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Ray Solomonoff, the first inventor of some
of the fundamental ideas of Algorithmic In-
formation Theory, died in December, 2009.
His original ideas helped start the thriving
research areas of algorithmic information
theory and algorithmic inductive inference.
His scientific legacy is enduring and impor-
tant. He was also a highly original, color-
ful personality, warmly remembered by ev-
erybody whose life he touched. We outline
his contributions, placing it into its historical
context, and the context of other research in
algorithmic information theory.

1 Introduction
Raymond J. Solomonoff died on December 7, 2009, in Cambridge, Massachu-
setts. He was the first inventor of some of the fundamental ideas of Algorithmic
Information Theory, which deals with the shortest effective description length of
objects and is commonly designated by the term “Kolmogorov complexity.”

In the 1950s Solomonoff was one of the first researchers to introduce prob-
abilistic grammars and the associated languages. He championed probabilistic
methods in Artificial Intelligence (AI) when these were unfashionable there, and
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treated questions of machine learning early on. But his greatest contribution is
the creation of Algorithmic Information Theory.

In November 1960, Solomonoff published the report [14] presenting the ba-
sic ideas of Algorithmic Information Theory as a means to overcome serious
problems associated with the application of Bayes’s rule in statistics. His find-
ings (in particular, the invariance theorem) were mentioned prominently in April
1961 in Minsky’s symposium report [8]. (Andrei N. Kolmogorov, the great Rus-
sian mathematician, started lecturing on description complexity in Moscow sem-
inars about the same time.)

Solomonoff’s objective was to formulate a completely general theory of in-
ductive reasoning that would overcome shortcomings in Carnap’s [1]. Following
some more technical reports, in a long journal paper in two parts he introduced
“Kolmogorov” complexity as an auxiliary concept to obtain a universal a priori
probability and proved the invariance theorem that, in various versions, is one
of the characteristic elements of Algorithmic Information Theory [16, 17]. The
mathematical setting of these ideas is described in some detail below.

Solomonoff’s work has led to a novel approach in statistics leading to ap-
plicable inference procedures such as the minimal description length principle.
Jorma J. Rissanen, credited with the latter, relates that his invention is based
on Solomonoff’s work with the idea of applying it to classical statistical infer-
ence [10, 11].

Since Solomonoff is the first inventor of Algorithmic Information Theory,
one can raise the question whether we ought to talk about “Solomonoff com-
plexity”. However, the name “Kolmogorov complexity” for shortest effective
description length has become well entrenched and is commonly understood.
Solomonoff’s publications apparently received little attention until Kolmogorov
started to refer to them from 1968 onward. Says Kolmogorov, “I came to simi-
lar conclusions [as Solomonoff], before becoming aware of Solomonoff’s work,
in 1963–1964” and “The basic discovery, which I have accomplished indepen-
dently from and simultaneously with R. Solomonoff, lies in the fact that the
theory of algorithms enables us to eliminate this arbitrariness by the determina-
tion of a ‘complexity’ which is almost invariant (the replacement of one method
by another leads only to the addition of a bounded term)”

Solomonoff’s early papers contain in veiled form suggestions about random-
ness of finite strings, incomputability of Kolmogorov complexity, computability
of approximations to the Kolmogorov complexity, and resource-bounded Kol-
mogorov complexity.

Kolmogorov’s later introduction of complexity was motivated by informa-
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tion theory and problems of randomness. Solomonoff introduced algorithmic
complexity independently and earlier and for a different reason: inductive rea-
soning. Universal a priori probability, in the sense of a single prior probability
that can be substituted for each actual prior probability in Bayes’s rule was in-
vented by Solomonoff with Kolmogorov complexity as a side product, several
years before anybody else did.

A third inventor is Gregory J. Chaitin, who formulated a proper definition of
Kolmogorov complexity at the end of his paper [2].

For a more formal and more extensive study of most topics treated in this
paper, we recommend [7].

2 The inventor
Ray Solomonoff published a scientific autobiography up to 1997 as [23]. He
was born on July 25, 1926, in Cleveland, Ohio, in the United States. He studied
physics during 1946-1950 at the University of Chicago (he recalls the lectures of
E. Fermi). He obtained a Ph.B. (bachelor of philosophy) and a M.Sc. in physics.
He was already interested in problems of inductive inference and exchanged
viewpoints with the resident philosopher of science at the University of Chicago,
Rudolf Carnap, who taught an influential course in probability theory.

From 1951-1958 he held half-time jobs in the electronics industry doing
math and physics and designing analog computers.

In 1956, Solomonoff was one of the 10 or so attendees of the Dartmouth
Summer Research Conference on Artificial Intelligence, at Dartmouth College in
Hanover, New Hampshire, organized by M. Minsky, J. McCarthy and C.E. Shan-
non, and in fact stayed on to spend the whole summer there. (This meeting gave
AI its name.) There Solomonoff wrote a memo on inductive inference.

McCarthy had the idea that given every mathematical problem, it could be
brought into the form of “given a machine and a desired output, find an input
from which the machine computes that output.” Solomonoff suggested that there
was a class of problems that was not of that form: “given an initial segment of
a sequence, predict its continuation.” McCarthy then thought that if one saw
a machine producing the initial segment, and then continuing past that point,
would one not think that the continuation was a reasonable extrapolation? With
that the idea got stuck, and the participants left it at that.

Also in 1956, Ray circulated a manuscript of “An Inductive Inference Ma-
chine” at the Dartmouth Summer Research Conference on Artificial Intelligence,



4

and in 1957 he presented a paper with the same name at the IRE Convention,
Section on Information Theory, a forerunner of the IEEE Symposium on Infor-
mation Theory. This partially used Chomsky’s paper [3] read at a Symposium
on Information Theory held at MIT in September 1956. “An Inductive Infer-
ence Machine” already stressed training sequences and using previous solutions
in solving more complex problems. In about 1958 he left his half-time position
in industry and joined Zator Company full time, a small research outfit located
in some rooms at 140 1/2 Mount Auburn Street, Cambridge, Massachusetts,
which had been founded by Calvin Mooers around 1954 for the purpose of de-
veloping information retrieval technology. Floating mainly on military funding,
Zator Co. was a research front organization, employing Mooers, Solomonoff,
Mooers’s wife, and a secretary, as well as at various times visitors such as Mar-
vin Minsky. It changed its name to the more martial sounding Rockford Re-
search (Rockford, Illinois, was a place where Mooers had lived) around 1962.
In 1968, the US Government reacted to public pressure (related to the Vietnam
War) by abolishing defense funding of civil research, and Rockford foundered.
Being out of a job, Solomonoff left and founded his own (one-man) company,
Oxbridge Research, in Cambridge in 1970, and has been there ever since, apart
from spending nine months as research associate at MIT’s Artificial Intelligence
Laboratory, the academic year 1990-1991 at the University of Saarland, Saar-
bruecken, Germany, and a more recent sabbatical at IDSIA, Lugano, Switzer-
land.

It is unusual to find a productive major scientist that is not regularly em-
ployed at all. But from all the elder people (not only scientists) we know, Ray
Solomonoff was the happiest, the most inquisitive, and the most satisfied. He
continued publishing papers right up to his death at 83.

In 1960 Solomonoff published [14], in which he gave an outline of a notion
of universal a priori probability and how to use it in inductive reasoning (rather,
prediction) according to Bayes’s rule. This was sent out to all contractors of
the Air Force who were even vaguely interested in this subject. In [16, 17],
Solomonoff developed these ideas further and defined the notion of enumeration,
a precursor of monotone machines, and a notion of universal a priori probability
based on his variant of the universal monotone machine. In this way, it came
about that the original incentive to develop a theory of algorithmic information
content of individual objects was Solomonoff’s invention of a universal a priori
probability that can be used as a priori probability in applying Bayes’s rule.

Solomonoff’s first approach was based on Turing machines with markers that
delimit the input. This led to awkward convergence problems with which he tried
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to deal in an ad-hoc manner. The young Leonid A. Levin (who in [27] developed
his own mathematical framework, which became the source of a beautiful theory
of randomness), was told by Kolmogorov about Solmonoff’s work. He added
a reference to it, but had in fact a hard time digesting the informalities; later
though, he came to appreciate the wealth of ideas in [16]. Solomonoff welcomed
Levin’s new formalism with one exception: it bothered him that the universal a
priori probability for prediction is a semimeasure but not a measure (see below).
He continued to advocate a normalization operation keeping up a long technical
argument with Levin and Solovay.

In 2003 he was the first recipient of the Kolmogorov Award by The Com-
puter Learning Research Center at the Royal Holloway, University of London,
where he gave the inaugural Kolmogorov Lecture. Solomonoff was a visiting
Professor at the CLRC. A list of his publications (published and unpublished) is
at http://world.std.com/∼rjs/pubs.html.

3 The formula
Solomonoff’s main contribution is best explained if we start with his inference
formula not as he first conceived it, but in the cleaner form as it is known today,
based on Levin’s definition of apriori probability [27]. Let T be a computing
device, say a Turing machine. We assume that it has some, infinitely expandable,
internal memory (say, some tapes of the Turing machine). At each step, it may
or may not ask for some additional input symbol from the alphabet {0,1}, and
may or may not output some symbol from some finite alphabet Σ. For a finite
or infinite binary string p, let T (p) be the (finite or infinite) output sequence
emitted while not reading beyond the end of p. Consider the experiment in
which the input is an infinite sequence of tosses of an independent unbiased
coin. For a finite sequence x = x1 . . . xn written in the alphabet Σ, let MT (x)
be the probability that the sequence outputted in this experiment begins with x.
More formally, let T−1(x) be the set of all those binary sequences p that the
output string T (p) contains x as a prefix, while if p′ is a proper prefix of p then
T (p′) does not output x yet. Then

MT (x) = ∑
p∈T−1(x)

2−|p|, (1)

where |p| is the length of the binary string p. The quantity MT (x) can be consid-
ered the algorithmic probability of the finite sequence x. It depends, of course,
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on the choice of machine T , but if T is a universal machine of the type called op-
timal then this dependence is only minor. Indeed, for an optimal machine U, for
all machines T there is a finite binary rT with the property T (p) = U(rT p) for
all p. This implies MU(x) ≥ 2−|rT |MT (x) for all x. Let us fix therefore such an
optimal machine U and write M(x) = MU(x). This is (the best-known version
of) Solomonoff’s apriori probability.

Now, Solomonoff’s prediction formula can be stated very simply. Given a
sequence x of experimental results, the formula

M(xy)
M(x)

(2)

assigns a probability to the event that x will be continued by a sequence (or even
just a symbol) y. In what follows we will have opportunity to appreciate the theo-
retical attractiveness of the formula: its prediction power, and its combination of
a number of deep principles. But let us level with the reader: it is incomputable,
so it can serve only as an ideal embodiment of some principles guiding practical
prediction. (Even the apriori probability M(x) by itself is incomputable, but it is
at least approximable by a monotonic sequence from below.)

4 First, informal ideas
Scientific ideas of great originality, when they occur the first time, rarely have
the clean, simple form that they acquire later. Nowadays one introduces descrip-
tion complexity (“Kolmogorov” complexity) by a simple definition referring to
Turing machines. Then one proceeds to a short proof of the existence of an
optimal machine, further to some simple upper and lower bounds relating it to
probability and information. This a highly effective, formally impeccable way
to introduce an obviously interesting concept.

Inductive inference is a harder, more controversial issue than information
and randomness, but this is the problem that Solomonoff started with! In the
first papers, it is easy to miss the formal definition of complexity since he uses it
only as an auxiliary quantity; but he did prove the machine independence of the
length of minimal codes.

The first written report seems to be [14]. It cites only the book [1] of Carnap,
whose courses Solomonoff attended. And Carnap may indeed have provided the
inspiration for a probability based on pure logical considerations. The technical
report form allowed the gradual, informal development of ideas.
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The work starts with confining the considerations to one particular formal
representation of the general inference problem: predicting the continuations
of a finite sequence of characters. Without making any explicit references, it
sets out to combine two well-studied principles of inductive inference: Bayesian
statistics and the principle that came to be known (with whatever historic justi-
fication) as “Occam’s Razor”. A radical version of this principle says that we
should look for a shortest explanation of the experimental results and use this
explanation for prediction of future experiments. In the context of prediction, it
will be therefore often justified to call descriptions explanations.

Here is the second paragraph of the introduction:

Consider a very long sequence of symbols—e.g., a passage of
English text, or a long mathematical derivation. We shall consider
such a sequence of symbols to be “simple” and have high a priori
probability, if there exists a very brief description of this sequence—
using, of course, some sort of stipulated description method. More
exactly, if we use only the symbols 0 and 1 to express our descrip-
tion, we will assign the probability 2−n to a sequence of symbols, if
its shortest possible binary description contains n digits.

The next paragraph already makes clear that what he will mean by a short
“description” of a string x: a program of a general-purpose computer that outputs
x.

The combination of these three ingredients: simplicity, apriori probability,
universal computer turned out to have explosive power, forming the start of a
theory that is far from having exhausted its potential now, 50 years later. This
was greatly helped by Kolmogorov’s independent discovery that related them
explicitly to two additional classical concepts of science: randomness and infor-
mation.

There is another classical principle of assigning apriori probabilities that has
been given a new interpretation by Solomonoff’s approach: Laplace’s principle
of indifference. This says that in the absence of any information allowing to
prefer one alternative to another, all alternatives should be assigned the same
probability. This principle has often been criticized, and it is indeed not easy
to delineate its reasonable range of applicability, beyond the cases of obvious
symmetry. Now in Solomonoff’s theory, Laplace’s principle can be seen revived
in the following sense: if an outcome has several possible formal descriptions
(interpreted by the universal monotonic machine), then all descriptions of the
same length are assigned the same probability.
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The rest of the report [14] has a groping, gradual nature as it is trying to find
the appropriate formula for apriori probability based on simplicity of descrip-
tions.

The problems it deals with are quite technical in nature, that is it is (even)
less easy to justify the choices made for their solution on a philosophical basis.
As a matter of fact, Solomonoff later uses (normalized versions of) (2) instead
of the formulas of these early papers. Here are the problems:

1. Machine dependence. This is the objection most successfully handled in the
paper.

2. If we assign weight 2−n to binary strings of length n then the sum of the
weights of all binary strings is infinite. The problem is dealt with in an ad-
hoc manner in the report, by assigning a factor (1− ε)k to strings of length
k. Later papers, in particular Solomonoff’s first published paper [16] on the
subject, solve it more satisfactorily by using some version of definition (1):
on monotone machines, the convergence problem disappears.

3. We should be able to get arbitrary conditional probabilities in our Bayesian
inference, but probability based on shortest description leads to probabilities
that are powers of two. Formula (2) solves this problem as simply as it solved
the previous one, but the first publication [16] did not abandon the ad-hoc
approach of the technical report yet either, summing up probabilities for all
continuations of a certain length (and taking the limit).

4. There are principles of induction suggesting that not only minimal descrip-
tions (explanations) should be considered. Formula (2) incorporates all de-
scriptions in a natural manner. Again, the ad-hoc approach, extending the
sum over all descriptions (weighted as above), still is also offered in [16].
It remained for later researchers (Kolmogorov, Levin) to discover that—in
certain models (though not on monotonic computers) even to within an ad-
ditive constant—asymptotically, the logarithm of the apriori probability ob-
tained this way is the same as the length of the shortest description. Thus, a
rule that bases prediction on shortest explanations is not too different from a
rule using the prediction fitting “most” explanations. In terms of the mono-
tone machines, this relation can be stated as follows. For a string x, let Km(x)
be the length of the shortest binary string that causes the fixed optimal mono-
tonic machine to output some continuation of x. Then

Km(x)−2logKm(x)≤− log M(x)≤ Km(x). (3)
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The paper [16] offers yet another definition of apriori probability, based on
a combination of all possible computable conditional probabilities. The sug-
gestion is tentative and overly complex, but its idea has been vindicated by
Levin’s theorem, in [27], showing that the distribution M(x) dominates all other
“lower semicomputable semimeasures” on the set of infinite sequences. (Levin
did not invent the universal semimeasure M(x) as response to Solomoff’s work,
but rather as a natural technical framework for treating the properties of com-
plexity and randomness.) Here, the semimeasure property requires, for all x,
the inequalities M(x) ≥ ∑b∈Σ M(xb), while M(Λ) ≤ 1 for the empty string Λ.
Lower semicomputability requires that M(x) is the limit of an increasing se-
quence of functions that is computable in a uniform way. A computable measure
is certainly also a lower semicomputable semimeasure. The dominance property
distinguishes Solomonoff’s apriori probability among all lower semicomputable
semimeasures. Levin’s observation is crucial for all later theorems proved about
apriori probability; Solomonoff made important use of it later.

The paper [17] considers some simple applications of the prediction formu-
las, for the case when the sequence to be predicted is coming from tossing a
(possibly biased) coin, and when it is coming from a stochastic context-free
grammar. There are some computations, but no rigorous results.

5 The prediction theorem
Solomonoff wrote an important paper [18] that is completely traditional in the
sense of having a non-trivial theorem with a proof. The result serves as a jus-
tification of the prediction formula (2). What kind of justifications are possible
here? Clearly, not all sequences can be predicted succesfully, no matter what
method is suggested. The two possibilities are:

(i) Restrict the kind of sources from which the sequences may be coming, to
a still sufficiently wide class.

(ii) Show that in an appropriate sense, your method is (nearly) as good as any
other method, in some wide class of methods.

There is a wealth of research on inference methods considering a combination
of both kinds of restriction simultaneously, showing typically that for example if
a sequence is generated by methods restricted to a certain complexity class then
a successful prediction method cannot be restricted to the same class.

Solomonoff’s theorem restricts consideration to sources x1x2 . . . with some
computable probability distribution P. Over a finite alphabet Σ, let P(x) denote
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the probability of the set of all infinite sequences starting with x, further for a
letter b of the alphabet denote P(b|x) = P(xb)/P(x). The theorem says that
the formula M(b|x1 . . . xn), gets closer and closer to the conditional probability
P(b|x1 . . . xn) as n grows—closer for example in a mean square sense (and then
also with P-probability 1). This is better than any classical predictive strategy
can do. More explicitly, the value

S n = ∑
x:|x|=n−1

∑
b∈Σ

P(x)(M(b|x)−P(b|x))2

is the expected error of the squared probability of the nth prediction if we use the
universal M instead of the unknown P. Solomonoff showed ∑

∞
n=1 S n < ∞. (The

bound is essentially the complexity K(P), of P, so it is relatively small for simple
distributions P. There is no bound when P is not even computable.) Hence
the expected squared error can be said to degrade faster then 1/n (provided the
expectation is “smooth”).

The set of all computable distributions is very wide. Consider for example
a sequence x1x2 . . . whose even-numbered binary digits are those of π, while its
odd-numbered digits are random. Solomonoff’s formula will converge to 1/2
on the odd-numbered digits. On the even-numbered digits, it will get closer
and closer to 1 if b equals the corresponding digit of π, and to 0 if it does not.
By now, several alternative theorems, and amplifications on this convergence
property have appeared: see for example [7, 5].

The proof relies just on the fact that M(x) dominates all computable mea-
sures (even all lower semicomputable semimeasures). It generalizes therefore
to any family of measures that has a dominating measure—in particular, to any
countable family of measures.

Despite the attractiveness of the formula, its incorporation of such a number
of classical principles, and the nice form of the theorem, it is still susceptible to
a justified criticism: the formula is in a different category from the sources that it
predicts: those sources are computable, while the formula is not (M(xy)/M(x) is
the ratio of two lower semicomputable functions). But as mentioned above, the
restrictions on the source and on the predictor cannot be expected to be the same,
and at least Solomonoff’s formula is brimming with philosophical significance.

The topic has spawned an elaborate theory of prediction in both static and
reactive unknown environments, based on universal distributions with arbitrary
loss bounds (rather than just the logarithmic loss) using extensions and variations
of the proof method, inspiring information theorists such as Thomas M. Cover [4].
An example is the book by Marcus Hutter [5]. A related direction on prediction
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and Kolmogorov complexity, using various loss bounds, going by the name of
“predictive complexity”, in a time-limited setting, was introduced by Vladimir
G. Vovk (see [26] and later works).

We noted that Solomonoff normalized his universal apriori distributions, in
order to turn them into regular probability distributions. These normalizations
make the theory less elegant since they take away the lower semicomputability
property: however, Solomonoff never gave them up. And there is indeed no
strong argument for the semicomputability of M(x) in the context of prediction.
In about 1992, Robert M. Solovay proved that every normalization of the univer-
sal a priori semimeasure to a measure would change the relative probabilities of
extensions by more than a constant (even incomputably large) factor. In a recent
paper with a clever and appealing proof, Solomonoff [25] proved that if we pre-
dict a computable measure with a the universal a priori semimeasure normalized
according to his prescription, then the bad changes a la Solovay happen only
with expectation going fast to 0 with growing length of the predicted sequence.

6 Universal search
It was not until 1978, that Ray Solomonoff started to pay attention to the emerg-
ing field of computational complexity theory. In that year, Leonid Levin arrived
in Boston, and they became friends. Levin had discovered NP problems around
1970, independently from Stephen Cook, and had shown the completeness of a
small number of NP problems (independently of Richard Karp). For our present
purpose, an NP problem is best viewed as a search problem. It is defined with
the help of a verification predicate V(x,w), where x is the instance, w is a po-
tential witness, and V(x,w) is true if and only if the witness is accepted. We can
assume that V(x,w) is computable in time linear in the size |x| of the instance x
(in an appropriate computation model, see later). The problem is to decide for a
given instance x whether there is any witness w, and if yes, to find one. As an
example, consider the problem of finding a description of length l that computes
a given string x within time t on some fixed machine U. Let x = U t(p) mean
that machine U computes x in time t from program p. The instance of the prob-
lem could be the string 0l10t1x, and the verifier V(0l10t1x, p) would just check
whether |p| ≤ l and U t(p) = x.

Levin’s paper [6] announces also a theorem that has no counterpart in the
works of Cook and Karp: the existence of an algorithm that finds a witness to
an NP-complete problem in time optimal to within a multiplicative constant.



12

Theoretically, this result is quite interesting: from then on, one could say that
the question has not been how to solve any NP problem efficiently, only what
is the complexity of Levin’s algorithm. If there is a theorem that it works in
time g(|x|), then of course also the problem of whether there is any witness at
all becomes decidable in time g(|x|).

Levin’s paper gave no proof for this theorem (a proof can be found now, for
example, in [7]). There is a natural, approximate idea of the proof, though. What
is special about an NP problem is that once a potential witness is guessed, it is
always possible to check it efficiently. Therefore it does not harm much (theo-
retically, that is as long as we are willing to tolerate multiplicative constants) a
good solution algorithm A(x) if we mix it with some other ones that just make
wild guesses. Let ρ1,ρ2, . . . be any computable sequence of positive numbers
with ∑i ρi ≤ 1. We could list all possible algorithms A1,A2, . . . , in some order,
and run them simultaneously, making a step of algorithm Ai in a fraction ρi of
the time. At any time, if some algorithm Ai proposes a witness we check it. In
this way, if any algorithm Ai finds witnesses in time g(|x|) then the universal
algorithm finds it in time ρ−1

i g(|x|): this is what is meant by optimality within a
multiplicative constant.

In order to actually achieve the multiplicative constant in his theorem, Levin
indicated that the machine model U has to be of a “random access” type: more
precisely, of a type introduced by Kolmogorov and Uspensky and related to the
“pointer machine” of Schönhage. He also introduced a variant of description
complexity Kt(w) = mint,z:U t(z)=w |z|+ log t in which a penalty of size log t is
built in for the running time t of the program z outputting the sequence w on the
universal machine U. A more careful implementation of Levin’s algorithm (like
the one given later by Solomonoff) tries the candidate witnesses w essentially as
ordered by their complexity Kt(w).

Up to now, Levin’s optimal algorithm has not received much attention in the
computational complexity literature. In its present form, it does not seem prac-
tical, since the multiplicative constant ρ−1

z is exponential in the length of the
program z. (For time bounds provable in a reasonable sense, Hutter reduced the
multiplicative constant to 5, but with a tremendous additive constant [7]. His
algorithm depends on the formal system in which the upper bounds are proved,
and its bound is not necessarily provable in the same system.) But Solomonoff
appreciated it greatly, since in computing approximations to his apriori probabil-
ity, this seems still the best that is available. He gave detailed implementations of
the optimal search (giving probably the first written proof of Levin’s theorem),
in its application to computing algorithmic probability [19, 21]. These did not



13

result in new theorems, but then Solomonoff had always been more interested
in practical learning algorithms. In later projects (for example [22]) aimed at
practical prediction, he defines as the conceptual jump size CJS of the program
z the quantity tz/pz, where pz is some approximation to the apriori probability
of z, and tz is its running time. The logarithm of the conceptual jump size and
Levin’s Kt(w) are clearly related.

7 Training sequences
Solomonoff continued to believe in the existence of a learning algorithm that one
should find. He considered the approach used for example in practical speech
recognition misguided: the algorithm there may have as many as 2000 tuneable
real number parameters. In the 1990s, he started a company to predict stock per-
formance on a scientific basis provided by his theories. Eventually, he dropped
the venture claiming that “convergence was not fast enough.”

In a number of reports: [13, 15, 20, 22, 9, 24], universal search as described
above is only a starting point for an array of approaches, that did not lead to
new theorems, but were no less dear to Ray’s heart for that. What we called
“program” above can alternatively be called a “problem solving technique”, or
a “concept”. This part of Ray’s work was central for him; but the authors of
the present article are closer to mathematics than to the experimental culture of
artificial intelligence, therefore the evaluation poses challenges for them. We
hope that the AI community will perform a less superficial review of this part of
the oevre than what we can offer here.

Learning proceeds in stages, where each stage includes universal search. The
conceptual jump size CJS introduced above (see [9]) continues to play a central
role. Now, “probability” is used in the sense of the probability assigned by the
best probabilistic model we can find in the available time for the given data.
There is also an update process introducing more and more complex concepts.
The concepts found useful on one stage are promoted to the status of primitives
of a new language for the next stage, allowing to form more complex composite
concepts (and goals). They are combined in various ways, assigning prelimi-
narily just product probability to the composite concept. If a composite concept
proves applicable with a probability beyond this initial value, it will be turned it
into a new building block (with a corresponding larger probability). In this way,
one hopes to alleviate the problem of excessively large multiplicative constants
of universal search (see [21]).
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Ray did not limit inductive inference to a model where a learner is presented
a stream of experimental results. He realized that in practice, a lot of learn-
ing happens in a much more controlled situation, where there is a “teacher” (or
several). Now, supervised learning is a well-studied set of models: in this, a
teacher provides answers to some set of questions that the learner can ask. In
Solomonoff’s model, the teacher also orders the questions in increasing concep-
tual jump size, facilitating thereby the above concept-building process. Already
the report [13] sketches a system designed to recognize more and more complex
patterns, as it is being fed a sequence of examples of gradually increasing com-
plexity.1 Ray spent many years working out some examples in which a learning
algorithm interacts with a training sequence. The examples were of the type of
learning a simple language, mainly the language of arithmetic expressions. By
now, there are systems in AI experimenting with learning based on universal
optimal search: see Schmidhuber in [12] and other works.

We are not aware of any theoretical study that distinguishes the kind of
knowledge that the teacher can transmit directly from the one that the student
must relearn individually, and for which the teacher can only guide: order prob-
lems by complexity, and check the student answers. The teacher may indeed
be in conscious possession of a network of concepts and algorithms, along with
estimates of their “conceptual jump size”, and we should assume that she com-
municates to the student directly everything she can. (The arithmetic algorithms,
Ray’s main example, can certainly be fed into a machine without need for learn-
ing.) But it appears that in typical realistic learning, the directly, symbolically
transferable material is only a very incomplete projection of the mental models
that every pupil needs to build for himself.

1Marvin Minsky considers that the practical potential of the pattern recognition algorithms
in this work of Ray still has not received the attention it deserves.
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