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Abstract— While Kolmogorov complexity is the accepted absolute
measure of information content of an individual finite object, a sim-
ilarly absolute notion is needed for the relation between an individ-
ual data sample and an individual model summarizing the informa-
tion in the data, for example, a finite set (or probability distribution)
where the data sample typically came from. The statistical theory
based on such relations between individual objects can be called al-
gorithmic statistics, in contrast to classical statistical theory that deals
with relations between probabilistic ensembles. We develop the al-
gorithmic theory of statistic, sufficient statistic, and minimal sufficient
statistic. This theory is based on two-part codes consisting of the code
for the statistic (the model summarizing the regularity, the meaning-
ful information, in the data) and the model-to-data code. In contrast
to the situation in probabilistic statistical theory, the algorithmic re-
lation of (minimal) sufficiency is an absolute relation between the in-
dividual model and the individual data sample. We distinguish im-
plicit and explicit descriptions of the models. We give characteriza-
tions of algorithmic (Kolmogorov) minimal sufficient statistic for all
data samples for both description modes—in the explicit mode under
some constraints. We also strengthen and elaborate earlier results on
the “Kolmogorov structure function” and “absolutely non-stochastic
objects”—those rare objects for which the simplest models that sum-
marize their relevant information (minimal sufficient statistics) are at
least as complex as the objects themselves. We demonstrate a close
relation between the probabilistic notions and the algorithmic ones:
(i) in both cases there is an “information non-increase” law; (ii) it is
shown that a function is a probabilistic sufficient statistic iff it is with
high probability (in an appropriate sense) an algorithmic sufficient
statistic.

I. INTRODUCTION

TATISTICAL theory ideally considers the following

problem: Given a data sample and a family of mod-
els (hypotheses), select the model that produced the data.
But a priori it is possible that the data is atypical for the
model that actually produced it, or that the true model is
not present in the considered model class. Therefore we
have to relax our requirements. If selection of a “true”
model cannot be guaranteed by any method, then as next
best choice “modeling the data” as well as possible irre-
spective of truth and falsehood of the resulting model may
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be more appropriate. Thus, we change “true” to “as well
as possible.” The latter we take to mean that the model ex-
presses all significant regularity present in the data. The
general setting is as follows: We carry out a probabilis-
tic experiment of which the outcomes are governed by
an unknown probability distribution P. Suppose we ob-
tain as outcome the data sample x. Given x, we want
to recover the distribution P. For certain reasons we can
choose a distribution from a set of acceptable distributions
only (which may or may not contain P). Intuitively, our
selection criteria are that (i) x should be a “typical” out-
come of the distribution selected, and (ii) the selected dis-
tribution has a “simple” description. We need to make
the meaning of “typical” and “simple” rigorous and bal-
ance the requirements (i) and (ii). In probabilistic statistics
one analyzes the average-case performance of the selec-
tion process. There arises the problem that for individual
cases the selection performance may be bad although the
performance is good on average. We embark on a sys-
tematic study of model selection where the performance
is related to the individual data sample and the individual
model selected. It turns out to be more straightforward to
investigate models that are finite sets first, and then gen-
eralize the results to models that are probability distribu-
tions. To simplify matters, and because all discrete data
can be binary coded, we consider only data samples that
are finite binary strings.

This paper is one of a triad of papers dealing with the
best individual model for individual data: The present pa-
per supplies the basic theoretical underpinning by way
of two-part codes, [19] derives ideal versions of applied
methods (MDL) inspired by the theory, and [8] treats ex-
perimental applications thereof.

Probabilistic Statistics: In ordinary statistical theory
one proceeds as follows, see for example [4]: Suppose
two discrete random variables X, Y have a joint probabil-
ity mass function p(x,y) and marginal probability mass
functions p1(x) = ¥, p(x,y) and p2(y) = ¥, p(x,y). Then
the (probabilistic) mutual information 1(X;Y) between the
joint distribution and the product distribution pq (x)p2(y)
is defined by:

1Y) = T plry) log — P&
Xy
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where “log” denotes the binary logarithm. Consider a
probabilistic ensemble of models, say a family of prob-
ability mass functions {fy} indexed by 6, together with
a distribution p; over 6. This way we have a random
variable ©® with outcomes in {fy} and a random vari-
able D with outcomes in the union of domains of fy, and
p(0,d) = p1(0) fo(d). Every function T(D) of a data sam-



ple D—like the sample mean or the sample variance—is
called a statistic of D. A statistic T(D) is called sufficient if
the probabilistic mutual information

1(®;D) = I(©; T(D)) (12)
for all distributions of 6. Hence, the mutual information
between parameter and data sample random variables is
invariant under taking sufficient statistic and vice versa.
That is to say, a statistic T(D) is called sufficient for ® if
it contains all the information in D about ®. For example,
consider 7 tosses of a coin with unknown bias 6 with out-
come D =dqd,...d, whered; € {0,1} (1 <i < n). Given
n, the number of outcomes “1” is a sufficient statistic for
©: the statistic T(D) = s = };' ; d;. Given T, all sequences
with s “1”s are equally likely independent of parameter 6:
Given s, if d is an outcome of n coin tosses and T(D) = s
then Pr(d | T(D) = s) = (") " and Pr(d | T(D) # s) = 0.
This can be shown to imply (1.2) and therefore T is a suffi-
cient statistic for ®. According to Fisher [5]: “The statistic
chosen should summarise the whole of the relevant infor-
mation supplied by the sample. This may be called the
Criterion of Sufficiency ... In the case of the normal curve
of distribution it is evident that the second moment is a
sufficient statistic for estimating the standard deviation.”
Note that one cannot improve on sufficiency: for every
(possibly randomized) function T we have

1(©;D) > 1(;T(D)), (13)
that is, mutual information cannot be increased by pro-
cessing the data sample in any way.

A sufficient statistic may contain information that is not
relevant: for a normal distribution the sample mean is a
sufficient statistic, but the pair of functions which give
the mean of the even-numbered samples and the odd-
numbered samples respectively, is also a sufficient statis-
tic. A statistic T(D) is a minimal sufficient statistic with re-
spect to an indexed model family { fy}, if it is a function of
all other sufficient statistics: it contains no irrelevant infor-
mation and maximally compresses the information about
the model ensemble. As it happens, for the family of nor-
mal distributions the sample mean is a minimal sufficient
statistic, but the sufficient statistic consisting of the mean
of the even samples in combination with the mean of the
odd samples is not minimal. All these notions and laws
are probabilistic: they hold in an average sense.

Kolmogorov Complexity: We write string to mean a fi-
nite binary sequence. Other finite objects can be encoded
into strings in natural ways. The Kolmogorov complex-
ity, or algorithmic entropy, K(x) of a string x is the length
of a shortest binary program to compute x on a univer-
sal computer (such as a universal Turing machine). Intu-
itively, K(x) represents the minimal amount of informa-
tion required to generate x by any effective process, [10].
The conditional Kolmogorov complexity K(x | y) of x rel-
ative to y is defined similarly as the length of a shortest
program to compute x if y is furnished as an auxiliary

input to the computation. This conditional definition re-
quires a warning since different authors use the same no-
tation but mean different things. In [2] the author writes
“K(x | y)” to actually mean “K(x | y, K(y)),” notationally
hiding the intended supplementary auxiliary information
“K(y).” This abuse of notation has the additional handi-
cap that no obvious notation is left to express “K(x | y)”
meaning that just “y” is given in the conditional. As it
happens, “y, K(y)” represents more information than just
“y”. For example, K(K(y) | y) can be almost as large as
log K(y) by a result in [6]: For I(y) = n it has an up-
per bound of logn for all y, and for some y’s it has a
lower bound of logn — loglog n. In fact, this result quan-
tifies the undecidability of the halting problem for Turing
machines—for example, if K(K(y) | y) = O(1) for all y,
then the halting problem can be shown to be decidable.
This is known to be false. It is customary, [13], [6], [9],
to write explicitly “K(x | y)” and “K(x | y,K(y))”. Even
though the difference between these two quantities is not
very large, these small differences do matter in the sequel.
In fact, not only the precise information itself in the con-
ditional, but also the way it is represented, is crucial, see
Subsection III-A.

The functions K(-) and K(- | -), though defined in terms
of a particular machine model, are machine-independent
up to an additive constant and acquire an asymptotically
universal and absolute character through Church’s thesis,
from the ability of universal machines to simulate one an-
other and execute any effective process. The Kolmogorov
complexity of a string can be viewed as an absolute and
objective quantification of the amount of information in it.
This leads to a theory of absolute information contents of in-
dividual objects in contrast to classical information theory
which deals with average information to communicate ob-
jects produced by a random source. Since the former theory
is much more precise, it is surprising that analogs of theo-
rems in classical information theory hold for Kolmogorov
complexity, be it in somewhat weaker form. Here our aim
is to provide a similarly absolute notion for individual
“sufficient statistic” and related notions borrowed from
probabilistic statistics.

Two-part codes: The prefix-code of the shortest effec-
tive descriptions gives an expected code word length close
to the entropy and also compresses the regular objects un-
til all regularity is squeezed out. All shortest effective
descriptions are completely random themselves, without
any regularity whatsoever. The idea of a two-part code
for a body of data d is natural from the perspective of Kol-
mogorov complexity. If 4 does not contain any regularity
at all, then it consists of purely random data and the model
is precisely that. Assume that the body of data d contains
regularity. With help of a description of the regularity (a
model) we can describe the data compactly. Assuming
that the regularity can be represented in an effective man-
ner (that is, by a Turing machine), we encode the data as
a program for that machine. Squeezing all effective regu-
larity out of the data, we end up with a Turing machine
representing the meaningful regular information in the



data together with a program for that Turing machine rep-
resenting the remaining meaningless randomness of the
data. However, in general there are many ways to make
the division into meaningful information and remaining
random information. In a painting the represented im-
age, the brush strokes, or even finer detail can be the rel-
evant information, depending on what we are interested
in. What we require is a rigorous mathematical condition
to force a sensible division of the information at hand into
a meaningful part and a meaningless part.

Algorithmic Statistics: The two-part code approach
leads to a more general algorithmic approach to statistics.
The algorithmic statistician’s task is to select a model (de-
scribed possibly by a probability distribution) for which
the data is typical. In a two-part description, we describe
such a model and then identify the data within the set of
the typical outcomes. The best models make the two-part
description as concise as the best one-part description of
the data. A description of such a model is an algorithmic
sufficient statistic since it summarizes all relevant proper-
ties of the data. Among the algorithmic sufficient statis-
tics, the simplest one (an algorithmic minimal sufficient
statistic) is best in accordance with Ockham’s Razor since
it summarizes the relevant properties of the data as con-
cisely as possible. In probabilistic data or data subject to
noise this involves separating regularity (structure) in the
data from random effects.

In a restricted setting where the models are finite sets
a way to proceed was suggested by Kolmogorov, attribu-
tionin [16], [3], [4]. Given data d, the goal is to identify the
“most likely” finite set S of which d is a “typical” element.
Finding a set of which the data is typical is reminiscent of
selecting the appropriate magnification of a microscope to
bring the studied specimen optimally in focus. For this
purpose we consider sets S such that d € S and we repre-
sent S by the shortest program S* that computes the char-
acteristic function of S. The shortest program S* that com-
putes a finite set S containing d, such that the two-part
description consisting of S* and log|S| is as as short as
the shortest single program that computes d without input,
is called an algorithmic sufficient statistic' This definition is
non-vacuous since there does exist a two-part code (based
on the model S; = {d}) that is as concise as the shortest
single code. The description of d given S* cannot be sig-
nificantly shorter than log |S|. By the theory of Martin-Lof
randomness [15] this means that d is a “typical” element
of S. In general there can be many algorithmic sufficient
statistics for data d; a shortest among them is called an
algorithmic minimal sufficient statistic. Note that there can
be possibly more than one algorithmic minimal sufficient
statistic; they are defined by, but not generally computable
from, the data.

In probabilistic statistics the notion of sufficient statis-
tic (1.2) is an average notion invariant under all probabil-
ity distributions over the family of indexed models. If a
statistic is not thus invariant, it is not sufficient. In con-

11t is also called the Kolmogorov sulfficient statistic.

trast, in the algorithmic case we investigate the relation
between the data and an individual model and therefore
a probability distribution over the models is irrelevant. It
is technically convenient to initially consider the simple
model class of finite sets to obtain our results. It then turns
out that it is relatively easy to generalize everything to
the model class of computable probability distributions.
That class is very large indeed: perhaps it contains ev-
ery distribution that has ever been considered in statistics
and probability theory, as long as the parameters are com-
putable numbers—for example rational numbers. Thus
the results are of great generality; indeed, they are so gen-
eral that further development of the theory must be aimed
at restrictions on this model class, see the discussion about
applicability in Section VII. The theory concerning the
statistics of individual data samples and models one may
call algorithmic statistics.

Background and Related Work: At a Tallinn conference
in 1973, A.N. Kolmogorov formulated the approach to an
individual data to model relation, based on a two-part
code separating the structure of a string from meaning-
less random features, rigorously in terms of Kolmogorov
complexity (attribution by [16], [3]). Cover [3], [4] inter-
preted this approach as a (sufficient) statistic. The “statis-
tic” of the data is expressed as a finite set of which the
data is a “typical” member. Following Shen [16] (see
also [20], [17], [19]), this can be generalized to computable
probability mass functions for which the data is “typi-
cal.” Related aspects of “randomness deficiency” (for-
mally defined later in (IV.1)) were formulated in [11], [12]
and studied in [16], [20]. Algorithmic mutual informa-
tion, and the associated non-increase law, were studied
in [13], [14]. Despite its evident epistemological promi-
nence in the theory of hypothesis selection and prediction,
only selected aspects of the algorithmic sufficient statis-
tic have been studied before, for example as related to
the “Kolmogorov structure function” [16], [3], and “ab-
solutely non-stochastic objects” [16], [20], [17], [21], no-
tions also defined or suggested by Kolmogorov at the
mentioned meeting. This work primarily studies quan-
tification of the “non-sufficiency” of an algorithmic statis-
tic, when the latter is restricted in complexity, rather than
necessary and sufficient conditions for the existence of an
algorithmic sufficient statistic itself. These references ob-
tain results for plain Kolmogorov complexity (sometimes
length-conditional) up to a logarithmic error term. Espe-
cially for regular data that have low Kolmogorov com-
plexity with respect to their length, this logarithmic error
term may dominate the remaining terms and eliminate all
significance. Since it is precisely the regular data that one
wants to assess the meaning of, a more precise analysis
as we provide is required. Here we use prefix complexity
to unravel the nature of a sufficient statistic. The excellent
papers of Shen [16], [17] contain the major previous results
related to this work (although [17] is independent).

For the relation with inductive reasoning according to
minimum description length principle see [19]. The en-
tire approach is based on Kolmogorov complexity (also



known as algorithmic information theory). Historically,
the idea of assigning to each object a probability consist-
ing of the summed negative exponentials of the lengths of
all programs computing the object, was first proposed by
Solomonoff [18]. Then, the shorter programs contribute
more probability than the longer ones. His aim, ultimately
successful in terms of theory (see [9]) and as inspiration for
developing applied versions [1], was to develop a general
prediction method. Kolmogorov [10] introduced the com-
plexity proper. The prefix-version of Kolmogorov com-
plexity used in this paper was introduced in [13] and also
treated later in [2]. For a textbook on Kolmogorov com-
plexity, its mathematical theory, and its application to in-
duction, see [9]. We give a definition (attributed to Kol-
mogorov) and results from [16] that are useful later:

Definition 1.1: Let & and B be natural numbers. A finite
binary string x is called (&, §)-stochastic if there exists a fi-
nite set S C {0,1}* such that

xeS, K(S)<a, K(x)>log|S|—B; (L4)

where |S| denotes the cardinality of S, and K(-) the (prefix-
) Kolmogorov complexity. As usual, “log” denotes the bi-
nary logarithm.

The first inequality with small « means that S is “sim-
ple”; the second inequality with f is small means that x
is “in general position” in S. Indeed, if x had any special
property p that was shared by only a small subset Q of S,
then this property could be used to single out and enu-
merate those elements and subsequently indicate x by its
index in the enumeration. Altogether, this would show
K(x) < K(p) +1og|Q)|, which, for simple p and small Q
would be much lower than log |S|. A similar notion for
computable probability distributions is as follows: Let «
and f be natural numbers. A finite binary string x is called
(«, B)-quasistochastic if there exists a computable probabil-
ity distribution P such that

P(x) >0, K(P) <a, K(x) > —logP(x)—p. (15

Proposition 1.2: There exist constants ¢ and C, such that
for every natural number 7 and every finite binary string
x of length n:

(@) if x is (a,p)-stochastic, then x is (a + ¢, B)-
quasistochastic; and

(b) if x is («, B)-quasistochastic and the length of x is less
than 7, then x is (« + clogn, B + C)-stochastic.

Proposition 1.3: (a) There exists a constant C such that,
for every natural number n and every « and § with & >
logn +Cand a + B > n +4logn + C, all strings of length
less than n are (a, B)-stochastic.

(b) There exists a constant C such that, for every natural

number n and every a and fwith2a + < n—6logn —C,
there exist strings x of length less than # that are not («, §)-
stochastic.
Note that if we take & = 8 then, for some boundary in be-
tween %n and %n, the last non-(«, B)-stochastic elements
disappear if the complexity constraints are sufficiently re-
laxed by having «, § exceed this boundary.

Outline of this Work: First, we obtain a new Kol-
mogorov complexity “triangle” inequality that is useful in
the later parts of the paper. We define algorithmic mu-
tual information between two individual objects (in con-
trast to the probabilistic notion of mutual information that
deals with random variables). We show that for every
computable distribution associated with the random vari-
ables, the expectation of the algorithmic mutual informa-
tion equals the probabilistic mutual information up to an
additive constant that depends on the complexity of the
distribution. It is known that in the probabilistic setting
the mutual information (an average notion) cannot be in-
creased by algorithmic processing. We give a new proof
that this also holds in the individual setting.

We define notions of “typicality” and “optimality” of
sets in relation to the given data x. Denote the shortest
program for a finite set S by S* (if there is more than one
shortest program S* is the first one in the standard effec-
tive enumeration). “Typicality” is a reciprocal relation: A
set S is “typical” with respect to x if x is an element of S
that is “typical” in the sense of having small randomness de-
ficiency 6¢(x) = log |S| — K(x|S*) (see definition (IV.1) and
discussion). That is, x has about maximal Kolmogorov
complexity in the set, because it can always be identified
by its position in an enumeration of S in log |S| bits. Every
description of a “typical” set for the data is an algorithmic
statistic.

A set S is “optimal” if the best two-part description con-
sisting of a description of S and a straightforward descrip-
tion of x as an element of S by an index of size log|S]| is
as concise as the shortest one-part description of x. This
implies that optimal sets are typical sets. Descriptions of
such optimal sets are algorithmic sufficient statistics, and
a shortest description among them is an algorithmic min-
imal sufficient statistic. The mode of description plays
a major role in this. We distinguish between “explicit”
descriptions and “implicit” descriptions—that are intro-
duced in this paper as a proper restriction on the recur-
sive enumeration based description mode. We establish
range constraints of cardinality and complexity imposed
by implicit (and hence explicit) descriptions for typical
and optimal sets, and exhibit a concrete algorithmic min-
imal sufficient statistic for implicit description mode. It
turns out that only the complexity of the data sample
x is relevant for this implicit algorithmic minimal suffi-
cient statistic. Subsequently we exhibit explicit algorith-
mic sufficient statistics, and an explicit minimal algorith-
mic (near-)sufficient statistic. For explicit descriptions it
turns out that certain other aspects of x (its enumeration
rank) apart from its complexity are a major determinant
for the cardinality and complexity of that statistic. It is
convenient at this point to introduce some notation:

Notation 1.4: From now on, we will denote by < an in-
equality to within an additive constant, and by = the sit-

uation when both < and > hold. We will also use < to
denote an inequality to within an multiplicative constant

factor, and = to denote the situation when both < and >



hold.

Let is contrast our approach with the one in [16]. The
comparable case there, by (1.4), is that x is («, B)-stochastic
with B = 0 and « minimal. Then, K(x) > log|S| for a
set S of Kolmogorov complexity «. But, if S is optimal

+

for x, then, as we formally define it later (III.4), K(x) =
K(S) +log|S|. That is (1.4) holds with B = —K(S). In
contrast, for B = 0 we must have K(S) = 0 for typicality.
In short, optimality of S with repect to x corresponds to
(L.4) by dropping the second item and replacing the third
item by K(x) = log|S| + K(S). “Minimality” of the algo-
rithmic sufficient statistic S* (the shortest program for S)
corresponds to choosing S with minimal K(S) in this equa-
tion. This is equivalent to (I.4) with inequalities replaced
by equalities and K(S) =« = —8.

We consider the functions related to (&, §)-stochasticity,
and improve Shen’s result on maximally non-stochastic
objects. In particular, we show that for every n there are
objects x of length n with complexity K(x | n) about n such
that every explicit algorithmic sufficient statistic for x has
complexity about # ({x} is such a statistic). This is the best
possible. In Section V, we generalize the entire treatment
to probability density distributions. In Section VI we con-
nect the algorithmic and probabilistic approaches: While
previous authors have used the name “Kolmogorov suf-
ficient statistic” because the model appears to summarize
the relevant information in the data in analogy of what
the classic sufficient statistic does in a probabilistic sense,
a formal justification has been lacking. We give the for-
mal relation between the algorithmic approach to suffi-
cient statistic and the probabilistic approach: A function
is a probabilistic sufficient statistic iff it is with high prob-
ability an algorithmic 6-sufficient statistic, where an algo-
rithmic sufficient statistic is f-sufficient if it satisfies also
the sufficiency criterion conditionalized on 6.

II. KOLMOGOROV COMPLEXITY

We give some definitions to establish notation. For in-
troduction, details, and proofs, see [9]. We write string to
mean a finite binary string. Other finite objects can be en-
coded into strings in natural ways. The set of strings is
denoted by {0,1}*. The length of a string x is denoted by
I(x), distinguishing it from the cardinality |S| of a finite set
S.

Let x,y,z € N, where N denotes the natural numbers.
Identify A and {0,1}* according to the correspondence

(0,€),(1,0),(2,1),(3,00), (4,01),....

Here € denotes the empty word *” with no letters. The length
I(x) of x is the number of bits in the binary string x. For
example, [(010) = 3 and I(e) = 0.

The emphasis is on binary sequences only for conve-
nience; observations in any alphabet can be so encoded
in a way that is ‘theory neutral’.

A binary string x is a proper prefix of a binary string vy if
we can write y = xz forz #e. Aset {x,y,...} C{0,1}*is

prefix-free if for any pair of distinct elements in the set nei-
ther is a proper prefix of the other. A prefix-free set is also
called a prefix code. Each binary string x = x1x2...x, has
a special type of prefix code, called a self-delimiting code,

X =1"0x1x7...x5.

This code is self-delimiting because we can determine
where the code word ¥ ends by reading it from left to right
without backing up. Using this code we define the stan-
dard self-delimiting code for x to be x’ = I(x)x. It is easy
to check that (%) =2n+1and [(x') = n+2logn + 1.

Let (-,-) be a standard one-one mapping from N x N
to NV, for technical reasons chosen such that I({(x,y)) =
I(y) + I(x) + 2I(I(x)) + 1, for example (x,y) = x'y =
11Dl (x)xy. This can be iterated to ({-,-), -).

The prefix Kolmogorov complexity, or algorithmic entropy,
K(x) of a string x is the length of a shortest binary program
to compute x on a universal computer (such as a universal
Turing machine). For technical reasons we require that the
universal machine has the property that no halting pro-
gram is a proper prefix of another halting program. In-
tuitively, K(x) represents the minimal amount of informa-
tion required to generate x by any effective process. We
denote the shortest program for x by x*; then K(x) = I(x*).
(Actually, x* is the first shortest program for x in an appro-
priate standard enumeration of all programs for x such as
the halting order.) The conditional Kolmogorov complex-
ity K(x | y) of x relative to y is defined similarly as the
length of a shortest program to compute x if y is furnished
as an auxiliary input to the computation. We often use
K(x | y*), or, equivalently, K(x | y, K(y)) (trivially y* con-
tains the same information as the y, K(y)). Note that “y”
in the conditional is just the information about y and apart
from this does not contain information about y* or K(y).
For this work the difference is crucial, see the comment in
Section L.

A. Additivity of Complexity
Recall that by definition K(x,y) = K((x,y)). Trivially,

the symmetry property holds: K(x,y) = K(y,x). Later
we will use many times the “Additivity of Complexity”

property

K(x,y) = K(x) + K(y | x*) = K(y) + K(x | y*).  (IL1)

This result due to [6] can be found as Theorem 3.9.1 in [9]
and has a difficult proof. It is perhaps instructive to point
out that the version with just x and y in the conditionals
doesn’t hold with £, but holds up to additive logarithmic
terms that cannot be eliminated. The conditional version
needs to be treated carefully. It is

K(x,y|z) = K(x| 2) +K(y | x,K(x | 2),2). (I1.2)

Note that a naive version

K(x,y|z) = K(x|z) +K(y | x",2)



is incorrect: taking z = x, y = K(x), the left-hand side

equals K(x* | x), and the right-hand side equals K(x | x) +

K(K(x) | x*,x) = 0. First, we derive a (to our knowledge)

new “directed triangle inequality” that is needed later.
Theorem 11.1: For all x,v, z,

* *\ = * *
K(x|y") <K(x,z|y") <Kz |y") +K(x | ).
Proof: Using (I1.1), an evident inequality introducing
an auxiliary object z, and twice ( 1I.1) again:

K(x,z |y") = K(x,y,2) = K(y)

(
< K(z) +K(x | 2°) +K(y | z°) — K(y)
= K(y,z) —K(y) + K(x | z")
= K(x | z*) +K(z | y).

|

This theorem has bizarre consequences. These conse-
quences are not simple unexpected artifacts of our defini-
tions, but, to the contrary, they show the power and the
genuine contribution to our understanding represented
by the deep and important mathematical relation (II.1).

Denote k = K(y) and substitute k = z and K(k) = x
to find the following counterintuitive corollary: To deter-
mine the complexity of the complexity of an object y it
suffices to give both y and the complexity of y. This is
counterintuitive since in general we cannot compute the
complexity of an object from the object itself; if we could
this would also solve the so-called “halting problem”,
[9]. This noncomputability can be quantified in terms of
K(K(y) | y) which can rise to almost K(K(y)) for some
y—see the related discussion on notation for conditional
complexity in Section I. But in the seemingly similar, but
subtly different, setting below it is possible.

Corollary IL2: As above, let k denote K(y). Then,
K(K(k) | v, k) = K(K(k) | y*) < K(K(k) | k) +K(k |
y, k) £ 0. We can iterate this idea. For example, the next
step is that given y and K(y) we can determine K(K(K(y)))
in O(1) bits, that is, K(K(K(k))) | v, k) = 0.

A direct construction works according to the following
idea (where we ignore some important details): From k*
one can compute (k,K(k)) since k* is by definition the
shortest program for k and also by definition I(k*) = K(k).
Conversely, from k, K(k) one can compute k*: by running
of all programs of length at most K(k) in dovetailed fash-
ion until the first programme of length K(k) halts with
output k; this is k*. The shortest program that computes
the pair (y, k) has length = k: We have K(y,k) = k (since
the shortest program y* for y carries both the informa-
tion about y and about k = I(y*)). By (IL1) therefore
K(k) + K(y | k,K(k)) = k. In view of the information
equivalence of (k,K(k)) and k*, therefore K(k) + K(y |
k*) = k. Let r be a program of length I(r) = K(y | k*)
that computes y from k*. Then, since I(k*) = K(k), there
is a shortest program y* = gk*r for y where g is a fixed
O(1) bit self-delimiting program that unpacks and uses k*
and r to compute y. We are now in the position to show

K(K(k) | y,k) = 0. There is a fixed O(1)-bit program, that
includes knowledge of g, and that enumerates two lists in
parallel, each in dovetailed fashion: Using k it enumer-
ates a list of all programs that compute k, including k*.
Given y and k it enumerates another list of all programs of
length k = I(y*) that compute y. One of these programs
is y* = gk*r that starts with gk*. Since g is known, this
self-delimiting program k*, and hence its length K(k), can
be found by matching every element in the k-list with the
prefixes of every element in the y list in enumeration or-
der.

B. Information Non-Increase

If we want to find an appropriate model fitting the data,
then we are concerned with the information in the data
about such models. Intuitively one feels that the infor-
mation in the data about the appropriate model cannot
be increased by any algorithmic or probabilistic process.
Here, we rigorously show that this is the case in the al-
gorithmic statistics setting: the information in one object
about another cannot be increased by any deterministic
algorithmic method by more than a constant. With added
randomization this holds with overwhelming probability.
We use the triangle inequality of Theorem II.1 to recall,
and to give possibly new proofs, of this information non-
increase; for more elaborate but hard-to-follow versions
see [13], [14].

We need the following technical concepts. Let us call
a nonnegative real function f(x) defined on strings a
semimeasure if }_, f(x) < 1, and a measure (a probability
distribution) if the sum is 1. A function f(x) is called
lower semicomputable if there is a rational valued com-
putable function g(n, x) such that g(n +1,x) > g(n,x)
and lim, .. g(n,x) = f(x). For an upper semicomputable
function f we require that — f is lower semicomputable. It
is computable when it is both lower and upper semicom-
putable. (A lower semicomputable measure is also com-
putable.)

To define the algorithmic mutual information between
two individual objects x and y with no probabilities in-
volved, it is instructive to first recall the probabilistic no-
tion (I.1) Rewriting (I.1) as

Y)Y ryl-
Xy

log p(x) —log p(y) +1log p(x,y)],

and noting that — log p(s) is very close to the length of the
prefix-free Shannon-Fano code for s, we are led to the fol-
lowing definition. > The information in y about x is defined
as

= K(x) = K(x

|y*) = K(x) + K(y) - K(x,y),

(IL3)

I(y : x)

2The Shannon-Fano code has nearly optimal expected code length
equal to the entropy with respect to the distribution of the source [4].
However, the prefix-free code with code word length K(s) has both
about expected optimal code word length and individual optimal effec-
tive code word length, [9].



where the second equality is a consequence of (IL.1) and

states that this information is symmetrical, I(x : y) = I(y :

x), and therefore we can talk about mutual information.>
Remark 11.3: The conditional mutual information is

I(x:y|z) =K(x|z) = K(x | y,K(y | 2),2)
=K(x|z) +K(y | z) - K(x,y | 2).

%
It is important that the expectation of the algorithmic mu-
tual information I(x : y) is close to the probabilistic mu-
tual information I(X; Y))—if this were not the case then the
algorithmic notion would not be a sharpening of the prob-
abilistic notion to individual objects, but something else.
Lemma 11.4: Given a computable joint probability mass
distribution p(x,y) over (x,y) we have

I(X;Y) = K(p) < Y. Y plx,y)I(x:y) (IL.4)
x oy

< I(X;Y) +2K(p),

where K(p) is the length of the shortest prefix-free pro-
gram that computes p(x, y) from input (x,y).

Remark IL.5: Above we required p(-,-) to be com-
putable. Actually, we only require that p be a lower semi-
computable function, which is a weaker requirement than
recursivity. However, together with the condition that
p(-,-) is a probability distribution, } . , p(x,y) = 1, this
means that p(-, -) is computable, [9], Section 8.1. O

Proof: Rewrite the expectation

Y Y py)Ix:y) £ Y Y px,y)[K(x)
Xy Xy

+ K(y) — K(x,y)]-

Define }, p(x,y) = p1(x) and L, p(x,y) = p2(y) to obtain
LY p(uy)I(xy) =} p1(x)K(x) + ) p2()K(y)
X y x y

- Y p(x,K(x,y).
XYy

Given the program that computes p, we can approximate
p1(x) by a q1(x,y0) = Ly<y, P(x,¥), and similarly for p,.
That is, the distributions p; (i = 1,2) are lower semi-
computable, and by Remark IL5, therefore, they are com-
putable. It is known that for every computable proba-

bility mass function q we have H(q) < Y q(x)K(x) <
H(q) + K(q), [9], Section 8.1.
Hence, H(pi) < L pi(x)K(x) < H(pi) +K(p)) (i =

+ +
1,2), and H(p) < Y., p(x,y)K(x,y) < H(p) + K(p).
On the other hand, the probabilistic mutual information
(L.1) is expressed in the entropies by I(X;Y) = H(p1) +
H(p,) — H(p). By construction of the g;'s above, we have

3The notation of the algorithmic (individual) notion I(x : y) distin-

guishes it from the probabilistic (average) notion I(X;Y). We deviate
slightly from [9] where I(y : x) is defined as K(x) — K(x | y).

K(p1),K(p2) < K(p). Since the complexities are positive,
substitution establishes the lemma. u
Can we get rid of the K(p) error term? The answer is
affirmative; by putting p(-) in the conditional we even get
rid of the computability requirement.
Lemma II.6: Given a joint probability mass distribution
p(x,y) over (x,y) (not necessarily computable) we have

IXY) )Y ploy)(x:y]p),
Xy

where the auxiliary p means that we can directly access
the values p(x, y) on the auxiliary conditional information
tape of the reference universal prefix machine.

Proof: The lemma follows from the definition of con-
ditional algorithic mutual information, Remark 11.3, if we
show that ), p(x)K(x | p) L H(p), where the O(1) term
implicit in the = sign is independent of p.

Equip the reference universal prefix machine, with an
O(1) length program to compute a Shannon-Fano code
from the auxiliary table of probabilities. Then, given an
input r, it can determine whether r is the Shannon-Fano
code word for some x. Such a code word has length

+

= —log p(x). If this is the case, then the machine outputs

x, otherwise it halts without output. Therefore, K(x | p) <
—log p(x). This shows the upper bound on the expected
prefix complexity. The lower bound follows as usual from
the Noiseless Coding Theorem. |

We prove a strong version of the information non-
increase law under deterministic processing (later we
need the attached corollary):

Theorem 11.7: Given x and z, let g be a program comput-
ing z from x*. Then

I(z:y) < I(x: y) + K(q). (IL5)

Proof: By the triangle inequality,

(v [27) +K(z | x7)

K(y | x*) <
=K(y | z*) +K(q).

K
K
Thus,

I(x:y) =K(y) —K(y | x)

> K(y) — K(y | z*) - K(q)
=1I(z:y) — K(9g).

[
This also implies the slightly weaker but intuitively
more appealing statement that the mutual information be-
tween strings x and y cannot be increased by processing x
and y separately by deterministic computations.
Corollary I1.8: Let f, g be recursive functions. Then

1(£(x):8() < I(x:9) +K(H +K(g).  (L6)

Proof: 1t suffices to prove the case g(y) = y and ap-

ply it twice. The proof is by replacing the program g that
computes a particular string z from a particular x* in (IL.5).



There, q possibly depends on x* and z. Replace it by a pro-
gram g that first computes x from x*, followed by com-
puting a recursive function f, that is, g is independent of
x. Since we only require an O(1)-length program to com-
pute x from x* we can choose I(gy) = K(f).

By the triangle inequality,

K(y | x*) < K(y | f(x)*) +K(f(x) | x*)
= K(y | f(x)*) +K(f).

Thus,

It turns out that furthermore, randomized computa-
tion can increase information only with negligible prob-
ability. Let us define the universal probability m(x) =
2-K(¥), This function is known to be maximal within
a multiplicative constant among lower semicomputable
semimeasures. So, in particular, for each computable mea-
sure v(x) we have v(x) < m(x), where the constant factor
in < depends on v. This property also holds when we
have an extra parameter, like y*, in the condition.

Suppose that z is obtained from x by some randomized
computation. The probability p(z | x) of obtaining z from
x is a semicomputable distribution over the z’s. Therefore
it is upperbounded by m(z | x) < m(z | x*) = 2-K@E¥"),
The information increase I(z : y) — I(x : y) satisfies the
theorem below.

Theorem 11.9: For all x,y, z we have

m(z | x*)2!E ) S m(z | 2%,y K(y | x7).
Remark I1.10: For example, the probability of an in-
crease of mutual information by the amount d is < 2.
The theorem implies Y, m(z | x*)2!E¥)-1(xy) < 1, the
m(- | x*)-expectation of the exponential of the increase
is bounded by a constant. O

Proof: We have

[(z:y) = 1(x:y) = K(y) = K(y | 27) = (K(y) = K(y [ x7))
=Ky [ x") =Ky [ 2).

The negative logarithm of the left-hand side in the theo-
rem is therefore

Kz [ x*) +K(y | 2°) = K(y [ x7).

Using Theorem II.1, and the conditional additivity (I.2),
this is

> K(y,z | ") —K(y | x*) = K(z | x*,y,K(y | x*)).

III. FINITE SET MODELS

For convenience, we initially consider the model class
consisting of the family of finite sets of finite binary
strings, that is, the set of subsets of {0,1}*.

A. Finite Set Representations

Although all finite sets are recursive there are different
ways to represent or specify the set. We only consider
ways that have in common a method of recursively enu-
merating the elements of the finite set one by one, and dif-
fer in knowledge of its size. For example, we can specify
a set of natural numbers by giving an explicit table or a
decision procedure for membership and a bound on the
largest element, or by giving a recursive enumeration of
the elements together with the number of elements, or by
giving a recursive enumeration of the elements together
with a bound on the running time. We call a representa-
tion of a finite set S explicit if the size |S| of the finite set
can be computed from it. A representation of S is implicit
if the logsize |log |S|] can be computed from it.

Example II1.1: In Section I1I-D, we will introduce the set
Sk of strings whose elements have complexity < k. It will
be shown that this set can be represented implicitly by
a program of size K(k), but can be represented explicitly
only by a program of size k. &

Such representations are useful in two-stage encodings
where one stage of the code consists of an index in S of

length = log |S|. In the implicit case we know, within an
additive constant, how long an index of an element in the
set is.

We can extend the notion of Kolmogorov complexity
from finite binary strings to finite sets: The (prefix-) com-
plexity Kx(S) of a finite set S is defined by

Kx(S) = min{K(i) :Turing machine T; computes S
1
in representation format X},

where X is for example “implicit” or “explicit”. In general
S* denotes the first shortest self-delimiting binary pro-
gram (/(S*) = K(S)) in enumeration order from which S
can be computed. These definitions depend, as explained
above, crucial on the representation format X: the way S is
supposed to be represented as output of the computation
can make a world of difference for S* and K(S). Since the
representation format will be clear from the context, and
to simplify notation, we drop the subscript X. To complete
our discussion: the worst case of representation format X,
a recursively enumerable representation where nothing is
known about the size of the finite set, would lead to in-
dices of unknown length. We do not consider this case.
We may use the notation

S impls S expl

for some implicit and some explicit representation of S.
When a result applies to both implicit and explicit repre-
sentations, or when it is clear from the context which rep-
resentation is meant, we will omit the subscript.



B. Optimal Model and Sufficient Statistic

In the following we will distinguish between “models”
that are finite sets, and the “shortest programs” to com-
pute those models that are finite strings. Such a shortest
program is in the proper sense a statistic of the data sam-
ple as defined before. In a way this distinction between
“model” and “statistic” is artificial, but for now we prefer
clarity and unambiguousness in the discussion.

Consider a string x of length n and prefix complexity
K(x) = k. We identify the structure or regularity in x that
are to be summarized with a set S of which x is a random or
typical member: given S (or rather, an (implicit or explicit)
shortest program S* for S), x cannot be described signifi-
cantly shorter than by its maximal length index in S, that
is, K(x | §*) S log |S|. Formally,

Definition 111.2: Let f > 0 be an agreed upon, fixed, con-
stant. A finite binary string x is a typical or random element
of a set S of finite binary strings if x € S and

K(x|S*) > log|S| — B, (IIL.1)
where S* is an implicit or explicit shortest program for S.
We will not indicate the dependence on p explicitly, but

the constants in all our inequalities (2) will be allowed to
be functions of this .
This definition requires a finite S. In fact, since K(x |

5%) < K(x), it limits the size of S to O(2F) and the shortest
program S* from which S can be computed) is an algorith-
mic statistic for x iff

K(x | S*) = log|S|. (I11.2)
Note that the notions of optimality and typicality are not
absolute but depend on fixing the constant implicit in the
=. Depending on whether S* is an implicit or explicit pro-
gram, our definition splits into implicit and explicit typi-
cality.

Example I11.3: Consider the set S of binary strings of
length n whose every odd position is 0. Let x be an ele-
ment of this set in which the subsequence of bits in even
positions is an incompressible string. Then S is explicitly
as well as implicitly typical for x. The set {x} also has both
these properties. &

Remark 111.4: It is not clear whether explicit typicality
implies implicit typicality. Section IV will show some ex-
amples which are implicitly very non-typical but explic-
itly at least nearly typical. &

There are two natural measures of suitability of such a
statistic. We might prefer either the simplest set, or the
largest set, as corresponding to the most likely structure
‘explaining’ x. The singleton set {x}, while certainly a
statistic for x, would indeed be considered a poor explana-
tion. Both measures relate to the optimality of a two-stage
description of x using S:

K(x) < K(x,8) = K(S) + K(x | S*) (I1L.3)

< K(S) +1og S|,

where we rewrite K(x, S) by (IL.1). Here, S can be under-
stood as either Sipp) Or Sexp- Call a set S (containing x) for
which

K(x) = K(S) +1log|S|, (I11.4)
optimal. Depending on whether K(S) is understood as
K(Simp1) or K (Sexpl)/ our definition splits into implicit and
explicit optimality. Mindful of our distinction between a
finite set S and a program that describes S in a required
representation format, we call a shortest program for an
optimal set with respect to x an algorithmic sufficient statis-
tic for x. Furthermore, among optimal sets, there is a direct
trade-off between complexity and logsize, which together
sum to = k. Equality (IIL.4) is the algorithmic equivalent
dealing with the relation between the individual sufficient
statistic and the individual data sample, in contrast to the
probabilistic notion (I.2).

Example I11.5: The following restricted model family il-
lustrates the difference between the algorithmic individ-
ual notion of sufficient statistic and the probabilistic av-
eraging one. Following the discussion in section VII, this
example also illustrates the idea that the semantics of the
model class should be obtained by a restriction on the fam-
ily of allowable models, after which the (minimal) suf-
ficient statistic identifies the most appropriate model in
the allowable family and thus optimizes the parameters
in the selected model class. In the algorithmic setting
we use all subsets of {0,1}" as models and the shortest
programs computing them from a given data sample as
the statistic. Suppose we have background information
constraining the family of models to the n + 1 finite sets
Ss={xe{0,1}":x=x1...0,& Y 1 x; =5} (0 <s < n).
Assume that our model family is the family of Bernoulli
distributions. Then, in the probabilistic sense for every
data sample x = xj...x;, there is only one natural suf-
ficient statistic: for Y ;x; = s this is T(x) = s with the
corresponding model Ss. In the algorithmic setting the
situation is more subtle. (In the following example we
use the complexities conditional on n.) For x = x1...x,
with }; x; = 7 taking Sy as model yields |S%| = (g), and

therefore log [Sy| = n — Jlogn. The sum of K(Suln) =0

and the logarithmic term gives = n — 1 log 1 for the right-
hand side of (IIl.4). But taking x = 1010...10 yields
K(x | n) = 0 for the left-hand side. Thus, there is no al-
gorithmic sufficient statistic for the latter x in this model
class, while every x of length n has a probabilistic suffi-
cient statistic in the model class. In fact, the restricted
model class has algorithmic sufficient statistic for data
samples x of length n that have maximal complexity with
respect to the frequency of “1”s, the other data samples
have no algorithmic sufficient statistic in this model class.
&
Example I11.6: 1t can be shown that the set S of Exam-
ple I11.3 is also optimal, and so is {x}. Typical sets form a
much wider class than optimal ones: {x,y} is still typical
for x but with most y, it will be too complex to be optimal
for x.



For a perhaps less artificial example, consider complex-
ities conditional on the length n of strings. Let y be a ran-
dom string of length 7, let Sy be the set of strings of length
n which have 0’s exactly where y has, and let x be a ran-
dom element of S,,. Then x is a string random with respect
to the distribution in which 1’s are chosen independently
with probability 0.25, so its complexity is much less than 7.
The set Sy, is typical with respect to x but is too complex to
be optimal, since its (explicit or implicit) complexity con-
ditional on 7 is n. &

It follows that (programs for) optimal sets are statistics.
Equality (IIL.4) expresses the conditions on the algorith-
mic individual relation between the data and the suffi-
cient statistic. Later we demonstrate that this relation im-
plies that the probabilistic optimality of mutual informa-
tion (I.1) holds for the algorithmic version in the expected
sense.

An algorithmic sufficient statistic T(-) is a sharper in-
dividual notion than a probabilistic sufficient statistic. An
optimal set S associated with x (the shortest program com-
puting S is the corresponding sufficient statistic associated
with x) is chosen such that x is maximally random with re-
spect to it. That is, the information in x is divided in a rel-
evant structure expressed by the set S, and the remaining
randomness with respect to that structure, expressed by
x’s index in S of log |S| bits. The shortest program for S is
itself alone an algorithmic definition of structure, without
a probabilistic interpretation.

One can also consider notions of near-typical and near-
optimal that arise from replacing the j in (III.1) by some
slowly growing functions, such as O(log(x)) or O(logk)
asin [16], [17].

In [16], [20], a function of k and x is defined as the lack
of typicality of x in sets of complexity at most k, and they
then consider the minimum k for which this function be-
comes = 0 or very small. This is equivalent to our no-
tion of a typical set. See the discussion of this function in
Section IV. In [3], [4], only optimal sets are considered,
and the one with the shortest program is identified as the
algorithmic minimal sufficient statistic of x. Formally, this
is the shortest program that computes a finite set S such
that (II1.4) holds.

C. Properties of Sufficient Statistic

We start with a sequence of lemmas that will be used
in the later theorems. Several of these lemmas have two
versions: for implicit sets and for explicit sets. In these
cases, S will denote Simpl OF Sexpl Tespectively.

Below it is shown that the mutual information between
every typical set and the data is not much less than
K(K(x)), the complexity of the complexity K(x) of the data
x. For optimal sets it is at least that, and for algorithmic
minimal statistic it is equal to that. The number of ele-
ments of a typical set is determined by the following:

Lemma IIL.7: Let k = K(x). If a set S is (implicitly or
explicitly) typical for x then I(x : S) = k —log |S|.

Proof: By definition I(x : S) = K(x) — K(x | $*) and

by typicality K(x | $*) = log|S|. [ |

Typicality, optimality, and minimal optimality succes-
sively restrict the range of the cardinality (and complexity)
of a corresponding model for a data x. The above lemma
states that for (implicitly or explicitly) typical S the cardi-
nality |S| = @(2K-1(¥:5)). The next lemma asserts that for
implicitly typical S the value I(x : S) can fall below K(k)
by no more than an additive logarithmic term.

Lemma II1.8: Let k = K(x). If a set S is (implicitly or ex-
plicitly) typical for x then I(x : S) S K(k) — K(I(x : S))
and log |S] < k- K(k) + K(I(x : S)). (Here, S is under-
stood as Simp) OF Sexpl respectively.)

Proof: Writing k = K(x), since

k = K(k,x) = K(k) + K(x | k*) (IIL5)
by (II.1), we have 1( :S) = K(x) — K(x | §*) £ K(k) —
[K(x | S*) — K(x | k*)]. Hence, it suffices to show K(x |
5*) —K(x | k) <K K(I(x : S)). Now, from an implicit

description S* we can find the value = log|S| =k — I(x :
S). To recover k we only require an extra K(I(x : S)) bits
apart from S*. Therefore, K(k | S*) < K(I(x : S)). This
reduces what we have to show to K(x | §*) < K(x | k*) +
K(k | $*) which is asserted by Theorem IL1.

|
2log K(k) where k =

S I(k) S

The term I(x : S) is at least K( ) —
K(x). For x of length n with k > nand K(k) >
this yields I(x : S) S

If we further restrict typical sets to optimal sets then
the possible number of elements in S is slightly restricted.
First we show that implicit optimality of a set with respect
to a data is equivalent to typicality with respect to the data

combined with effective constructability (determination)
from the data.

logn,
logn — 2loglog n.

Lemma II1.9: A set S is (implicitly or explicitly) optimal
for x iff it is typical and K(S | x*) = 0.

Proof: A set S is optimal iff (II1.3) holds with equal-
ities. Rewriting K(x,S) = K(x) + K(S | x*) the first in-
equality becomes an equality iff K(S | x*) = 0, and the sec-
ond inequality becomes an equality iff K(x | $*) = log|S|
(thatis, S is a typical set). u

Lemma II1.10: Let k = K(x). If a set S is (implicitly or
explicitly) optimal for x, then I(x : S) = K(S) S K(k) and
log |S| < k — K(k).

Proof: If S is optimal for x, then k = K(x) = K(S) +
K(x | S*) = K(S) +1log|S|. From S* we can find both
K(S) = I(S*) and |S| and hence k, that is, K(k) < K(S).
We have I(x : S) = K(S) — K(S | x*) = K(S) by (IL.1),
Lemma I11.9, respectively. This proves the first property.
Substitution of I(x : S) B8 K(k) in the expression of
Lemma I11.7 proves the second property. |
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Fig. 1
RANGE OF STATISTIC ON THE STRAIGHT LINE I(x : S) = K(x) — log|S|.

D. A Concrete Implicit Minimal Sufficient Statistic

A simplest implicitly optimal set (that is, of least
complexity) is an implicit algorithmic minimal sufficient
statistic. We demonstrate that S¥ = {y : K(y) < k}, the set
of all strings of complexity at most k, is such a set. First
we establish the cardinality of S*:

Lemma I11.11: log |S*| = k — K(k).

Proof: The lower bound is easiest. Denote by k* of
length K(k) a shortest program for k. Every string s of
length k — K(k) — ¢ can be described in a self-delimiting
manner by prefixing it with k*c*, hence K(s) <k-c+
2logc. For a large enough constant ¢, we have K(s) < k
and hence there are Q)(25~K()) strings that are in S*.

For the upper bound: by (II1.5), all x € S satisfy K(x |
k*) k- K(k), and there can only be O(Zk‘K(k)) of them.

[

From the definition of S¥ it follows that it is defined by
k alone, and it is the same set that is optimal for all objects
of the same complexity k.

Theorem I11.12: The set S is implicitly optimal for every
x with K(x) = k. Also, we have K(5¥) £ K(k).

Proof: ~ From k* we can compute both k and k —
I(k*) = k — K(k) and recursively enumerate S¥. Since
also log |S¥| = k — K(k) (Lemma II1.11), the string k* plus
a fixed program is an implicit description of S* so that
K(k) > K(S¥). Hence, K(x) > K(S) + log |S¥| and since
K(x) is the shortest description by definition equality (=)
holds. That is, Sk is optimal for x. By Lemma III.10

K(S¥) S K (k) which together with the reverse inequality
above yields K(S¥) £ K(k) which shows the theorem. B
Again using Lemma II1.10 shows that the optimal set
S has least complexity among all optimal sets for x, and
therefore:
Corollary I11.13: The set S* is an implicit algorithmic

minimal sufficient statistic for every x with K(x) = k.

All algorithmic minimal sufficient statistics S for x have
K(S) = K(k), and therefore there are O(2K®)) of them. At
least one such a statistic (S¥) is associated with every one
of the O(2¥) strings x of complexity k. Thus, while the idea
of the algorithmic minimal sufficient statistic is intuitively
appealing, its unrestricted use doesn’t seem to uncover
most relevant aspects of reality. The only relevant struc-
ture in the data with respect to an algorithmic minimal
sufficient statistic is the Kolmogorov complexity. To give
an example, an initial segment of 3.1415. .. of length n of
complexity logn + O(1) shares the same algorithmic suf-
ficient statistic with many (most?) binary strings of length
logn+ O(1).

E. Concrete Explicit (Minimal) Sufficient Statistic

Let us now consider representations of finite sets that
are explicit in the sense that we can compute the cardinal-
ity of the set from the representation.

E.1 Examples of Explicit Sufficient Statistics

For example, the description program enumerates all
the elements of the set and halts. Then a set like S =
{y : K(y) < k} has complexity = k [17]: Given the pro-
gram we can find an element not in S¥, which element by
definition has complexity > k. Given S* we can find this

element and hence S¥ has complexity S k. Let
NF = |s¥],

then by Lemma I11.11 log N¥ = k — K(k). We can list S

given k* and N¥ which shows K(S¥) < k.

One way of implementing explicit finite representations
is to provide an explicit generation time for the enumera-
tion process. If we can generate S¥ in time t recursively
using k, then the previous argument shows that the com-
plexity of every number ¢ > t satisfies K(#, k) > k so that
K(t') > K(t' | k*) > k — K(k) by (IL1). This means that ¢
is a huge time which as a function of k rises faster than
every computable function. This argument also shows
that explicit enumerative descriptions of sets S contain-
ing x by an enumerative process p plus a limit on the
computation time t may take only I(p) + K(t) bits (with
K(t) < logt + 2loglogt) but log t unfortunately becomes
noncomputably large!

In other cases the generation time is simply recursive in
the input: S, = {y : I(y) < n} so that K(S,) = K(n) <
logn + 2loglogn. That is, this sufficient statistic for a
random string x with K(x) = n + K(n) has complexity
K(n) both for implicit descriptions and explicit descrip-
tions: differences in complexity arise only for nonrandom
strings (but not too nonrandom, for K(x) = 0 these differ-
ences vanish again).

It turns out that some strings cannot thus be explicitly
represented parsimonously with low-complexity models
(so that one necessarily has bad high complexity models



like S* above). For explicit representations, Shen [16] has
demonstrated the existence of a class of strings called non-
stochastic that don’t have efficient two-part representations
with K(x) = K(S) +1log|S| (x € S) with K(S) significantly
less than K(x). See also [21]. In Section IV we improve
these results to the best possible.

E.2 A Concrete Explicit Minimal Near-Sufficient Statistic

Again, consider the special set S¥ = {y : K(y) < k}. As
we have seen earlier, S¥ itself cannot be explicitly optimal
for x since K(S¥) = k and log N¥ £ k — K(k), and therefore
K(S¥) 4 log N¥ £ 2k — K(k) which considerably exceeds
k. However, it turns out that a closely related set (S ﬁ” be-
low) is explicitly near-optimal. Let I§ denote the index of
y in the standard enumeration of Sk, where all indexes are
padded to the same length = k — K(k) with 0’s in front.
For K(x) = k, let m, denote the longest joint prefix of I%
and N*, and let

¥ = m,0iy, NF=m,ln,.

Lemma I11.14: For K(x) = k, the set Sk = {y € Sk :
mx0 a prefix of IL‘ } satisfies

log [Sh,, | = k — K(k) — I(my),
K(Sk, ) < K(k) + K(my) < K(k) + () + K(I(mx)).

Hence it is explicitly near-optimal for x (up to an addive
K(I(my)) < K(k) < logk + 21oglog k term).

Proof: ~ We can describe x by k*m}i, where m,0iy
is the index of x in the enumeration of SK. Moreover,
k*m} explicitly describes the set S’,;x. Namely, using k
we can recursively enumerate S¥. At some point the first
string z € Sﬁu is enumerated (index I¥ = m,00...0).
By assumption If = m,0... and N¥ = my1.... There-
fore, in the enumeration of Sk eventually string u with
I¥ = my011...1 occurs which is the last string in the
enumeration of SX, . Thus, the size of Sk, is precisely

2I(NY)=1(mx) where I(NK) = I(my) £ I(ny) = log |Sﬁ1x|, and
Sk, is explicitly described by k*m. Since I(k*my0iy) = k
and log \Slr‘nx| = k — K(k) — I(my) we have

K(SK. ) +1log Sk | £ K(k) + K(my) +k — K(k) — I(my)
£ k+ K(my) — I(my) < k+K(1(my)).

This shows S’fnx is explicitly near optimal for x (up to an

additive logarithmic term). |

Lemma II1.15: Every explicit optimal set S C S contain-
ing x satisfies

K(S) > K(k) + 1(my) — K(I(my)).

Proof: 1f S C SKis explicitly optimal for x, then we can

find k from S* (as in the proof of Lemma II1.10), and given

k and S we find K(k) as in Theorem II.1. Hence, given S*,

we can enumerate S and determine the maximal index
Ifj‘ ofay € S. Since also x € S, the numbers If, IX, N

have a maximal common prefix m,. Write | ’; = m,0i, with
I(ix) = k — K(k) — I(my) by Lemma I11.10. Given I(m,) we
can determine m, from I;‘ . Hence, from S, (m,), and iy
we can reconstruct x. That is, K(S) + K(I(my)) + I(IX) —

I(my) > k, which yields the lemma. |
Lemmas II1.14, IT1.15 demonstrate:
Theorem 111.16: The set Sﬁqx is an explicit algorithmic

minimal near-sufficient statistic for x among subsets of S
in the following sense:

K(SK, ) = K(k) — I(my)| < K(I(m2)),
log Sy, | = k— K(k) = ().

Hence K(Sﬁu) + 10g|5',§1X| =
K(1(my)) < logk + 2loglog k.

k £ K(I(my)). Note,

E.3 Almost Always “Sufficient”

We have not completely succeeded in giving a concrete
algorithmic explicit minimal sufficient statistic. However,
we can show that S’,;X is almost always minimal sufficient.

The complexity and cardinality of S’,§1X depend on I(my)

which will in turn depend on x. One extreme is [ (1) = 0
which happens for the majority of x’s with K(x) = k—
for example, the first 99.9% in the enumeration order. For
those x’s we can replace “near-sufficient” by “sufficient”
in Theorem II1.16. Can the other extreme be reached?
This is the case when x is enumerated close to the end
of the enumeration of S¥. For example, this happens for
the “non-stochastic” objects of which the existence was
proven by Shen [16] (see Section IV). For such objects,
I(my) grows to = k — K(k) and the complexity of S’,‘ﬂx rises
to = k while log Sk, | drops to = 0. That is, the explicit al-
gorithmic minimal sufficient statistic for x is essentially x
itself. For those x’s we can also replace “near-sufficient”
with “sufficient” in Theorem II1.16. Generally: for the
overwhelming majority of data x of complexity k the set
S§1X is an explicit algorithmic minimal sufficient statistic
among subsets of S¥ (since I(ny) = 0).

The following discussion will put what was said above
into a more illuminating context. Let

X(r)y={x:1(my) >r}.

The set X(r) is infinite, but we can break it into slices and
bound each slice separately.
Lemma I11.17:

| X(r) (Y(SF\ S <2771 sk,
Proof:

For every x in the set defined by the left-hand side
of the inequality, we have I(my) > 7, and the length
of continuation of my to the total padded index of x is
< [log|S*]1 —r < log|Sk| — r + 1. Moreover, all these



indices share the same first r bits. This proves the lemma.
u
Theorem II1.18:

Z 2—K(x) < 2—7+2'
xeX(r)
Proof: Let us prove first

Y 27k|sk| < 2,
k>0

(IIL6)

By the Kraft inequality, we have, with t;, = |Sk\ §k-1|,

Y 27k <1,
k>0

since S* is in 1-1 correspondence with the prefix programs
of length < k. Hence

2.2 kar—Zt Yot

k>0 i=0 i>0 k=i
=Y t2 " <2

i>0

Y 2 k|sk| =

k>0

For the statement of the lemma, we have

Yy 2K Zz “X(r) (S \ S
xeX(r)
< 27r+1 227k|sk| < 2*7‘+2’
k
where in the last inequality we used (I1L.6). u

This theorem can be interpreted as follows, (we rely
here on a discussion, unconnected with the present topic,
about universal probability with L. A. Levin in 1973). The
above theorem states Y ,cx(;y m(x) < 27"*2. By the mul-
tiplicative dominating property of m(x) with respect to
every lower semicomputable semimeasure, it follows that
for every computable measure v, we have Y cx () v(x) <
27", Thus, the set of objects x for which I(m) is large has
small probability with respect to every computable prob-
ability distribution.

To shed light on the exceptional nature of strings x with
large I(my) from yet another direction, let x be the infinite
binary sequence which is the characteristic function of the
halting problem for our universal Turing machine: the ith
bit of x is 1 of the machine halts on the ith program, and
is 0 otherwise. The expression
= K(x)

I(x : x) = K(x | x)

shows the amount of information in the halting problem
about the string x. (For an infinite sequence 7, we go back
formally to the definition I(7 : x) = K(x) — K(x | ) of [9],
since introducing a notion of #* in place of 7 here has not
been shown yet to bring any benefits.) We have

Fm(x)21tee) = oK)

Zl(xx

Therefore, if we introduce a new quantity X'(r) related to
X(r) defined by

X'(r)y={x:1(x:x)>r},

then by Markov’s inequality,

Z m(x)2!6%) <277,
xeX'(r)

That is, the universal probability of X'(r) is small. This
is a new reason for X(r) to be small, as is shown in the
following theorem.

Theorem 111.19: We have

I(x:x) < I(my) —2logl(my),

and (essentially equivalently) X(r) C X'(r —2logr).
Remark 111.20: The first item in the theorem implies: If
I(my) > r, then I(x : x) Sr- 2logr. This in its turn im-
plies the second item X(r) C X'(r — 2logr). Similarly, the
second item essentially implies the first item. Thus, strings
for which the minimal sufficient statistics has complexity
much larger than K(k) (that is, [(my) is large) are exotic
in the sense that they belong to the rare kind of strings
about which the halting problem contains much informa-
tion and vice versa: I(x : x) is large. &
Proof: When we talk about complexity with yx in the
condition, we use a Turing machine with x as an “ora-
cle”. The theorem that m(x) = 2-K(®) is maximal within
multiplicative constant among semicomputable semimea-
sures is also true relative to oracles. With the help of x, we
can compute m,, and so we can define the following new
semicomputable (relative to x) function with ¢ = 6/ 2

v(x | x) = em(x)2'0") /1(my)2
= X(r)\ X(r+1):
Y ovlx|x)=cr?2n Y 27K®

xeY(r) x€Y(r)
cr 2272 < fop2

We have, using 111.18 and defining Y (r)

Summing over r gives ), v(x | x) < 4, hence m(x | x) S
v(x | x), or equivalently,

K(x | x) < —logv(x | x) = K(x) — I(my) + 2log 1 (my),

which proves the theorem. |

IV. NON-STOCHASTIC OBJECTS

Every data sample consisting of a finite string x has an
sufficient statistic in the form of the singleton set {x}. Such
a sufficient statistic is not very enlightening since it simply
replicates the data and has equal complexity with x. Thus,
one is interested in the minimal sufficient statistic that rep-
resents the regularity, (the meaningful) information, in the
data and leaves out the accidental features. This raises the



question whether every x has a minimal sufficient statis-
tic that is significantly less complex than x itself. At a
Tallinn conference in 1973 Kolmogorov (according to [16],
[3]) raised the question whether there are objects x that
have no minimal sufficient statistic that have relatively
small complexity. In other words, he inquired into the ex-
istence of objects that are not in general position (random
with respect to) any finite set of small enough complex-
ity, that is, “absolutely non-random” objects. Clearly, such
objects x have neither minimal nor maximal complexity:
if they have minimal complexity then the singleton set
{x} is a minimal sufficient statistic of small complexity,
and if x € {0,1}" is completely incompressible (that is, it
is individually random and has no meaningful informa-
tion), then the uninformative universe {0,1}" is the mini-
mal sufficient statistic of small complexity. To analyze the
question better we need the technical notion of random-
ness deficiency.

Define the randomness deficiency of an object x with re-
spect to a finite set S containing it as the amount by which
the complexity of x as an element of S falls short of the
maximal possible complexity of an element in S when S is
known explicitly (say, as a list):

ds(x) =log |S| — K(x | S). (Iv.1)
The meaning of this function is clear: most elements of
S have complexity near log|S|, so this difference mea-
sures the amount of compressibility in x compared to the
generic, typical, random elements of S. This is a gener-
alization of the sufficiency notion in that it measures the
discrepancy with typicality and hence sufficiency: if a set
S is a sufficient statistic for x then é5(x) = 0.

We now continue the discussion of Kolmogorov’s ques-
tion. Shen [16] gave a first answer by establishing the exis-
tence of absolutely non-random objects x of length 7, hav-
ing randomness deficiency at least n — 2k — O(log k) with
respect to every finite set S of complexity K(S) < k that
contains x. Moreover, since the set {x} has complexity
K(x) and the randomness deficiency of x with respect to

this singleton set is = 0, it follows by choice of k = K(x)
that the complexity K(x) is at least /2 — O(log n).

Here we sharpen this result: We establish the existence
of absolutely non-random objects x of length n, having
randomness deficiency at least n — k with respect to ev-
ery finite set S of complexity K(S | n) < k that contains
x. Clearly, this is best possible since x has randomness
deficiency of at least n — K(S | n) with every finite set S
containing x, in particular, with complexity K(S | n) more
than a fixed constant below 7 the randomness deficiency
exceeds that fixed constant. That is, every sufficient statis-
tic for x has complexity at least n. But if we choose S = {x}

then K(S | n) = K(x | n) < n, and, moreover, the random-
ness deficiency of x with respect to Sis n — K(S | n) = 0.
Together this shows that the absolutely nonrandom ob-
jects x length n of which we established the existence have

complexity K(x | n) = n, and moreover, they have signif-
icant randomness deficiency with respect to every set S

containing them that has complexity significantly below
their own complexity .

A. Kolmogorov Structure Function

We first consider the relation between the minimal un-
avoidable randomness deficiency of x with respect to a
set S containing it, when the complexity of S is upper
bounded by a. These functional relations are known as
Kolmogorov structure functions. Kolmogorov proposed a
variant of the function

hy(a) = mgln{ log|S|:x €S, K(S) <a}, (Iv.2)
where S C {0,1}"* is a finite set containing x, the contem-
plated model for x, and « is a nonnegative integer value
bounding the complexity of the contemplated S’s. He did
not specify what is meant by K(S) but it was noticed im-
mediately, as the paper [17] points out, that the behavior
of hy(a) is rather trivial if K(S) is taken to be the complex-
ity of a program that lists S without necessarily halting.
Section III-D elaborates this point. So, the present section
refers to explicit descriptions only.
It is easy to see that for every increment d we have

hy(a+d) < |hy(a) —d 4+ O(logd)|,

provided the right-hand side is non-negative, and 0 oth-
erwise. Namely, once we have an optimal set S, we can
subdivide it in any standard way into 2¢ parts and take
as S, 4 the part containing x. Also, hy(x) = 0 implies
a > K(x), and, since the choice of S = {x} generally
. + . .

implies only «# < K(x) is meaningful we can conclude

a = K(x). Therefore it seems better advised to consider
the function

hy(a) +a —K(x) = msin{ log|S| — (K(x) —a) : K(S) < a}

rather than (IV.2). For technical reasons related to the later
analysis, we introduce the following variant of random-
ness deficiency (IV.1):

55(x) = log|S| — K(x | S,K(S)).

The function hy(a) + &« — K(x) seems related to a func-
tion of more intuitive appeal, namely B, («) measuring the
minimal unavoidable randomness deficiency of x with re-
spect to every finite set S, that contains it, of complexity
K(S) < a. Formally, we define

Px(a) = min{ds(x) : K(5) <a},
and its variant
pr(a) = min{d5(x) : K(5) <a},
defined in terms of 6. Note that B (K(x)) = B5(K(x)) =

0. These B-functions are related to, but different from, the

B in (L4).



To compare h and B, let us confine ourselves to binary
strings of length n. We will put n into the condition of all
complexities.

Lemma IV.1: Bi(a | n) < hy(a | n) +a —K(x | n).

Proof: Let S > x be a set with K(S | n) < a and
assume hiy(a | n) = log|S|. Tacitly understanding # in the

conditions, and using the additivity property (II.1),
K(x) —a < K(x) — K(S) < K(x,S) — K(S)
= K(x | S,K(S)).

Therefore

hy(a) + a — K(x) =log|S| — (K(x) — «)

—K(x [ 5,K(S)) = Px(a).
u
It would be nice to have an inequality also in the other

direction, but we do not know currently what is the best
that can be said.

;log|5|

B. Sharp Bound on Non-Stochastic Objects

We are now able to formally express the notion of non-
stochastic objects using the Kolmogorov structure func-
tions Bx(a), Bi(x). For every given k < n, Shen con-
structed in [16] a binary string x of length n with K(x) < k
and Bx(k—O(1)) > n —2k — O(logk). Let x be one of
the non-stochastic objects of which the existence is estab-
lished. Substituting k = K(x) we can contemplate the
set S = {x} with complexity K(S)
domness deficiency = 0 with respect to S. This yields
0 = Byr(K(x)) Sn— 2K(x) — O(log K(x)). Since it gen-
erally holds that these non-stochastic objects have com-

£ k and x has ran-

plexity K(x) S n/2- O(logn), they are not random, typ-
ical, or in general position with respect to every set S con-
taining them with complexity K(S) ;S n/2 — O(logn),
but they are random, typical, or in general position only
for sets S with complexity K(S) sufficiently exceeding
n/2—0O(logn) like S = {x}.

Here, we improve on this result, replacing n — 2k —
O(logk) with n — k and using B* to avoid logarithmic
terms. This is the best possible, since by choosing S =
{0,1}" we find log|S| — K(x | S,K(S)) =
hence B%(c) < n — k for some constant ¢, which implies

Bi(a) < Bx(c) < n—kfor every & > C.

Theorem 1V.2: There are constants c1, c; such that for any
given k < n there is a a binary string x of length n with
K(x | n) < k such that for all « < k — c; we have

n —k, and

Bx(a|n) >n—k—cy.

In the terminology of (I.4), the theorem states that there
are constants c1, ¢y such that for every k < n there exists a
string x of length 1 of complexity K(x | n) < k that is not
(k — c1,n — k — cp)-stochastic.

Proof: Denote the conditional universal probability
asm(S | n) = 2-K(I") We write “S 5 x” to indicate sets

S that satisfy x € S. For every n, let us define a function
over all strings x of length n as follows:

m(S | n)

vSi(x | n) = H

S>x,

(IV.3)
K(S|n)<i

The following lemma shows that this function of x is a
semimeasure.
Lemma IV.3: We have

Y vSi(x|n) < 1. (IV.4)
Proof: We have ’
Lvitelm s DL M =D e
X S>x |S| xes ‘S|
=) m(S|n) <L
S
[ |

Lemma IV.4: There are constants cq,c; such that for
some x of length n,

vk=a(x | n)y <27, (IV.5)
k—cy <K(x|n) <k (IV.6)
Proof: Let us fix 0 < ¢; < k somehow, to be cho-
sen appropriately later. Inequality (IV.4) implies that there
is an x with (IV.5). Let x be the first string of length n
with this property. To prove the right inequality of (IV.6),
let p be the program of length < i = k — ¢; that termi-
nates last in the standard running of all these programs
simultaneously in dovetailed fashion, on input n. We can
use p and its length I(p) to compute all programs of size
< I(p) that specify finite sets using n. Hence we have a
list of all sets S with K(S | n) < i. Using it, for each y of
length 1 we can compute v=!(y | 1), by using the defini-
tion (IV.3) explicitly. Since x is defined as the first y with
vSi(y | n) < 27", we can thus find it using p and some
program of constant length. If c; is chosen large enough
then this implies K(x | n) < k.
On the other hand, we have

ySKUH) (3 | ) > 2~ KU},

This implies, by the definition of x, that either K({x} |
n) >k —cy or K({x} | n) > n. Since K(x | n) = K({x} |
n)) we get the left inequality of (IV.6) in both cases for an
appropriate c;. u
Consider now a new semicomputable function

_2"m(S | n)
Hyi(S 1) = s

on all finite sets S 5 x with K(S | n) < i. Then we have,
withi =k — c1:

;Vx,i(s | ”) =2" Z

Ssx, K(S|n)<i
=2"Si(x | n) <1

m(S | n)
S|



by (IV.5), and so, using (IV.6),
K(S | x,K(x | n))

= K(S | x,k) < —log (S | n)
=log|S| —n+ K(S | n).

(IV.7)

We have, by the additivity property (1I.1) and (IV.7):

K(x | S,K(S | n),n)
= K(x | n)+K(S | x,K(x | n)) — K(S | n)
< k+1log|S| —n.

Hence 6*(x | S,n) = log|S| — K(x | S,K(S | n),n) > n—k.
[ |

Let x be one of the non-stochastic objects of which the
existence is established by Theorem IV.2. Choose x with
K(x | n) = k so that the set S = {x} has complexity

K(S | n) = k—c1 and x has randomness deficiency = 0
with respect to S. Because x is non-stochastic, this yields
0=pBik—cy|n > — K(x | n). For every x we have
K(x | n) < n. Together it follows that K(x | n) = n.
That is, these non-stochastic objects x have complexity
K(x | n) = n. Nonetheless, there is a constant ¢’ such that
x is not random, typical, or in general position with respect to
any explicitly represented finite set S containing it that has
complexity K(S | n) < n —c’, but they are random, typi-
cal, or in general position for some sets S with complexity
K(S | n) > nlike S = {x}. That is, every explicit sufficient
statistic S for x has complexity K(S | n) = n, and {x} is
such a statistic.

V. PROBABILISTIC MODELS

It remains to generalize the model class from finite sets
to the more natural and significant setting of probability
distributions. Instead of finite sets the models are com-
putable probability density functions P : {0,1}* — [0,1]
with )" P(x) < 1—we allow defective probability distribu-
tions where we may concentrate the surplus probability
on a distinguished “undefined” element. “Computable”
means that there is a Turing machine Tp that computes ap-
proximations to the value of P for every argument (more
precise definition follows below). The (prefix-) complexity
K(P) of a computable partial function P is defined by

K(P) = miin{K (i) : Turing machine T; computes P}.
Equality (IIL.2) now becomes
K(x | P*) = —logP(x),
and equality (I11.4) becomes
K(x) = K(P) — log P(x).

As in the finite set case, the complexities involved are cru-
cially dependent on what we mean by “computation” of

P(x), that is, on the requirements on the format in which
the output is to be represented. Recall from [9] that Tur-
ing machines can compute rational numbers: If a Turing
machine T computes T(x), then we interpret the output
as a pair of natural numbers, T(x) = (p, q), according to a
standard pairing function. Then, the rational value com-
puted by T is by definition p/q. The distinction between
explicit and implicit description of P corresponding to the
finite set model case is now defined as follows:

o It is implicit if there are positive constants ¢, C such
that the Turing machine T computing P halts with ra-
tional value T(x) with cP(x) < T(x) < CP(x). Hence
—log T(x) = —log P(x).

o Itis explicit if the Turing machine T computing P, given
x and a tolerance € halts with rational value P(x) — e <
T(x) < P(x) +e.

The implicit and explicit descriptions of finite sets and of
uniform distributions with P(x) = 1/|S| for all x € S and
P(x) = 0 otherwise, are as follows: An implicit (explicit)
description of P is identical with an implicit (explicit) de-
scription of S, up to a short fixed program which indicates
which of the two is intended, so that K(P(x)) = K(S) for
P(x) > 0 (equivalently, x € S).

To complete our discussion: the worst case of represen-
tation format, a recursively enumerable approximation of
P(x) where nothing is known about its value, would lead
to indices —log P(x) of unknown length. We do not con-
sider this case.

The properties for the probabilistic models are loosely
related to the properties of finite set models by Proposi-
tion [.2. We sharpen the relations by appropriately mod-
ifying the treatment of the finite set case, but essentially
following the same course.

We may use the notation

P impls P expl

for some implicit and some explicit representation of P.
When a result applies to both implicit and explicit repre-
sentations, or when it is clear from the context which rep-
resentation is meant, we will omit the subscript.

A. Optimal Model and Sufficient Statistic

As before, we distinguish between “models” that are
computable probability distributions, and the “shortest
programs” to compute those models that are finite strings.

Consider a string x of length n and prefix complexity
K(x) = k. We identify the structure or reqularity in x that
are to be summarized with a computable probability den-
sity function P with respect to which x is a random or typ-
ical member. For x typical for P holds the following [9]:
Given an (implicitly or explicitly described) shortest pro-
gram P* for P, a shortest binary program computing x
(thatis, of length K(x | P*)) can not be significantly shorter
than its Shannon-Fano code [4] of length —log P(x), that
is, K(x | P*) B8 —log P(x). By definition, we fix some
agreed upon constant > 0, and require

K(x | P*) > —log P(x) — B.



As before, we will not indicate the dependence on f ex-

plicitly, but the constants in all our inequalities (<) will be
allowed to be functions of this B. This definition requires
a positive P(x). In fact, since K(x | P*) < K(x), it limits
the size of P(x) to Q(27%). The shortest program P* from
which a probability density function P can be computed
is an algorithmic statistic for x iff

K(x | P*) = —log P(x). (V.1)
There are two natural measures of suitability of such a
statistic. We might prefer either the simplest distribu-
tion, or the largest distribution, as corresponding to the
most likely structure ‘explaining” x. The singleton proba-
bility distribution P(x) = 1, while certainly a statistic for
x, would indeed be considered a poor explanation. Both
measures relate to the optimality of a two-stage descrip-
tion of x using P:

K(x) < K(x,P) = K(P) + K(x | P¥)
< K(P) —log P(x),

(V.2)

where we rewrite K(x, P) by (Il.1). Here, P can be under-
stood as either Py or Peyp). Call a distribution P (with
positive probability P(x)) for which

K(x) = K(P) —log P(x), (V.3)
optimal. (More precisely, we should require K(x) > K(P) —
log P(x) — B.) Depending on whether K(P) is understood
as K(Pimp1) or K(Pexp1), our definition splits into implicit
and explicit optimality. The shortest program for an op-
timal computable probability distribution is a algorithmic
sufficient statistic for x.

B. Properties of Sufficient Statistic

As in the case of finite set models , we start with a se-
quence of lemmas that are used to obtain the main results
on minimal sufficient statistic. Several of these lemmas
have two versions: for implicit distributions and for ex-
plicit distributions. In these cases, P will denote Piyp) or
Pexpi Tespectively.

Below it is shown that the mutual information between
every typical distribution and the data is not much less
than K(K(x)), the complexity of the complexity K(x) of
the data x. For optimal distributions it is at least that, and
for algorithmic minimal statistic it is equal to that. The
log-probability of a typical distribution is determined by
the following:

Lemma V.1: Let k = K(x). If a distribution P is (implic-
itly or explicitly) typical for x then I(x : P) = k +log P(x).

Proof: By definition I(x : P) = K(x) — K(x | P*) and
by typicality K(x | P*) = —log P(x). [

The above lemma states that for (implicitly or explic-
itly) typical P the probability P(x) = @(2~(k-I(x:P)) The
next lemma asserts that for implicitly typical P the value
I(x : P) can fall below K(k) by no more than an additive

logarithmic term plus the amount of information required
to compute — log P(x) from P.

Lemma V.2: Let k = K(x). If a distribution P is (implic-
itly or explicitly) typical for x then I(x : P) S K(k) —
K(I(x : P)) — K(~logP(x) | P*) and —logP(x) < k —
K(k) + K(I(x : P)) + K(—1logP(x) | P*). (Here, P is un-
derstood as Pimp) or Pexp) respectively.)

Proof: Writing k = K(x), since
k = K(k,x) = K(k) + K(x | k*) (V4)
by (Il.1), we have I(x : P) = K(x) —K(x | P*) =
K(k) — [K(x | P*) — K(x | k*)]. Hence, it suffices to show
K(x | P*) — K(x | k) < K(I(x : P))+ K(—log P(x) | P¥).
Now, from an implicit description P* and a program g
of length = K(—logP(x) | P*) we can find the value

= —log P(x) = k — I(x : P). To recover k, we only require

an extra K(I(x : P)) bits apart from P* and q. Therefore,
K(k | P*) < K(I(x : P)) +K(—log P(x) | P*). This reduces
what we have to show to K(x | P*) < K(x | k*)+K(k | P*)
which is asserted by Theorem II.1. |

Note that for distributions that are uniform (or almost
uniform) on a finite support we have K(— log P(x) | P*) =
0: In this borderline case the result specializes to that of
Lemma II1.8 for finite set models.

On the other end of the spectrum, the given lower
bound on I(x : P) drops in case knowledge of P* doesn’t
suffice to compute —logP(x), that is, if K(—logP(x) |
P*) > 0 for an statistic P* for x. The question is, whether
we can exhibit such a probability distribution that is also
computable? The answer turns out to be affirmative. By a
result due to R. Solovay and P. Gécs, [9] Exercise 3.7.1 on p.

225-226, there is a computable function f(x) S K (x) such
that f(x) = K(x) for infinitely many x. Considering the
case of P optimal for x (a stronger assumption than that P
is just typical) we have —log P(x) = K(x) — K(P). Choos-
ing P(x) such that —log P(x) = log f(x) — K(P), we have
that P(x) is computable since f(x) is computable and K(P)
is a fixed constant. Moreover, there are infinitely many x’s
for which P is optimal, so K(—logP(x) | P*) — oo for
x — oo through this special sequence.

If we further restrict typical distributions to optimal
ones then the possible positive probabilities assumed by
distribution P are slightly restricted. First we show that
implicit optimality with respect to some data is equiva-
lent to typicality with respect to the data combined with
effective constructability (determination) from the data.

Lemma V.3: A distribution P is (implicitly or explicitly)
optimal for x iff it is typical and K(P | x*) = 0.

Proof: A distribution P is optimal iff (V.2) holds with
equalities. Rewriting K(x, P) = K(x) + K(P | x*) the first
inequality becomes an equality iff K(P | x*) = 0, and the
second inequality becomes an equality iff K(x | P*) =
—log P(x) (that is, P is a typical distribution). |



Lemma V.4: Let k = K(x). If a distribution P is (implic-
itly or explicitly) optimal for x, then I(x : P) = K(P) >
K(k) — K(—log P(x) | P*) and —logP(x) < k — K(k) +
K(—logP(x) | P*).

Proof: If P is optimal for x, then k = K(x) =
K(P) + K(x | P*) = K(P) —logP(x). From P* and
a program g of length K(—logP(x) | P*), we can find
both K(P) = I(P*) and —log P(x), and hence k, that is,
K(k) < K(P) + K(—1log P(x) | P*). We have I(x : P) =
K(P) —K(P | x*) = K(P) by (IL.1), Lemma V.3, respec-
tively. This proves the first property. Substitution of
I(x : P) S K(k) — K(—logP(x) | P*) in the expression
of Lemma V.1 proves the second property. u

Note that for distributions that are uniform (or almost
uniform) on a finite support we have K(— log P(x) | P*) =
0: In this borderline case the result specializes to that of
Lemma I11.10 for finite set models.

On the other end of the spectrum, we have the case that
knowledge of P* doesn’t help to compute —log P(x), that
is, K(—log P(x) | P*) > 0 as exemplified above. Then, the
lower bound on I(x : P) = K(P) drops towards 0 while
the upper bound on — log P(x) rises towards k.

C. Concrete Minimal Sufficient Statistic

A simplest implicitly optimal distribution (that is, of
least complexity) is an implicit algorithmic minimal suf-
ficient statistic. As before, let S¥ = {y : K(y) < k}. Define
the distribution P¥(x) = 1/|S¥| for x € S, and P¥(x) = 0
otherwise. The demonstration that P¥(x) is an implicit
algorithmic minimal sufficient statistic proceeeds com-
pletely analogous to the finite set model setting, Corol-
lary I11.13, using the substitution K(— log P¥(x) | (P*)*) =
0.

A similar equivalent construction suffices to obtain an
explicit algorithmic minimal near-sufficient statistic for x,
analogous to S§1x in the finite set model setting, Theo-
rem I11.16. Thatis, PX_(y) = 1/|Sk_| fory € Sk, and 0
otherwise. “ 4

In general, one can develop the theory of minimal suffi-
cient statistic for models that are probability distributions
similarly to that of finite set models, up to the extra addi-
tive term K(—log P(x) | P*). It is not known how far that
term can be reduced.

D. Non-Quasistochastic Objects

As in the more restricted case of finite sets, there are
objects that are not typical for any explicitly computable
probability distribution that has complexity significantly
below that of the object itself. With the terminology of
(L.5), we may call such absolutely non-quasistochastic.

By Proposition 1.2, item (b), there are constants ¢ and
C such that if x is not (a + clogn, B + C)-stochastic (1.4)
then x is not («, B)-quasistochastic (I.5). Substitution in
Theorem IV.2 yields:

Corollary V.5: There are constants c, C such that, for ev-
ery k < n, there are constants c;,cy and a binary string
x of length n with K(x | n) < k such that x is not
(k—clogn — c1,n —k — C — c)-quasistochastic.

As a particular consequence: Let x with length n be one
of the non-quasistochastic strings of which the existence

is established by Corollary V.5. Substituting K(x | n) <
k — clogn, we can contemplate the distribution Py(y) = 1
for y = x and and 0 otherwise. Then we have complexity
K(Py | n) = K(x | n). Clearly, x has randomness defi-
ciency = 0 with respect to Py. Because of the assumption
of non-quasistochasticity of x, and because the minimal
randomness-deficiency = n — k of x is always nonnega-
tive, 0 =n—k > n— K(x | n) — clogn. Since it generally
holds that K(x | n) < n, it follows that n > K(x | n) S
n — clog n. That is, these non-quasistochastic objects have
complexity K(x | n) = n — O(logn) and are not random,
typical, or in general position with respect to any explicitly
computable distribution P with P(x) > 0 and complex-

ity K(P | n) < n- (c +1)logn, but they are random,
typical, or in general position only for some distributions
P with complexity K(P | n) Sn— clogn like Py. That
is, every explicit sufficient statistic P for x has complexity

K(P | n) Sn— clogn, and Py is such a statistic.

VI. ALGORITHMIC VERSUS PROBABILISTIC

Algorithmic sufficient statistic, a function of the data,
is so named because intuitively it expresses an individual
summarizing of the relevant information in the individ-
ual data, reminiscent of the probabilistic sufficient statistic
that summarizes the relevant information in a data ran-
dom variable about a model random variable. Formally,
however, previous authors have not established any re-
lation. Other algorithmic notions have been successfully
related to their probabilistic counterparts. The most sig-
nificant one is that for every computable probability dis-
tribution, the expected prefix complexity of the objects
equals the entropy of the distribution up to an additive
constant term, related to the complexity of the distribu-
tion in question. We have used this property in (I1.4) to
establish a similar relation between the expected algorith-
mic mutual information and the probabilistic mutual in-
formation. We use this in turn to show that there is a close
relation between the algorithmic version and the proba-
bilistic version of sufficient statistic: A probabilistic suf-
ficient statistic is with high probability a natural condi-
tional form of algorithmic sufficient statistic for individual
data, and, conversely, that with high probability a natural
conditional form of algorithmic sufficient statistic is also a
probabilistic sufficient statistic.

Recall the terminology of probabilistic mutual informa-
tion (I.1) and probabilistic sufficient statistic (1.2). Con-
sider a probabilistic ensemble of models, a family of com-
putable probability mass functions { fp} indexed by a dis-
crete parameter 0, together with a computable distribution



p1 over 6. (The finite set model case is the restriction where
the fy’s are restricted to uniform distributions with finite
supports.) This way we have a random variable ® with
outcomes in { fy} and a random variable X with outcomes
in the union of domains of fy, and p(6,x) = p1(0) fo(x) is
computable.

Notation V1.1: To compare the algorithmic sufficient
statistic with the probabilistic sufficient statistic it is con-
venient to denote the sufficient statistic as a function S(-)
of the data in both cases. Let a statistic S(x) of data x be
the more general form of probability distribution as in Sec-
tion V. That is, S maps the data x to the parameter p that
determines a probability mass function f, (possibly not an
element of {fy}). Note that “f,(-)” corresponds to “P(-)”
in Section V. If f, is computable, then this can be the Tur-
ing machine Tp that computes fp. Hence, in the current
section, “S(x)” denotes a probability distribution, say f,,
and “f,(x)” is the probability f, concentrates on data x.

Lemma VI.2: Let p(6,x) = p1(0)fo(x) be a computable
joint probability mass function, and let S be a function.
Then all three conditions below are equivalent and imply
each other:

(i) S is a probabilistic sufficient statistic (in the form
[(©,X) = 1(®,5(X))).

(ii) S satisfies

Y p(0,x)I(0:x) =) p(6,x)(6:S(x))
0,x

0,x

(VL1)

(iii) S satisfies
1[(©;X) = 1(©;$(X)) = ) _p(6,x)1(6 : x)
0,x
£ Zp(G,x)I(G : S(x)).
0,x
All = signs hold up to an = +2K(p) constant additive
term.
Proof: Clearly, (iii) implies (i) and (ii).

We show that both (i) implies (iii) and (ii) implies (iii):
By (I1.4) we have

(©;X) =Y p(6,x)1(6:x), (VL2)
0,x

1(©;5(X)) = Y p(6,)1(6 : S(x)),
0,x
where we absorb a +2K(p) additive term in the = sign.
Together with (VI.1), (V1.2) implies
1(©;X) = 1(©;5(X)); (VL3)

and vice versa (V1.3) together with (V1.2) implies (VI.1).

[
Remark V1.3: It may be worth stressing that S in Theo-
rem VI.2 can be any function, without restriction. &

Remark V1.4: Note that (VI.3) involves equality = rather
than precise equality as in the definition of the probabilis-
tic sufficient statistic (1.2). &

Definition V1.5: Assume the terminology and notation
above. A statistic S for data x is 0-sufficient with deficiency
Sif 1(0,x) = 1(8,S(x)) + 4. If § = 0 then S(x) is simply a
O-sufficient statistic.

The following lemma shows that 0-sufficiency is a type
of conditional sufficiency:

Lemma VI.6: Let S(x) be a sufficient statistic for x. Then,

K(x | 0*)+6 = K(S(x) | 0*) —log S(x). (V1.4)

iff 1(0,x) = 1(6,S(x)) + 6.

Proof: (If) By assumption, K(S(x)) — K(S(x) | 6*) +
5 = K(x) —K(x | 0%). Rearrange and add —K(x |
S(x)*) —logS(x) = 0 (by typicality) to the right-hand
side to obtain K(x | 6*) + K(S(x)) = K(S(x) | 6%) +
K(x) — K(x | S(x)*) —logS(x) — 4. Substitute according
to K(x) = K(S(x)) + K(x | S(x)*) (by sufficiency) in the
right-hand side, and subsequently subtract K(S(x)) from
both sides, to obtain (VI.4).

(Only If) Reverse the proof of the (If) case.

|

The following theorems state that S(X) is a probabilis-
tic sufficient statistic iff S(x) is an algorithmic 6-sufficient
statistic, up to small deficiency, with high probability.

Theorem V1.7: Let p(0,x) = p1(0)fo(x) be a computable
joint probability mass function, and let S be a function. If S
is a recursive probabilistic sufficient statistic, then S is a 6-
sufficient statistic with deficiency O(k), with p-probability
atleast1 — %

Proof: 1f S is a probabilistic sufficient statistic, then,
by Lemma VI.2, equality of p-expectations (VI.1) holds.
However, it is still consistent with this to have large pos-
itive and negative differences I(6 : x) — I(0 : S(x)) for
different (6, x) arguments, such that these differences can-
cel each other. This problem is resolved by appeal to
the algorithmic mutual information non-increase law (11.6)
which shows that all differences are essentially positive:
I(0 : x) —I(6 : S(x)) S —K(S). Altogether, let c¢q, ¢, be
least positive constants such that I(6 : x) — I(6 : S(x)) +c1
is always nonnegative and its p-expectation is cp. Then,
by Markov’s inequality,

p(I(0:x)—1(0:5(x)) >kecy —c1) < %,
that is,

p(I(0: %) — 1(0: S(x)) < keg—¢1) > 1— %

|
Theorem VI.8: For each n, consider the set of data x of
length n. Let p(6,x) = p1(0)fp(x) be a computable joint
probability mass function, and let S be a function. If S is an
algorithmic 6-sufficient statistic for x, with p-probability
atleast 1 — e (1/€ = n + 2logn), then S is a probabilistic
sufficient statistic.

Proof: By assumption, using Definition VL5, there is

a positive constant ¢y, such that,

p(II(6:x)—1(0:S(x)) <c1)>1—€



Therefore,

0< p(6,X)|1(6:x) — (6 S(x)|
[1(6:x)—I1(8:S(x))|<c

< (1-€)c; £0.
On the other hand, since

1/e> n+2logn S K(x) S rr61axI(6;x),

X
we obtain

0< p(6,X)|1(6:x) — (6 S(x)|
[1(6:x)—I1(8:S(x))|>c1

< e(n+2logn) Z0.

Altogether, this implies (VI.1), and by Lemma V1.2, the
theorem. ]

VII. CONCLUSION

An algorithmic sufficient statistic is an individual finite
set (or probability distribution) for which a given individ-
ual sequence is a typical member. The theory is formu-
lated in Kolmogorov’s absolute notion of the quantity of
information in an individual object. This is a notion anal-
ogous to, and in some sense sharper than the probabilis-
tic notion of sufficient statistic—an average notion based
on the entropies of random variables. It turned out, that
for every sequence x we can determine the complexity
range of possible algorithmic sufficient statistics, and, in
particular, exhibit a algorithmic minimal sufficient statis-
tic. The manner in which the statistic is effectively rep-
resented is crucial: we distinguish implicit representation
and explicit representation. The latter is essentially a list
of the elements of a finite set or a table of the probability
density function; the former is less explicit than a list or
table but more explicit than just recursive enumeration or
approximation in the limit. The algorithmic minimal suffi-
cient statistic can be considerably more complex depend-
ing on whether we want explicit or implicit representa-
tions. We have shown that there are sequences that have
no simple explicit algorithmic sufficient statistic: the al-
gorithmic minimal sufficient statistic is essentially the se-
quence itself. Note that such sequences cannot be random
in the sense of having maximal Kolmogorov complexity—
in that case already the simple set of all sequences of its
length, or the corresponding uniform distribution, is an al-
gorithmic sufficient statistic of almost zero complexity. We
demonstrated close relations between the probabilistic no-
tions and the corresponding algorithmic notions: (i) The
average algorithmic mutual information is equal to the
probabilistic mutual information. (ii) To compare algorith-
mic sufficient statistic and probabilistic sufficient statistic
meaningfully one needs to consider a conditional version
of algorithmic sufficient statistic. We defined such a no-
tion and demonstrated that probabilistic sufficient statis-
tic is with high probability an (appropriately conditioned)
algorithmic sufficient statistic and vice versa. The most

conspicuous theoretical open end is as follows: For ex-
plicit descriptions we were only able to guarantee a al-
gorithmic minimal near-sufficient statistic, although the
construction can be shown to be minimal sufficient for al-
most all sequences. One would like to obtain a concrete
example of a truly explicit algorithmic minimal sufficient
statistic. In the theory of sufficient statistic for models that
are probability distributions, in contrast to that of finite
set models, one has to deal with an extra additive term
K(—logP(x) | P*). It is not known how far that term can
be reduced.

Because the Kolmogorov complexity is not computable,
an algorithmic sufficient statistic cannot be computed ei-
ther. Nonetheless, the analysis gives limits to what is
achievable in practice—like in the cases of coding theo-
rems and channel capacities under different noise mod-
els in Shannon information theory. The theoretical no-
tion of algorithmic sufficient statistic forms the inspiration
to develop applied models that can be viewed as com-
putable approximations. Minimum description length
(MDL),[1], is a good example; its relation with the algo-
rithmic minimal sufficient statistic is given in [19]. As
in the case of ordinary probabilistic statistic, algorith-
mic statistic if applied unrestrained cannot give much in-
sight into the meaning of the data; in practice one must
use background information to determine the appropriate
model class first—establishing what meaning the data can
have—and only then apply algorithmic statistic to obtain
the best model in that class by optimizing its parameters.
See Example II1.5. Nonetheless, in applications one can
sometimes still unrestrictedly use compression properties
for model selection, for example by a judicious choice of
model parameter to optimize. One example is the pre-
cision at which we represent the other parameters: too
high precision causes accidental noise to be modeled as
well, too low precision may cause models that should be
distinct to be confusing. In general, the performance of a
model for a given data sample depends critically on what
we may call the “degree of discretization” or the “granu-
larity” of the model: the choice of precision of the param-
eters, the number of nodes in the hidden layer of a neural
network, and so on. The granularity is often determined
ad hoc. In [8], in two quite different experimental settings
the best model granularity values predicted by MDL are
shown to coincide with the best values found experimen-
tally.
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