete graph with nonnegative edge costs cost(u, v), find a
minimum-cost cycle visiting every vertex exactly once.
Why cycle? If it is cheaper for the salesman to use some nodes twice,
why not allow it? Using this observation leads to the metric TSP
problem, in which

cost(u, w) 6 cost(u, v) + cost(v, w).

It is easy to see that
The non-metric TSP problem is not approximable. Indeed, the
Hamilton cycle problem is reducible to any attempted
approximation.
The metric TSP problem is the same as allowing a tour to visit
nodes twice. It is approximable within a factor of 2: just go
around an optimal spanning tree.
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Metric Steiner tree and TSP

The approximation factor can be improved to 3/2: see the book.
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Metric Steiner tree and TSP

The Steiner tree problem

Graph G = (V, E), with edge cost cost(u, v), required subset R ⊂ V.
Find a set of edges in E that connect all points of R. These edges
necessarily form a tree. The vertices additional to R in these edges are
called the Steiner vertices.
Observation: the metric version has the same approximation factor. So,
let us require cost(u, v) to be a metric.
Factor 2 approximation: minimum spanning tree over R.

Proof.

Steiner tree→ Euler cycle→ Hamilton cycle on R→ spanning tree of
R.

Péter Gács (Boston University) CS 591 G1 Fall 06 31 / 112



Cuts

The minimum cut problem

Given a graph G = (V, E) and nonnegative weight function w(e) on
the edges.
Cut. Weight of the cut.
The s− t cut problem: find a minimum-weight cut separating s and t.
The maximum flow algorithm gives a polynomial-time solution. See
later, at the treatment of linear programming duality.

Péter Gács (Boston University) CS 591 G1 Fall 06 32 / 112



Cuts

The multiway cut problem

Given points s1, . . . , sk, a multiway cut is a set of edges disconnecting
all si from each other. NP-hard. We will give a very simple
approximation algorithm. The (clever) analysis will show that its
factor is 2(1− 1/k).
Isolating cut: for some i, separates si from the rest.
Approximation algorithm:

1 For each i = 1, . . . , k, compute a minimum-weight isolating cut Ci
for si.

2 Output the union C of the (k− 1) lightest ones.

Theorem 10
This gives an approximation factor 2(1− 1/k).

Péter Gács (Boston University) CS 591 G1 Fall 06 33 / 112



Cuts

B1

B2

B3

B4

B5

e

A3

A5

For the proof, let Bi be the component of si in some optimal multiway
cut A. Let Ai be the cut separating Bi. Since each edge of A connects
two components, we have 2w(A) = ∑i w(Ai).
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Cuts

Hence

2w(A) = ∑
i

w(Ai) > ∑
i

w(Ci),

2(1− 1/k)w(A) > (1− 1/k) ∑
i

w(Ci) > w(C)

since we discarded the heaviest Ci.
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Cuts The k-cut problem

The k-cut problem does not sound that interesting in itself, but the
Vazirani book’s solution is a good opportunity to learn about
Gomory-Hu trees.
But try to come up with a polynomial algorithm for 3-cuts, at least!
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Cuts The (metric) k-center problem

The (metric) k-center problem

Given a complete graph with edge lengths d(u, v) that form a metric
(we will say, a metric space X) and a as set S of points, let

d(x, S) = min
y∈S

d(x, y).

Problem 11
Find a set S of k points for which maxx∈X d(x, S) is minimal.
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Cuts The (metric) k-center problem

Covering, packing

Let

B(x, r)

be the ball of center x and radius r, that is the set of points of distance
6 r from x. The k-center is looking for the smallest number of k balls
covering V. This connects with the following classical questions for a
metric space X:

Ball covering: what is the minimum number C(r, X) of r-balls
covering X?
Ball packing: what is the maximum number P(r, X) of disjoint
r-balls that can be packed into X?

Observation 1
C(2r, X) 6 P(r, X) 6 C(r, X).

Using this for a factor 2 approximation algorithm.
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Cuts The (metric) k-center problem

If points have weights and we are looking for a set of weight 6 W,
similar ideas lead to a factor 3 algorithm.
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Linear Programming Problem definition

Linear programming

How about solving a system of linear inequalities?

Ax 6 b.

We will try to solve a seemingly more general problem:

maximize cTx
subject to Ax 6 b.

This optimization problem is called a linear program. (Not program in
the computer programming sense.)
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Linear Programming Problem definition

Example 12
Three voting districts: urban, suburban, rural.
Votes needed: 50,000, 100,000, 25,000.
Issues: build roads, gun control, farm subsidies, gasoline tax.
Votes gained, if you spend $ 1000 on advertising on any of these
issues:

adv. spent policy urban suburban rural
x1 build roads −2 5 3
x2 gun control 8 2 −5
x3 farm subsidies 0 0 10
x4 gasoline tax 10 0 −2

votes needed 50, 000 100, 000 25, 000

Minimize the advertising budget (x1 + · · ·+ x4) · 1000.
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Linear Programming Problem definition

The linear programming problem:

minimize x1 + x2 + x3 + x4
subject to −2x1 + 8x2 + 10x4 > 50, 000

5x1 + 2x2 > 100, 000
3x1 − 5x2 + 10x3 − 2x4 > 25, 000

Implicit inequalities: xi > 0.
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Linear Programming Solution idea

Two-dimensional example

maximize x1 + x2
subject to 4x1 − x2 6 8

2x1 + x2 6 10
5x1 − 2x2 >−2
x1, x2 > 0

Graphical representation, see book.
Convex polyhedron, extremal points.
The simplex algorithm: moving from an extremal point to a nearby
one (changing only two inequalities) in such a way that the objective
function keeps increasing.
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Linear Programming Solution idea

Worry: there may be too many extremal points. For example, the set of
2n inequalities

0 6 xi 6 1, i = 1, . . . , n

has 2n extremal points.
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Linear Programming Standard and slack form

Standard and slack form

Standard form

maximize cTx
subject to Ax 6 b

x > 0

Objective function, constraints, nonnegativity constraints, feasible
solution, optimal solution, optimal objective value. Unbounded: if the
optimal objective value is infinite.
Converting into standard form:

xj = x′j − x′′j , subject to x′j, x′′j > 0.

Handling equality constraints.
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Linear Programming Standard and slack form

Slack form
In the slack form, the only inequality constraints are nonnegativity
constraints. For this, we introduce slack variables on the left:

xn+i = bi −
n

∑
j=1

aijxj.

In this form, they are also called basic variables. The objective function
does not depend on the basic variables. We denote its value by z.
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Linear Programming Standard and slack form

Example for the slack form notation:

z = 2x1 − 3x2 + 3x3
x4 = 7− x1 − x2 + x3
x5 =−7 + x1 + x2 − x3
x6 = 4− x1 + 2x2 − 2x3

More generally: B = set of indices of basic variables, |B| = m.
N = set of indices of nonbasic variables, |N| = n,
B∪N = {1, . . . , m + n}. The slack form is given by (N, B, A, b, c, v):

z = v + ∑j∈N cjxj
xi = bi −∑j∈N aijxj for i ∈ B.

Note that these equations are always independent.
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Linear Programming Formulating problems as linear programs

Maximum flow

Capacity c(u, v) > 0.

maximize ∑v f (s, v)
subject to f (u, v) 6 c(u, v)

f (u, v) =−f (v, u)
∑v f (u, v) = 0 for u ∈ V− {s, t}

The matching problem.
Given m workers and n jobs, and a graph connecting each worker with
some jobs he is capable of performing. Goal: to connect the maximum
number of workers with distinct jobs.
This can be reduced to a maximum flow problem.
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Linear Programming The simplex algorithm

The simplex algorithm

Slack form.
A basic solution: set each nonbasic variable to 0. Assume that there is a
basic feasible solution (see later how to find one).
Iteration step idea: try to raise the value of the objective function by
changing a nonbasic variable xj until some basic variable xi turns 0 (its
equality constraint becomes tight). Then exchange xi and xj.
Question: if this is not possible, are we done?
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Linear Programming The simplex algorithm

Example 13

z = 3x1 + x2 + 2x3
x4 = 30− x1 − x2 + 3x3
x5 = 24− 2x1 − 2x2 − 5x3
x6 = 36− 4x1 − x2 − 2x3

Since all bi are positive, the basic solution is feasible. Increase x1 until
one of the constraints becomes tight: now, this is x6 since bi/ai1 is
minimal for i = 6. Pivot operation:

x1 = 9− x2/4− x3/2− x6/4

Here, x1 is the entering variable, x6 the leaving variable.
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Linear Programming The simplex algorithm

Rewrite all other equations, substituting this x1:

z = 27 + x2/4 + x3/2− 3x6/4
x1 = 9− x2/4− x3/2− x6/4
x5 = 21− 3x2/4− 5x3/2 + x6/4
x6 = 6− 3x2/2− 4x3 + x6/2

Formal pivot algorithm: no surprise.

Lemma 14
The slack form is uniquely determined by the set of basic variables.

Proof.

Simple, using the uniqueness of linear forms.
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Linear Programming The simplex algorithm

When can we not pivot?
unbounded case
optimality

The problem of cycling
It can be solved, though you will not encounter it in practice.
Perturbation, or “Bland’s Rule”: choose variable with the smallest
index. (No proof here that this terminates.) Geometric meaning:
walking around a fixed extremal point, trying different edges on
which we can leave it while increasing the objective.
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Linear Programming The simplex algorithm

End result, used later for duality:

Theorem 15
If there is an optimum v then there is a basis B ⊂ {1, . . . , m + n} belonging
to a basic feasible solution, and coefficients c̃i 6 0 such that

cTx = v + c̃Tx,

where c̃i = 0 for i ∈ B.

Other formulation: if the original problem has the form

maximize cTx
subject to Ax 6 b

x > 0

with c 6 0, b > 0 then 0 is obviously an optimal solution. The above
theorem says that if there is an optimal solution then by introducing
slack variables and changing basis we can always bring the system
into such a form.
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Linear Programming The simplex algorithm

Initial basic feasible solution
(Frequently obvious from the problem definition.)
Solve the following auxiliary problem, with an additional variable x0:

minimize x0
subject to aT

i x− x0 6 b i = 1, . . . , m,
x, x0 > 0

If the optimal x0 is 0 then the optimal basic feasible solution is a basic
feasible solution to the original problem.
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Linear Programming The simplex algorithm

Complexity of the simplex method

Each pivot step takes O(mn) algebraic operations.
How many pivot steps? Can be exponential.
Does not occur in practice, where the number of needed iterations is
rarely higher than 3 max(m, n). Does not occur on “random” problems,
but mathematically random problems are not typical in practice.
Spielman-Teng: on a small random perturbation of a linear program (a
certain version of) the simplex algorithm terminates in polynomial
time (on average).
There exists also a polynomial algorithm for solving linear programs
(see later), but it is rarely competitive with the simplex algorithm in
practice.
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Duality

Duality

Primal (standard form): maximize cTx subject to Ax 6 b and x > 0.
Value of the optimum (if feasible): z∗. Dual:

ATy > c yTA > cT

y > 0 yT > 0
min bTy min yTb

Value of the optimum if feasible: t∗.

Proposition 16 (Weak duality)
z∗ 6 t∗, moreover for every pair of feasible solutions x, y of the primal and
dual:

cTx 6 yTAx 6 yTb = bTy. (1)
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Duality

Use of duality. If somebody offers you a feasible solution to the dual,
you can use it to upperbound the optimum of the final (and for
example decide that it is not worth continuing the simplex iterations).
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Duality

Interpretation:
bi = the total amount of resource i that you have (kinds of
workers, land, machines).
aij = the amount of resource i needed for activity j.
cj = the income from a unit of activity j.
xj = amount of activity j.

Ax 6 b says that you can use only the resources you have.
Primal problem: maximize the income cTx achievable with the given
resources.
Dual problem: Suppose that you can buy lacking resources and sell
unused resources.
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Duality

Resource i has price yi. Total income:

L(x, y) = cTx + yT(b−Ax) = (cT − yTA)x + yTb.

Let

f (x̂) = inf
y>0

L(x̂, y) 6 L(x̂, ŷ) 6 sup
x>0

L(x, ŷ) = g(ŷ).

Then f (x) > −∞ needs Ax 6 b. Hence if the primal is feasible then for
the optimal x∗ (choosing y to make yT(b−Ax∗) = 0) we have

sup
x

f (x) = cTx∗ = z∗.

Similarly g(y) < ∞ needs cT 6 yTA, hence if the dual is feasible then
we have

z∗ 6 inf
y

g(y) = (y∗)Tb = t∗.
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Duality

Complementary slackness conditions:

yT(b−Ax) = 0, (yTA− cT)x = 0.

Proposition 17
Equality of the primal and dual optima implies complementary slackness.

Interpretation:
Inactive constraints have shadow price yi = 0.
Activities that do not yield the income required by shadow prices
have level xj = 0.
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Duality

Theorem 18 (Strong duality)
The primal problem has an optimum if and only if the dual is feasible, and we
have

z∗ = max cTx = min yTb = t∗.

This surprising theorem says that there is a set of prices (called
shadow prices) which will force you to use your resources optimally.
Many interesting uses and interpretations, and many proofs.
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Duality

Our proof of strong duality uses the following result of the analysis of
the simplex algorithm.

Theorem 19
If there is an optimum v then there is a basis B ⊂ {1, . . . , m + n} belonging
to a basic feasible solution, and coefficients c̃i 6 0 such that

cTx = v + c̃Tx,

where c̃i = 0 for i ∈ B.

Define the nonnegative variables

ỹi = −c̃n+i i = 1, . . . , m.

Péter Gács (Boston University) CS 591 G1 Fall 06 62 / 112



Duality

For any x, the following transformation holds, where i = 1, . . . , m,
j = 1, . . . , n:

∑
j

cjxj = v + ∑
j

c̃jxj + ∑
i

c̃n+ixn+i

= v + ∑
j

c̃jxj + ∑
i
(−ỹi)(bi −∑

j
aijxj)

= v−∑
i

biỹi + ∑
j
(c̃j + ∑

i
aijỹi)xj.

This is an identity for x, so v = ∑i biỹi, and also cj = c̃j + ∑i aijỹi.
Optimality implies c̃j 6 0, which implies that ỹi is a feasible solution of
the dual.
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Duality

Linear programming and linear inequalities

Any feasible solution of the set of inequalities

Ax 6 b
ATy > c

cTx− bTy = 0
x, y > 0

gives an optimal solution to the original linear programming problem.
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Duality Alternatives

Theory of alternatives

Theorem 20 (Farkas Lemma, not as in the book)
A set of inequalities Ax 6 b is unsolvable if and only if a positive linear
combination gives a contradiction: there is a solution y > 0 to the inequalities

yTA = 0,

yTb < 0.

For proof, translate the problem to finding an initial feasible solution
to standard linear programming.
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Duality Alternatives

We use the homework allowing variables without nonnegativity
constraints:

maximize z
subject to Ax + z · e 6 b

(2)

Here, e is the vector consisting of all 1’s. The dual is

minimize yTb
subject to yTA = 0

yTe = 1
yT > 0

(3)

The original problem has no feasible solution if and only if max z < 0
in (2). In this case, min yTb < 0 in (3). (Condition yTe = 1 is not
needed.)
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Duality Applications of duality

Dual for max-flow: min-cut

Directed complete graph G = (V, E). Edge (u, v) has capacity c(u, v).
Looking for nonnegative flow of value f (u, v) on edge (u, v).

maximize ∑v∈V f (s, v)
subject to f (u, v) 6 c(u, v), u, v ∈ V,

∑v∈V f (u, v)− f (v, u) = 0, u ∈ V r {s, t},
f (u, v) > 0, u, v ∈ V.

A dual variable for each constraint. For f (u, v) 6 c(u, v), call it y(u, v),
for

∑
v∈V

f (u, v)− f (v, u) = 0

call it y(u) (this is not restricted by sign).
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Duality Applications of duality

Dual constraint for each primal variable f (u, v). If u, v 6= s then f (u, v)
has coefficient 0 in the objective function. The dual inequality for
equation for u 6= s, v 6= t is y(u, v) + y(u)− y(v) > 0, or

y(u, v) > y(v)− y(u).

For u = s, v 6= t: y(s, v)− y(v) > 1, or y(s, v) > y(v)− (−1).
For u 6= s but v = t we have y(u, t) + y(u) = 0, or y(u, t) > 0− y(u).
For u = s, v = t: y(s, t) > 1, or y(s, t) > 0− (−1).
Setting y(s) = −1, y(t) = 0, all these inequalities can be summarized
in y(u, v) > y(v)− y(u) for all u, v.
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Duality Applications of duality

The objective function is ∑u,v c(u, v)y(u, v). Of course, it is smallest by
setting y(u, v) = |y(v)− y(u)|+. Simplified dual problem:

minimize ∑u,v c(u, v)|y(v)− y(u)|+
subject to y(s) = −1, y(t) = 0.

Let us require y(s) = 0, y(t) = 1 instead; the problem remains the
same.
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Duality Applications of duality

Claim 21
There is an optimal solution in which each y(u) is 0 or 1.

Proof.

Assume that there is a y(u) that is not 0 or 1. If it is outside the interval
[0, 1] then moving it towards this interval decreases the objective
function, so assume they are all inside. If there are some variables y(u)
inside this interval then move them all by the same amount either up
or down until one of them hits 0 or 1. One of these two possible moves
will not increase the objective function. Repeat these actions until each
y(u) is 0 or 1.
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Duality Applications of duality

Let y be an optimal solution in which each y(u) is either 0 or 1. Let

S = { u : y(u) = 0 }, T = { u : y(u) = 1 }.

Then s ∈ S, t ∈ T. The objective function is

∑
u∈S,v∈T

c(u, v).

This is the value of the “cut” (S, T). So the dual problem is about
finding a minimum cut, and the duality theorem implies the
max-flow/min-cut theorem.

Péter Gács (Boston University) CS 591 G1 Fall 06 71 / 112



Duality Applications of duality

Alternative treatment of max flow-min cut

Let P be the set of all s− t paths. Given a path p and a real number
α > 0, we can define a flow f (u, v) in which f (u, v) = α for an edge
(u, v) in the path, f (u, v) = −α for each edge (v, u) on the path, and
f (u, v) = 0 otherwise. Let us call such a flow a path flow defined by
(p, α). It is easy to see that each s− t flow is the sum of a finite number
of path-flows (at most as many as the number of edges).
Let us assign a variable fp for each path p ∈ P . (This is exponentially
many variables, but in theory, we can do this.)
Assigning values fp > 0 defines a flow which is the sum of all the path
flows defined by (p, fp), p ∈ P .
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Duality Applications of duality

New formulation of the max flow problem:

maximize ∑p∈P fp
subject to ∑p:e∈p fp 6 ce e ∈ E,

fp > 0 p ∈ P .

Dual: a variable de for each edge constraint. An inequality for each
path:

minimize ∑e∈E cede
subject to ∑e∈p de > 1 p ∈ P ,

de > 0 e ∈ E.

The distance function de can be called a fractional cut. The
shortest-path algorithm generates from it a cut, but the relation to min
cut is not clear.
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Duality Applications of duality

Maximum bipartite matching

Bipartite graph with left set A, right set B and edges E ⊆ A× B.
Interpretation: elements of A are workers, elements of B are jobs.
(a, b) ∈ E means that worker a has the skill to perform job b. Two edges
are disjoint if both of their endpoints differ. Matching: a set M of
disjoint edges. Maximum matching: a maximum-size assignment of
workers to jobs.
Covering set C ⊆ A∪ B: a set with the property that for each edge
(a, b) ∈ E we have a ∈ C or b ∈ C.
Clearly, the size of each matching is 6 the size of each covering set.

Theorem 22
The size of a maximum matching is equal to the size of a minimum covering
set.

There is a proof by reduction to the flow problem and using the
max-flow min-cut theorem.
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Ellipsoid algorithm

Ellipsoid algorithm

We will only solve the feasibility problem for a set of linear inequalities
for x = (x1, . . . , xn)T:

ai
Tx 6 bi, i = 1, . . . , m

with the property that the set of solutions is bounded and has an
interior, namely there are points satisfying all inequalities strictly. The
other cases can be reduced to this easily.
Assumption: that the input consists of rational numbers with length
6 L.
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Ellipsoid algorithm

The algorithm
1. Find a ball E1 with the property that if there is a solution then B

contains one. In the following steps, Ek is an ellipsoid (ball is a
special case).

2. Repeat the following.
Check if the center of Ek is a solution. If not, find the violated
inequality ai

Tx 6 bi.
Find the ellipsoid Ek+1 with the smallest volume enclosing the
half-ellipsoid

{ x ∈ Ek : ai
Tx 6 bi }.
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Ellipsoid algorithm

Proposition 23 (can be checked)

vol(Ek+1)/vol(Ek) 6 e−1/(2n+1).

Thus, if the solution has not been found in k steps, then the volume of
the set of solutions is 6 e−k/(2n+1)vol(E1).

Proposition 24 (can be checked)

vol(E1) 6 2n2L.
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Ellipsoid algorithm

Proposition 25

If the set of solutions is not empty then its volume is at least 2−2n2L.

Proof sketch.

The set of solutions contains a simplex formed by (n + 1) extremal
points. Its volume can be expressed with the help of certain integer
determinants, and the ones in the denominator can be upperbounded.

The above three statements imply that, for a certain constant c, if
ellipsoid algorithm does not terminate in cn4 iterations then it there is
no solution.
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Ellipsoid algorithm

Oracle formulation

The ellipsoid algorithm can be generalized to the case when the
inequalities aT

i x 6 bi are not given explicitly. Rather, some
polynomial-timte oracle algorithm is given that for every x that is not a
solution returns a hyperplane separating x from the set of solutions.

Example 26
In the above alternative formulation of the fractional min-cut problem,
there were as many constraints as there are paths. But for every vector
d that is not a solution, Dijkstra’s algorithm produces a shortest s− t
path, and its constraint will be violated.
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Probabilistic rounding

Probabilistic rounding

Take a 0-1-valued integer programming problem. Solve the fractional
relaxacion getting values xi. Consider these probabilities and set x′i = 1
with probability xi independently for each i. Analyze what you get.

Péter Gács (Boston University) CS 591 G1 Fall 06 80 / 112



Probabilistic rounding

Example 27
Set cover, covering an n-element set. Let xS be the selection variable of
set S. If element e is in sets S1, . . . , Sk, then the probability of not
covering it is

p = (1− xS1) · · · (1− xSk).

We know xS1 + · · ·+ xSk > 1. From this it follows by the
arithmetic-geometric mean inequality that

p 6 (1− 1/k)k 6 ek(−1/k) = 1/e.

Repeating the rounding d ln n times (always adding the newly selected
sets) the probability of not covering an element will be decreased to
n−d, so the probability of not covering something is at most n1−d.
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Dual fitting for set cover

Linear programming for set cover

Let for set S be pS = 1 if S is selected and 0 otherwise. Set cover
problem, without integrality condition:

minimize ∑S wSpS
subject to ∑S3x pS > 1, x ∈ X,

pS > 0, S ∈ F ,

Dual with variables cx, x ∈ X:

maximize ∑x∈X cx
subject to ∑x∈S cx 6 wS, S ∈ F ,

cx > 0, x ∈ X.

Interpretation: packing amounts cx of something into the elements,
where the total amount in each set S is limited by wS. The maximum
allowable total amount packed turns out to be the value of the
minimum fractional set cover. In general, talking about covering LP
and packing LP.
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Dual fitting for set cover

Greedy choice
This made cx possibly larger than allowed in the primal, since it made
∑x cx = ∑S wWpS.
The lemma shows that the inequalities of the dual are violated by at
most a factor Hn.
Summarizing:

Feasible integer primal solution.
Infeasible dual solution, guiding in the choice of the primal.
estimating the degree of infeasibility of the dual.
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Primal-dual schema

Primal-dual schema

Let us generalize the above problem. Primal (a “covering problem”):

minimize ∑n
j=1 cjxj

subject to ∑n
j=1 aijxj > bi, i = 1, . . . , m,

xj > 0, j = 1, . . . , n.

Dual (a “packing problem”):

maximize ∑n
i=1 biyi

subject to ∑n
i=1 aijyi 6 cj, j = 1, . . . , n.

yi > 0, i = 1, . . . , m.
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Primal-dual schema

For some α, β > 1, formally relax the complementary slackness:
Primal conditions: xj > 0⇒ cj/α 6 ∑j aijyi 6 cj.
Dual conditions: yi > 0⇒ bi 6 ∑j aijxj 6 βbi.

Proposition 28
If the primal and dual feasible solutions satisfy these conditions, then

cTx 6 αβbTy.

Proof straightforward.
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Primal-dual schema

The primal-dual schema

Start from an infeasible integer primal and a feasible dual
(typically x = 0, y = 0).
Keep improving the feasibility of the primal, keeping it integral,
and the optimality of the dual.
The primal guides the improvements of the dual and vice versa.
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Primal-dual schema

Application to set cover

Set cover problem, without integrality condition. Set system S ,
universe U.

minimize ∑S c(S)xS
subject to ∑S3e xS > 1, e ∈ U,

xS > 0, S ∈ S ,

Dual with variables ye, e ∈ U:

maximize ∑e∈U ye
subject to ∑e∈S ye 6 c(S), S ∈ S ,

yx > 0, e ∈ U.

Primal complementary slackness conditions for each S, with factor
α = 1: xS 6= 0⇒ ∑e∈S ye = c(S).
Set S is tight when this holds. Plan: use only tight sets.
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Primal-dual schema

Relaxed dual complementary slackness conditions for each e, with
factor β = f :

ye 6= 0⇒ ∑
S3e

xS 6 f .

This is satisfied automatically.
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Primal-dual schema

The algorithm

1. Start with x = 0, y = 0.
2. Repeat, until all elements are covered:

Pick uncovered element e, raise ye until some set S goes tight. Add S
to the set cover.

Since the relaxed complementary slackness conditions hold at the end,
we achieved the approximation factor αβ = 1.

Simplicity
As opposed to the simplex method, the successive improvements were
not accompanied by any linear transformations accompanying a basis
change.

Péter Gács (Boston University) CS 591 G1 Fall 06 89 / 112



Sparsest cut Demands multicommodity

Sparsest cut
Demands multicommodity flow

Undirected graph G = (V, E). Capacity ce of edge e.
Pairs {(s1, t1), . . . , (sk, tk)}. Demand dem(i) of commodity i.
Maximize f where f · dem(i) will flow from si to ti.
For upper bounds, for a cut (S, S) define

dem(S) = ∑
i:si,ti are separated by S

dem(i).

The sparsity of the cut is

c(S)
dem(S)

.

This is an upper bound on f .

Question 1
How tight a bound is given by the sparsest cut? How to compute a sparse
cut?
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Sparsest cut Demands multicommodity

Let Pi be the set of si − ti paths.

maximize f
subject to ∑p∈Pi

f i
p > f · dem(i), i = 1, . . . , k,

∑k
i=1 ∑Pi3p3e f i

p 6 ce, e ∈ E,
f > 0,

f i
p > 0.

Dual: a variable de for each edge constraint, variable li for each
demand.

minimize ∑e∈E cede
subject to ∑e∈p de > li, p ∈ Pi, i = 1, . . . , k,

∑k
i=1 lidem(i) > 1, i = 1, . . . , k,

de > 0,
li > 0.
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Sparsest cut Demands multicommodity

Observation 2
The optimum of the dual can be achieved using

A metric de.
li = d(si,ti).
Requiring ∑i d(si,ti)dem(i) = 1.

This implies the following, with H the graph with edges (si, ti):

Theorem 29

f ∗ = min
metric d

∑e cede

∑e∈H dem(e)de
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Sparsest cut Connection with cuts

The connection with cuts

For a cut S, let δ(S) be the set of edges across it. A function

y : 2V → R+

is called a cut measure. Each cut measure defines a metric Dy:

Dy
e = ∑

S3e
yS.

A cut measure y is a cut packing for metric d if Dy
e 6 de for all e. It is

exact if equality. For β > 1 it is β-approximate if de 6 β ·Dy
e for all e.

Theorem 30
Let d be a metric obtained from the optimal dual of the demand
multicommodity flow problem. If there is a β-approximate cut packing for d
then the sparsity of the sparsest cut is 6 β · f ∗.
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Sparsest cut Cut packings

l1 metric

The metrics that have exact cut packings have a common origin.
A norm ‖x‖ over a vector space:

‖x‖ = 0⇔ x = 0,
λ‖x‖ = |λ| · ‖x‖,

‖x + y‖ 6 ‖x‖+ ‖y‖.

Example: for p > 1, the lp norm

‖x‖p =
(
∑

i
|xi|p

)1/p.

Associated metric dlp(x, y) = ‖x− y‖p. Example:

‖x‖1 = ∑
i
|xi|.
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Sparsest cut Cut packings

Theorem 31
For V ⊂ Rm, the l1 distance on V has an exact cut packing of size
6 m(|V| − 1).

Proof.

For each dimension i, let Pi be the projection to the ith coordinate. Sort
the ith coordinates of the points in V into a sequence ui,1 < · · · < ui,ni

with ni 6 |V|. For 1 6 j < ni introduce cuts

Sij = { v : Piv 6 ui,j }

with weight yij = ui,(j+1) − ui,j.
It is easy to check that this gives an exact cut packing.
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Sparsest cut Cut packings

A kind of converse:

Theorem 32
Let y be a cut packing with m nonzero terms in V, defining a metric. Then
there is a mapping σ : V → Rm such that Dy(u, v) = ‖σ(u)− σ(v)‖1.

Isometric embedding.
These two theorems say that a metric can be embedded isometrically
into l1 if and only if it has a cut packing.
If isometric embedding is not available, we may have something
weaker. β-distortion l1-embedding σ:

d(u, v)/β 6 ‖σ(u)− σ(v)‖1 6 d(u, v).

Goal: finding a low-distortion l1 embedding for an arbitrary metric.

Péter Gács (Boston University) CS 591 G1 Fall 06 96 / 112



Sparsest cut Embedding

Embedding

For any set S ⊆ V, where |V| = n, let d(u, S) = minv∈S d(u, v). We will
try to create an embedding like this, with appropriate sets S1, . . . , Sm:

σi(u) = d(u, Si), i = 1, . . . , m,
σ(u) = (σ1(u), . . . , σm(u)).

Clearly ‖σ(u)− σ(v)‖1 6 m · d(u, v), therefore σ(u)/m is an
embedding. We need to choose the sets Si to guarantee low distortion.
Since the structure of the metric may be complex, try choosing them
randomly. Since we do not know what size random sets are best,
choose random sets of different sizes: Si will have approximate size
n/2i.
Let l = log n (for simplicity, assume n = 2l). For Si, i = 2, 3, . . . , l + 1,
choose each vertex with probability 2−i.
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Sparsest cut Expected per-edge distortion

Expected per-edge distortion

Now σ(u) became a random point in Rm. The following lemma gives a
constant lower bound First we will lowerbound the expected value
E(‖σ(u)− σ(v))‖1 for any pair u, v. Let c = (1− e−1/4)/2. The
following lemma shows that the distortion in this average is constant.

Lemma 33
We have E(‖σ(u)− σ(v)‖1) > c · d(u, v)/2.

The proof follows (essentially) by summation from the lemma below.
Let B(u, r) and Bo(u, r) be the closed and open ball of radius r around
point u. Let ρt be the smallest r such that |B(u, r)| > 2t and
|B(v, r)| > 2t.

Lemma 34
Suppose that ρt < d(u, v)/2. Then E(|σt+1(u)− σt+1(v)|) > c(ρt − ρt−1).
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Sparsest cut Expected per-edge distortion

Proof.

Let A = Bo(u, ρt), B = B(v, ρt−1). We have |B| > 2t−1. Assume without
loss of generality |A| < 2t.
We will lowerbound the probability of the event E that St+1 ∩A = ∅
and St+1 ∩ B 6= ∅.

P[St+1 ∩A = ∅] = (1− 2−(t+1))|A| > (1− 2−(t+1)|A|) > 1/2,

P[St+1 ∩ B = ∅] = (1− 2−(t+1))|B| 6 exp(−2−(t+1)|B|) 6 e−1/4.

It follows by independence that P(E) > (1/2)(1− e−1/4) = c.
Event E implies σt+1(u) > ρt and σt+1(v) 6 ρt−1, giving
σt+1(u)− σt+1(v) > ρt − ρt−1. Hence

E(σt+1(u)− σt+1(v)) > P(E)(ρt − ρt−1) > c(ρt − ρt−1).
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Sparsest cut From average to probability

From average to probability

We will apply a standard method to get from a lower bound
c · d(u, v)/2 on the average E(‖σ(u)− σ(b)‖1) to a lower bound with
high probability.
A theorem from probability theory:

Theorem 35 (Hoeffding)
Let X1, . . . , XN be independent, equally distributed random variables with
average µ and bound 0 6 Xi 6 M. Then for 0 < t we have

P[(X1 + · · ·+ XN)/N− µ > t] 6 e−2N(t/M)2
.
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Sparsest cut From average to probability

Application: we pick the sets Sj
i, i = 2, . . . , l + 1, j = 1, . . . , N. Form

σ(u) = (d(u, Sj
i) : i = 2, . . . , l + 1, j = 1, . . . , N).

Now ‖σ(u)− σ(v)‖1 is the sum of N independent random variables
bounded by M = l · d(u, v), with expected value > µ = c · d(u, v)/2.
Hoeffding’s theorem says for t = µ/2,

P[‖σ(u)− σ(v)‖1 < N(µ/2)] < e−2N(µ/2)2/M2
= e−Nc2/(8l2).

Choose N here such (O(l2 log n)) that the right-hand side becomes
smaller than 1/n2. Then with probability > 1/2, we have for all u, v

N · l · d(u, v) > ‖σ(u)− σ(v)‖1 > N · c · d(u, v)/4,

where both N and l are O(log n). Dividing by N · l we obtain an
embedding (in an O(log4 n) dimensional space) with distortion
O(l) = O(log n).
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Sparsest cut From average to probability

Improvement

Recall that we apply the metric distortion estimate to

∑e cede

∑e∈H dem(e)de

where H is the demand graph, containing only the source-target pairs.
It follows that only the distortion of edges in this graph needs to be
estimated. Adapting the above embedding to this, we can reduce the
distortion to log k, and embed into a log4 k-dimensional space, instead
of log n.
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Sparsest cut Applications

Applications

The edge expansion δ(S)/|S| of a set of a graph. Minimum edge
expansion of a graph: via the uniform multicommodity flow
problem.
The conductance of a reversible Markov chain:

min
S⊂X,0<π(S)61/2

w(S, S)
π(S)

.

Demands π(x)π(y).
Minimum b-balanced cut, for 0 < b 6 1/2.
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Sparsest cut Applications

Balanced cut

Finding a (1/3)-balanced cut that is within O(log n) of a minimum
bisection cut. This is only pseudo-approximation, since our solution is
approximate according two different criteria.

Algorithm 1

U := ∅, V′ := V. Until |U| > n/3, let W be a minimum expansion set of
G′ = GV′ , and set U := U ∪W, V′ := V′ r W.

Analysis: let T be a minimum bisection cut. At any iteration, we
compare cG′(W) with that of c(T ∩V′):

cG′(W) 6 |W| · C · (log n) · c(T)
n/6

.

Summation gives the O(log n) bound.
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Counting

Counting problems: the class # P

Definition 36
Function f is in #P if there is a polynomial-time (verifier) predicate
V(x, y) and polynomial p(n) such that for all x we have

f (x) = |{ y : |y| 6 p(|x|) ∧V(x, y) }|.

Reduction among #P problems. The #P-complete problems are all
obviously NP-hard.
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Counting Repeated tests

Repeated tests

How to aproximate a #P function?
Repeated independent tests will work only if the probability of success
is not tiny. More formally, if it is not tiny compared to the standard
deviation. Look at Chebysev’s inequality, say. Let X1, . . . , XN be
i.i.d. random variables with variance σ2 and expected value µ. Then
the inequality says

P[|∑
i

Xi/N− µ| > tσ] 6 t−2/N.

Suppose we want to estimate µ within a factor of 2, so let tσ = µ/2,
then t = µ/(2σ),

P[|∑
i

Xi/N− µ| > µ/2] 6 (1/N)(2σ/µ)2.

This will converge slowly if σ/µ is large.
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Counting Repeated tests

Example 37

Xi = 1 with probability p and 0 otherwise. Then σ2 = p(1− p), our
bound is 4(1− p)/(pN), so we need N > 1/p if p is small.
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Counting DNF satisfaction

DNF satisfaction

Suppose we want to find the number of satisfying assignments of a
disjunctive normal form

C1 ∨ · · · ∨ Cm.

More generally, suppose we need to estimate |S| where

S = S1 ∪ · · · ∪ Sm.

Suppose that
We can generate uniformly the elements of Si for each i.
We know (can compute in polynomial time) |Si|.
For each element x, we know

c(x) = |{ i : x ∈ Si }|.

Then we know M = ∑i |Si|, but we want to know |S|.
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Counting DNF satisfaction

Pick I ∈ {1, . . . , m} such that P[I = i] = |Si|/M. Pick an element X ∈ SI
uniformly. Then for each x we have

P[X = x] = ∑
Si3x

P[I = i]P[X = x|I = i] = ∑
Si3x

|Si|
M

1
|Si|

= c(x)/M.

Let Y = M/c(X), then

E(Y) = ∑
x∈S

M
c(x)

P[X = x] = |S|.

On the other hand, 0 6 Y 6 M, so σ 6 M 6 m|S|, therefore σ/µ 6 m,
so sampling will converge fast.
We found a FPRAS (fully polynomial randomized approximation
scheme) for counting the CNF solutions.
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Counting Network reliability

Network reliability

Computing probabilities is similar to counting.
Given graph G = (V, E), each edge is broken with probability p. Let
FAILG(p) be the probability that G gets disconnected. Our goal is to
estimate this, when it is small (and hence cannot be sampled), say
smaller than n−4.
Let c be the size of the minimum cut.

Definition 38
An α-min cut is one with size 6 αc.
Let E be the event that the graph gets disconnected, and let E>α, E6α,
E=α be the events that it gets disconnected by a cut of size > αc 6 αc or
αc respectively.

Then P(E) = P(E6α) + P(E>α). Plan:
Find an appropriate constant α for which P(E>α) is negligible.
Represent E6α by a not too large DNF.
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Counting Network reliability

For both steps of the plan, first we estimate the number of minimum
cuts.
We will use a random contraction process: in each step, we contract an
edge. The probability for minimum cut C to disappear in the step
when there are m points left (and hence > cm/2 edges) is 6 2/m. So
the probability to survive is at least(

1− 2
n

)(
1− 2

n− 1

)
· · ·

(
1− 2

3

)
=

(n− 2)(n− 3) · · · 1
n(n− 1) · · · 3 =

2
n(n− 1)

.

This shows that there are at most n2/2 minimum cuts. A similar
argument shows:

Lemma 39
For all α > 1, the number of α-min cuts is at most n2α.
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Counting Network reliability

The probability of any min cut is pc 6 FAILG(p) 6 n−4, so we can set
pc = n−(2+δ) for a δ > 2.
Now

P[E=α] 6 n2αpαc = n2αn−α(2+δ) = n−αδ.

Using similar estimates repeatedly in a summation one can show:

Lemma 40
We have P(E>α) 6 n−αδ(1 + 2/δ).

This allows to choose α such that P(E>α) becomes negligible.

Lemma 41
The 6 n2α cuts of size 6 αc can be enumerated in polynomial time.

See the exercises.
Now we can represent E6α using a DNF.
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