
Reliably computing cellular automata

Peter Gács

Boston University

Goal: Outline some old, but still not generally digested results about
reliable cellular automata.

The results: There is a cellular automaton that can perform arbitrary
computation while resisting a the most natural kind of random
noise, provided its volume is small.
Such an automaton can continuously clean away the
consequences of faults, preventing their accumulation.

Emphasis: On hierarchical methods (of construction and proof), since
this is where mainly my own contribution lies.

Idiosynchrasies: Though the results are simply stated, the methods
lead into a somewhat special world with its own
concepts—please, be patient.

1 Cellular automata

I assume you know cellular automata, but I need some special
terminology.

Set of cells (sites): for example, Λ = Z3, or Λ = Z/mZ.

Finite set S of (local) states.

Configuration: any function ξ : Λ→ S.

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

�1 0 1 2

S = {0, 1, 2}

�(�1) = 1, �(0) = 1, �(1) = 2, . . .

⇤ = Z

History η(x, t).

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

�1 0 1 2

0 0 0 1 0 0 2 1 0 2 0 1 2 0 1 1 1
1 0 1 1 2 1 1 0 0 0 0 2 2 1 2 2 0
1 1 1 0 2 0 1 0 1 0 2 0 2 1 2 1 01

2

time

�(1, 2) = 2, �(2, 2) = 1, . . .

0

Neighborhood function: N(x) = {θ1(x), . . . , θr(x)}.
Normally Λ = Zd and we have θi(x) = x + θi(0).

Examples

von Neumann neighborhood: the 7 nearest neighbors (including
itself) of a point, say, in the lattice Z3.

Toom neighborhood: {θ1(0), θ2(0), θ3(0)} = {(0, 0), (0, 1), (1, 0)}.

�1 �2

�3

We say that history η is a trajectory of local transition function
g : Sr → S if

η(x, t + 1) = g(η(θ1(x), t), . . . , η(θr(x), t)).

Example Λ = Z, N = {−1, 0, 1}.

�1 0 1 2

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0 t
t+1

�(x, t + 1) = g(0, 2, 2)

Here is a trajectory of Wolfram’s rule 110 on Z/(17Z).

1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0

�1 0 1 2

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 11

2

time

0

13 = �4

The rule says: “If your right neighbor is 1 and the neighborhood state
is not 111 then your next state is 1, otherwise 0”.

So, a (deterministic, synchronous) cellular automaton is given by these
data:

A = CA(Λ,S, θ, g).

We will omit Λ, θ if Λ = Z, and N(0) = {−1, 0, 1}.

Example (The Toom Rule) Λ = Z2, S = {0, 1},

N(0) = {(0, 0), (0, 1), (1, 0)},

g(x, y, z) = Maj(x, y, z).

The new state is the majority of the state of the cell itself, and of its
northern and eastern neighbor.

1.1 Computation

A cellular automaton A can be used as a computing device.

The program P and the input X can be some strings written into
the initial configuration ξ = ξ(P,X).

The computation is a trajectory of A starting with ξ.

The output is defined by some convention.

Assume these conventions fixed somehow, this defines a (possibly
partial) function fA,P(X) computed on cellular automaton A with
program P.

A cellular automaton A is computationally universal if for every
computable function g(X) there is a program P with fA,P(X) = g(X).

Theorem There are computationally universal cellular automata.

For example, it is easy to turn any universal Turing machine into a
one-dimensional computationally universal cellular automaton.

1.2 Fault tolerance

Cellular automata are particularly well-suited as models for
computation in noise.

Their space-time uniformity means we do not assume any complex
hardware structure immune to errors (unlike von Neumann’s fault
tolerant circuits).

Their parallelism provides power to combat noise that occurs all
over space-time.

Deterministic perturbation

For simplicity of notation, assume 1 dimension, with x − 1, x, x + 1 the
neighbors of site x.
Let E be a set of space-time points, and η a history of the cellular
automaton A with transition function g. The pair (η,E) is called a
perturbed trajectory of A with set of faults, or exceptions, or noise E if

η(x, t + 1) = g(η(x − 1, t), η(x, t), η(x + 1, t))

for all (x, t) < E. The set of all possible noises is denoted by

Noises = 2Λ×Z+ .

The non-stochastic approach to error correction is interested in
cellular automata whose perturbed trajectories behave well provided
the set of faults obeys some reasonable restrictions.

Probabilistic cellular automata

The stochastic point of view does not impose restrictions directly on
the set of faults, instead assumes that they come from some stochastic
process, and the restrictions apply to the distribution of the process.
Instead of a local transition function g : S3 → S, now a local transition
probability matrix W : S4 → [0, 1] with∑

s∈S

W(s, r−1, r0, r1) = 1.

A PCA is noisy if all of its local transition probabilities in matrix W
are positive (no prohibited local transitions).

Perturbation

Let g be the transition of a deterministic CA A. A stochastic process
η(x, t) is a trajectory of an ε-perturbation of A if, with events

Ex,t =

{
η(x, t + 1) , g(η(x − 1, t), η(x, t), η(x + 1, t))

}
,

for distinct space-time points u1, . . . , uk we have

P(Eu1 ∧ Eu2 ∧ · · · ∧ Euk) 6 ε
k.

This is in some ways more restricted than a PCA (must be close to a
deterministic automaton), and in some ways more general (complete
homogeneity is not required).
For a while we focus on stochastic perturbation, but our solutions will
relate the deterministic and the stochastic notions of perturbation to
each other—through the notion of sparsity.

Sense of fault-tolerance

For simplicity, let us just want cell 0 to keep some initial information
forever (with large probability). The simplest highly nontrivial result
to be explained:

Theorem (Main) There is a one-dimensional deterministic cellular
automaton with some partition of the set of states

S = D0 ∪ D1, D0 ∩ D1 = ∅

and initial configurations ξ0, ξ1 with the following property for both
b ∈ {0, 1}. If η(x, 0) = ξb(x) ∈ Db for all x then

P { η(0, t) < Db } 6 1/3.

The proof uses significantly some initial ideas of Kurdyumov.

2 Ergodicity
Invariant measures

Let us explore the significance of the main theorem for the theory of
probabilistic cellular automata. Let η(x, t) be a trajectory of a
probabilistic cellular automaton A. Let

µt

be the probability distribution of the random history η(·, t). The time
transition is described by a linear operator P:

µt+1 = Pµt.

A measure µ is invariant (an equilibrium measure) if µ = Pµ. It is easy
to show that invariant measures always exist.

A PCA with transition operator P is ergodic if
a There is only one invariant measure ν.
b For every initial configuration, the measures µt converge weakly

to ν.

Weak convergence: convergence on all sets of the form

{ ζ : ζ(−n) = s−n, . . . , ζ(n) = sn }.

Ergodicity says that, eventually, the automaton forgets everything
about the initial configuration.

Nonergodic noisy cellular automata

A noisy cellular automaton on a finite space is always ergodic, as a
finite Markov chain with all positive transition probabilities. So in
what follows, we assume the space infinite (and return to the finite
case later).

It is easy to construct examples of ergodic cellular automata: just
let the transition matrix W(s, r−1, r0, r1) be independent of
r−1, r0, r1.

It is also easy to construct examples of non-ergodic ones: just take
a deterministic automaton that never changes its state!

The Main Theorem above gives a noisy non-ergodic infinite
cellular automaton.

3 Local voting rules
Difficulty of 1-dimensional error-correction

Suppose we start from a configuration of all 0’s or all 1’s, and want to
remember, which one it was, in noise.

Idea: some kind of local voting.

In 1 dimension, seems hopeless: suppose we started from all 0’s.
Eventually, a large island of 1’s appears.

0000000000011111111111111111110000000000000

A local voting-type (monotonic) rule cannot eliminate it
(sufficiently fast): at a boundary, it does not know which side is the
island side. (Theorems of Gray.)

Symmetric voting in 2 dimensions?

Voting in the 5-element symmetric
neighborhood? In the absence of
noise, will not decrease a large
rectangle of 1’s in a sea of 0’s.

Even in noise, any symmetric local
voting (including the center) will
decrease a large disk of radius r of 1’s
only with average speed 1/r. If the
noise is biased (say brings 1 with
probability ε and 0 with probability
0), it increases the disk with constant
average speed ε.

Result: increase with speed ε − 1/r > 0! Even if we started with all
0’s, the 1’s win out.

Symmetric voting, unbiased noise

Assume that the result of local voting in the symmetric (von Neumann)
neighborhood is changed to 1 with the same probability ε as to 0.

The conjecture is that the system is nonergodic, but there is no
proof.

In continuous time, proved nonergodic for a special choice of
transition rates: the ones making it the dynamic version of the
Ising model of statistical physics.

Toom’s rule with arbitrary small noise

Toom’s voting rule is not
symmetric: it uses the
neighborhood (self, north, east).

�1 �2

�3

In a sea of 0’s it erases an arbitrary
island of size L in L steps.

Any PCA obtained by ε-perturbation with small ε from this rule is
nonergodic. The proof is not easy, we will give sketch.

4 Application to reliable computation
4.1 Layering

The simplest known fault-tolerant computation model is the
three-dimensional cellular automaton introduced in [Gács-Reif 88].

Definition (Toom-layering) Let U be an arbitrary 1-dimensional
cellular automaton. We define its Toom-layering as a 3-dimensional
automaton

U′.

In its initial configuration, we slice the space into planes by the value
of the first coordinate. Every cell with coordinates x, y, z will have the
initial state of cell x of automaton U.
The transition rule of U′ is: Toom’s rule within each plane, then the
rule of U across the planes.

w

a

a

a

a

a

a

a

a

a

a

a

w

w

w

a

a

a

a

w

w

b

w

a

a

a

a

w

w

w

a

a

a

a

a

a

a

a

a

w

a

c

c

c

c

c

c

c

c

c

c

b

c

c

c

c

c

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

c

c

c

a

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

w
w

w

w
w

w

c
c

c

b

Transition rule of U′: Toom’s rule within each plane, then the rule of
U across the planes.

In what sense is this fault-tolerant?

Theorem (Reliable computation, infinite version) There is a noise
bound ε with the following property. Let ζ(x, t) be a computation
(history) of U, and let η(x, y, z, t) be a trajectory of an ε-perturbation of
the Toom-layering U′ with initial condition η(x, y, z, 0) = ζ(x, 0). Then
for all x, y, z ∈ Z, t ∈ Z+ we have

P { η(x, y, z, t) , ζ(x, t) } = O(ε).

4.2 Finite versions

As noted, a noisy finite PCA, say a noisy perturbed Toom rule on the
space

Λ = Z2
L,

(a torus of size L) is always ergodic. What is the significance of the
above results then?
For two initial configurations ξ0, ξ1 let ηi(x, t) be the process starting
from ξi. We call (for simplicity) the relaxation time Rδ(L, ε) the
smallest time t0 such that for all t > t0:

|P{ η1(0, t) = 0 } − P{ η0(0, t) = 0 }| < δ.

Estimates the time for the information about index i to be erased from
the value P{ ηi(0, t) = 0 }.

Proposition If the infinite system on Z2 is ergodic then the
relaxation time Rδ(L, ε) has an upper bound M(δ, ε) independent of the
size L.

Thus, ergodicity of the infinite version implies that increasing the size
of the finite version will not increase its fault-tolerance significantly.
On the other hand, there is a proof (by Berman-Simon) of Toom’s
theorem showing that the relaxation time of a perturbed Toom rule
grows exponentially with the size L:

Theorem For a perturbed version of Toom’s rule, and some
δ = O(ε), c(δ, ε) > 0 we have

Rδ(L, ε) > 2cL.

In the finite version of the reliable computation theorem, the upper
bound O(ε) is replaced with

O(ε) + t · 2−cL

for some c > 0. This shows that we can compute exponentially
long in a cellular automaton of size L.

A user may want to know how to implement a computation with a
given space need S and time need T , where the whole result is
correctly decodable with probability, say, 1 − δ. In this case, our
computing device should be a 3-dimensional torus

ZS × Z
2
L, L = O(log(ST/δ)).

Along the computing dimension of length S we perform the
computation, along the stabilizing dimensions of logarithmic
length L, the Toom rule. The result in each position along the
computing dimension is obtained at time T by majority vote along
the stabilizing dimensions.

5 Proof of Toom’s theorem

The proof of the reliability of the above computing automaton is
almost the same as the proof of nonergodicity of Toom’s rule
(essentially, just carry an extra dimension in the notation), so we
concentrate on Toom’s Rule. The proof I choose is not the simplest,
not even the strongest one (in terms of the relaxation time lower
bound). But

it is based on the simple intuition of the shrinking triangles,

its hierarchical technique will be reused in the later lectures.

Recall the intuitive explanation for why Toom’s rule works:

The noiseless rule shrinks a triangle surrounded by 0’s. However,

Our rule is now noisy.

The outside now contains “litter”, too.

Still, a simulation of the noisy Toom rule strongly supports the
shrinking-triangle intuition.

6 Noise

We return to the problem of relating deterministic and stochastic
perturbations to each other.
How to deal with low-probability noise combinatorially? Low
probability is not a combinatorial property, low frequency is.

Consider first noise that has low frequency everywhere (noise of
level 1).

Then allow violations of this, but assume that those violations have
even lower frequency (noise of level 2).

And so on.

6.1 Sparsity

Define the distance of two points (in, say 3 dim):

|x − y| = max(|y1 − x1|, |y2 − x2|, |y3 − x3|).

Ball (actually, a cube):

B(x, r) = { y : |x − y| < r }.

Let E be a set of space-time points. A point of E is (r,R)-isolated if

d(x,E \ B(x, r)) > R,

that is each point of E is either closer than r to x or farther than R. Let

D(E, r,R)

denote the set of points of E that are not (r,R)-isolated.

We will permanently fix a sequence 1 = ρ1 < ρ2 < · · ·, and some
β > 8.

Let E(1) = E. The sets of E(2),E(3), . . . are obtained by deleting first
the (βρ1, ρ2)-isolated points, then the (βρ2, ρ3)-isolated points, and
so on:

E(k+1) = D(E(k), βρk, ρk+1).

We call E(k) the k-noise of E.

Set E is (r,R)-sparse if D(E, r,R) = ∅: it consists of “bursts” of
size r farther than R.
It is k-sparse if E(k+1) = ∅.
It is sparse if

⋂
k E(k) = ∅.

The following observation is key.

Proposition (Sparsity Bound) Assume log β 6 log ρk+1
ρk
� 1.5k.

Then for small enough ε, the following holds for all k > 1. Assume
that each point is in the random space-time set E independently from
all the others, with probability 6 ε. Then for each point x and each k,

P
{
B(x, ρk) ∩ E (k) , ∅

}
< 2ε · 2−1.5k

.

(Case k = 1, and B(x, ρ1) (a single point): this gives < ε as expected.)
The probability that the noise in B(x, ρk) is not k-sparse is decreasing
doubly exponentially with k.
This suggests hiearchical (multiscale) proof: on “level” k, deal just
with (βρk, ρk+1)-isolated faults.

Proof of the bound

One can see that the event B(x, ρk) ∩ E (k) , ∅ depends at most on
E ∩ B(x, 3ρk).
By induction, proving

P
{
B(x, ρk+1) ∩ E (k+1) , ∅

}
< 2ε · 2−1.5k+1

.

Let pk = 2ε · 2−1.5k
. Suppose y ∈ E (k+1) ∩ B(x, ρk+1). Then there is a

point

z ∈ B(y, ρk+1) ∩ E (k) \ B(y, βρk).

Consider a standard partition of the (three-dimensional) space-time
into balls (cubes) Kp = cp + [−ρk, ρk)3 with centers c1, c2, The
balls Ki,Kj containing y and z respectively intersect B(x, 2ρk+1). The
triple-size balls K′i = ci + [−3ρk, 3ρk) and K′j are disjoint, since
d(y, z) > βρk by assumption.

2⇢k

4⇢k+1

Ki

Kj

E (k) must intersect two balls
(cubes) Ki, Kj of size 2ρk separated
by at least 4ρk, of B(x, 2ρk+1).

By inductive assumption, the event Fi that Ki intersects Ek has
probability bound pk. It is independent of the event Fj, since these
events depend only on the triple size disjoint balls K′i and K′j .
The probability that both of these events hold is at most p2

k . The
number of possible cubes Kp intersecting B(x, 2ρk+1) is at most
Ck := ((2ρk+1/ρk) + 2)3, so the number of possible pairs is at most
C2

k/2, bounding the probability of our event by

C2
k p2

k/2 = 2C2
kε

22−1.5k+1
· 2−0.5·1.5k

= 2ε2−1.5k+1
· εC2

k 2−0.5·1.5k
.

Our assumptions imply that the last factor is 6 1 when ε is small.

6.2 Shrinking damage triangle in noise

Noise is a concept in space-time, damage is the corresponding concept
in space Λ = Z2. We can talk about the k-damage D(k) of a set D ⊆ Λ,
using the same sequence ρk, but possibly a larger parameter β.
In studying the Toom rule starting from all 0’s, let
D(t) = { x : η(x, t) = 1 }.

A triangle of size s = c − a − b > 0 is a set of the plane given as
follows:

T(a, b, c) = { (x, y) : x > a, y > b, x + y 6 c }.

when we said the triangle shrinks, we meant that it is replaced with
T(a, b, c − 1). It disappears when c becomes smaller than a + b.

In noise, triangles do not shrink quite as before. But, as will be shown,
they still shrink.

Let vk =
∑k−1

i=1
c0
i2 where

∑
k>0

c0
k2 < 1/2. Let z ∈ Λ an arbitrary point,

B(d) = B(z, d), L > ∆ > 0.
Conditions:

a ρk+1
ρk
� k2.

b D(k+1)(t0 − ∆) ∩ B(L) ⊆ T(a, b, c).
c The pair (η,E) is a perturbed trajectory of the Toom rule with a set

of faults E such that E(k+1) does not intersect B(L) × [t0 − ∆, t0].

Proposition Under these conditions, if ∆ > ρk+1 then

B(L − ∆) ∩ D(k+1)(t0) ⊆ T(a − vk∆, b − vk∆, c − (1 − vk)∆).

Without noise this would be T(a, b, c − ∆). Size shrinks by ∆(1 − 3vk)
instead of by ∆.

Corollary Suppose, with ∆ = 4ρk+1:
a D(k+1)(t0 − ∆) does not intersect B(L).
b We have a perturbed trajectory (η,E) where E(k) does not intersect

B(L) × [t0 − ∆, t0].

Then B(L − ∆) ∩ D(k)(t0) = ∅.

Indeed, D(k)(t0 − ∆) ∩ B(L) is enclosed in balls of the form B(x, βρk),
separated by distances of ρk+1. The balls are contained in triangles of
size 2βρk. All these will be “erased” in time 4βρk+1, according to the
Proposition.

6.3 Application to the Toom theorem

Suppose that a trajectory of an ε-perturbation of the Toom rule started
from all 0’s. Let (x, y, t0) be a space-time point,
tk = t0 − 4β(ρ1 + · · · + ρk), and consider the ball Bk = B((x, y), 2ρk).

Let Gk be the event that D(k+1) does not intersect Bk at time tk. True
for a sufficiently large k, since there were no 1’s at time 0.

Let Fk be the event that E(k) does not intersect [tk+1, tk] × Bk+1.
The Sparsity Bound gives a constant C1 with P(

⋂
k Fk) > 1 − C1ε.

By the Corollary, Gk+1 ∧ Fk ⇒ Gk. Assuming that Fk holds for all k:

Gk
Fk−1
=⇒ Gk−1

Fk−2
=⇒ · · ·

F0
=⇒ G0,

hence η(x, y, t) = 0.

Proof idea

The Proposition is proved by induction.

Inductive assumption gives shrinking with velocity 1 − 3vk−1 when
the k-noise is also missing, instead of just the (k + 1)-noise.

The k-noise brings in some blocks of size ρk, separated from each
other by ρk+1.
Thus, the “relative frequency” of violations of (k − 1)-sparsity is
about ρk+1

ρk
= 1

Ck2 , from which vk − vk−1 is obtained.

7 Summary of previous lectures

1 (Larry) Probabilistic cellular automata. Formulating the main
result in context, and some ideas (fields).

2 (Peter) The sparsity method. Its application to proving the
nonergodicity of the perturbed two-dimensional Toom rule.

3 (Larry) Reliable simulation in 1 dimension in 1-sparse noise:
colonies, the most important fields.

4 (Peter, today) Elaborating the simulation component of Larry’s
last lecture. New problems caused by non-1 sparse faults. Forced
self-simulation.

8 Resisting 1-sparse noise
Other models needed

The simplicity of the 2(3)-dimensional solution seems to be an
anomaly. Desirable:

Fewer dimensions There are thermodynamic reasons to argue that a
3-dimensional fault-tolerant cellular automaton is not realizable
physically in 3-dimensional space. Indeed, in physical systems
the error-correcting operations (as any irreversible operations)
generate heat, which needs an extra dimension to conduct (or, as
in the case of the Earth’s surface, radiate) out.

Continuous time The Toom-layering construction relies on discrete
time in an essential way, but synchronizing over unlimited
distances is physically unrealistic.

Less redundancy Repetition is not a very economical way to
introduce redundancy.

From now on, we will work with 1-dimensional cellular automata.

Let us show how to correct an (r,R)-sparse set of faults: that is faults
that come in small bursts (size r, separated from each other by
distance R).
We will only need that R is some large constant times greater than r.

8.1 Codes
Redundancy

We must store information, in order not to lose it to noise, with
redundancy: using extra space.
Let X be a set whose elements are the possible values of our
information, and Y some other set. The pair of mappings

φ∗ : X → Y , φ∗ : Y → X

is called a code if it satisfies the identity φ∗(φ∗(x)) = x. The encoding
function is φ∗, the decoding function is φ∗. Example:

φ∗(x) = (x, x, x), φ∗(x, y, z) = Maj(x, y, z).

Error correction can be seen as the process of decoding and then
encoding again.

Block codes

Code (φ∗, φ∗) is called a block code with block size Q if the values
of φ∗ are words of length Q: that is X = A, Y ⊆ AQ

∗ for some finite
alphabets A,A∗. The above example (repetition and majority
decoding) is a block code.

A block code can be extended to configurations ξ(x) over the
infinite space Λ = Z. Example:

a a a c c c e e e d d d d d d

a c e d d �

��

. . .

.

. . .

Decoding can also be extended (though this extension is not
automatically shift-invariant).

Block simulation

A block simulation uses a block code between two cellular automata
with a special property: machine M = CA(S, g) is simulated
step-for-step by another machine M∗ = CA(S∗, g∗).

time

colony

work	 period U

Q

Each cell of M is represented by a colony of Q cells of M∗.

Each step of M is simulated by a work period of U steps of M∗.

See precise definition of simulation later.

9 Implementation

Let

ζt = ζ(·, t) = the content of the original computation at time t.

ηtU = the representation of ζt (with possible errors) by η at time tU.

How to perform the step ηtU → η(t+1)U?
In the Toom-layering construction, U = 1, and we could just work
directly on ηt, step-for-step, since

the code was very simple (repetition)

the extra dimension allowed direct access to each bit of the code.

But in general, it is not clear how to work directly on the encoded
information.

Pedestrian way

ηtU → decode → ζt → compute → ζt+1 → encode → η(t+1)U .

During this whole process, (even if the “compute” part is trivial) the
information seems vulnerable to error.

9.1 Fields

To control damage, let us structure information functionally even
within individual cells. At any one time, work only on part of the
information, protecting thereby the rest from error propagation.

View the cell states as binary strings: S = {0, 1}m, where m is
called the capacity of the cell.

Let 1 6 f1 < f2 < · · · < fk 6 m, F = { f1, . . . , fk }. For an arbitrary
cell state s = (s1, . . . , sm) we write

s.F = (sf1 , . . . , sfk).

We call F a field, and s.F a field of s. Notation borrowed from the
programming languages Pascal, C, and so on.

Typically, different fields are disjoint intervals of bits. Viewing
each cell as a computer processor, view fields as its program’s
variables in local memory.

If (ξ(x) : x ∈ Λ) is a configuration, then for each field F the values
ξ(x).F form a track

(ξ(x).F : x ∈ Λ).

Example, with Info, Addr, Age, Mail, Work tracks:

Info

Addr

Mail

. . .

ua vw ax zf yy

b a r z x

7 0 1 2 3
41 41 41 41 41Age

Work k m l s m

Here each cell’s bits are assumed to form a vertical string.

As an aside, let us give an equivalent formulation of the Main
Theorem (now we assume probabilistic faults, not 1-sparse ones) in
terms of fields:

Theorem There is a one-dimensional deterministic cellular
automaton with some field Rider and initial configurations ξ0, ξ1 with
the following property for both b ∈ {0, 1}. If η(x, 0) = ξb(x) then

P { η(0, t). Rider , b } 6 1/3.

Program outline

Keep the encoded state of the simulated fault-free computation in a
track called Info.

While decoding, computing, encoding, don’t change Info: use
other tracks: say Mail for moving information around, Work for
auxiliary computations.

Perform the decode-compute-encode process 3 times. In iteration
i = 1, 2, 3, store the result in track Holdi.

Replace Info with Maj(Hold1 , Hold2 , Hold3) in a single, last
step, in each cell simultaneously.

To organize all this, use a field Age as a program counter, and a
field Addr to show the relative place of each cell within its group.
Then each cell, as long as its Addr and Age are correct, will
always know its task in the current program step.

9.2 The run in space-time

Decode

Copy

Compute

Finish

Encode	 to Hold1

Hold2Encode	 to

Decode Majority of the three
repetitions.

Copy From neighbor colonies.

Compute Apply the simulated
transition function g.

Encode Store 3 copies in Holdi

Repeat the above, for i = 1, 2, 3

Finish Info← Maj3i=1 Holdi

locally.

Put 2r steps of idling (doing
nothing) between all these stages.

If the value of the fields

Addr ∈ {0, . . . ,Q − 1}, Age ∈ {0, . . . ,U − 1}.

is not corrupted by faults then each cell knows its position within
its colony and the step of the program it needs to execute: so it will
know what to do with the information in the rest of the fields.

The transition table is convenient to describe by a series of rules.
In the example below, Mail−1 denotes the Mail field of the left
neighbor.

Rule 1: Example rule

if t1 6 Age < t2 and Addr < Q/2 then
Mail← Mail−1

All our rules are just such conditional assignments.

Decode

Copy

Compute

Finish

Encode	 to Hold1

Hold2Encode	 to

Assume R > U, 3Q, so that at most one
burst of faults (of size r) can affect one
colony work period.

Lemma (Nice Faults) The theorem
holds in the case where the faults cannot
corrupt the Addr and Age fields.

Indeed, due to the idling steps, each fault
affects at most one stage i (or the step
Finish). Two effects that matter:

The output of the stage in track Holdi.
Corrected in Finish.

Other fields of the cells where the
burst occurred. Corrected in Decode
of the next work period.

9.3 Correcting Addr and Age

Fortunately, this can be done locally. I give an example solution,
based on simple common-sense ideas.

Define a notion of live and dead cells (say by a field Live ∈ {0, 1}).

Live cells x, y are consistent if

Age (y) = Age (x), Addr (y) ≡ Addr (x) + (y − x) (mod Q).

A domain is a maximal interval of consistent cells.

(Purge rule): Kill cells whose domain is smaller than the burst size
r.

(Heal rule): If a dead cell has one live neighbor with sufficient
“backing”, or two such consistent live neighbors, revive it
consistently with them.

We will implement this.

Call the left depth depth−1(x) of a cell x the distance to the first cell on
the left that is inconsistent with it if this distance is 6 MaxDepth = r;
otherwise, MaxDepth. Right depth is defined accordingly. So,
depth−1(x) > 1 means x is consistent with its left neighbor.
The fields Depth−1 , Depth1 try to keep track of the depth.
pfor is parallel for, doing all in a single step:

Rule 2: Purge

pfor j ∈ {−1, 1} do
if Live = 1 and depthj = 1 then

if depth−j < MaxDepth then Live← 0
else Depthj ← 1

else
Depthj ← MaxDepth ∧ (Depthj

j + 1)

Reviving the dead cells:

Rule 3: Heal

pfor j ∈ {−1, 1} do
if Live = 0 and Livej = 1 and Depth

j
j = MaxDepth

and (Live−j = 0 or the two neighbors are consistent with
each other) then

Live← 1
Age← Agej

Addr← Addrj − j mod Q

Assume that the rules Purge, Heal have been added.

Lemma (Structure Restoration) After every burst, the affected area
becomes consistent with its neighborhood again in 3r steps. The Info
field is not affected anywhere outside the burst.

The fact that the Info field is not affected follows directly from
the design.

The proof of restoration of consistency takes some argument, since
the behavior is not completely monotonic: Heal may revive cells
that Purge will kill later. But it is not a difficult argument.

The Structure Restoration lemma allows the application of the
argument of the Nice Faults lemma, even if the faults are not nice, just
1-sparse. This finishes the proof of the theorem.

9.4 Simulation result

Proposition (Sparse error correction) Let M = CA(S, g) be an
arbitrary cellular automaton. For any r there is a new machine
M∗ = CA(S∗, g∗) and:

|S∗| depending somehow (see discussion) on r, |S|,

R, Q,U depending linearly on r, and somehow on |S|,

Block code (φ∗, φ∗) with block size Q,

such that the following holds. Let
ζ(x, t) = trajectory of M with ζ(·, 0) = ξ,
(η,E) = a perturbed trajectory of M∗ with η(·, 0) = φ∗(ξ),
where the set of faults E is (r,R)-sparse.
Then for all t:

ζ(·, t) = φ∗(η(·, tU)),

the original computation is decoded from perturbed trajectory η.

How do the colony size Q and the number of simulating states |S∗|
depend on |S|?
Same question: how does the simulation compute the simulated
transition function g?
Two possibilities:

The computation is essentially just one step, since the Work field
of a simulating cell can contain a whole state of the simulated
machine. But in this case the set of simulating states S∗ is larger
than set of simulated states S. Does not scale up.

The transition function g is computed on a Work track of constant
size independent of S. A program of the transition function is
written onto the Work track before the computation, and the
simulating computation computes this function somehow using the
program.
This will be our solution, but what is a program, and what does
“computation” mean?

Simplest kind of program just a lookup table. For the transition
function g : S3 → S, it contains

|S|3

elements, so has a length |S|3 log2 |S|, written in binary. Then we
need essentially Q > |S|3.
But then the number of states |S∗| of the simulating machine (as
we designed it, with addresses), is at least |S|3, so again the
simulator is bigger than what it simulates. Does not scale up.

Better
Define a programming language for transition functions.
Simulate only cellular automata that have a short program.

Best No program, just compute the transition function “somehow”.
Our solution will amount to this, but the “somehow” needs
explanation!

10 Summary of previous lectures

1 (Larry) Probabilistic cellular automata. Formulating the main
result in context, and some ideas (fields).

2 (Peter) The sparsity method. Its application to proving the
nonergodicity of the perturbed two-dimensional Toom rule.

3 (Larry) Reliable simulation in 1 dimension in 1-sparse noise:
colonies, the most important fields.

4 (Peter) Elaborating the simulation component of Larry’s last
lecture. New problems caused by non-1 sparse faults. Forced
self-simulation.

5 (Larry) The main tools to deal with larger-scale noise beyond
forced self-simulation: Decay and Growth.

6 (Peter, today) Generalized cellular automata and simulation.
Amplifiers. Pulling it all together.

11 Hierarchy

Let 1 = ρ1 < ρ2 < . . . and an appropriate β > 8 be given, as in the
definition of sparsity. Setting r = βρ1, R = ρ2, we constructed a
1-dimensional cellular automaton that computes reliably in the
presence of (βρ1, ρ2)-sparse, that is 1-sparse noise. We built it as

M∗ = CA(S∗, g∗) = M1 = CA(S1, g1)

simulating an “arbitrary”

M = CA(S, g) = M2 = CA(S2, g2).

The simulation encoded each cell of M2 into a colony (block of size
Q1 = Q < ρ2/3) of M1 via a code

φ = (φ∗, φ∗).

Upgrading to 2-sparse

Machine M1 resists a 1-sparse set of faults: bursts of size βρ1 that
were at a distance greater than ρ2 from each other.

Upgrade: now we want to resist a 2-sparse set. So, we may also
have bursts of size βρ2, (at distances > ρ3).

Idea: Let M2 be itself a simulation of some machine M3 (via a
code φ2), where M2 resists a 2-sparse set! We could build M2 from
M3 just as we built M1 from M2:

M3
φ2
→ M2

φ1
→ M1.

It uses blocks of Q2 cells of M2, where Q1Q2 < ρ3/3.

As we construct M2 from M3 and M1 from M2, the state set S1
should not grow.

M1

M2

M3

��1

��2

We hope that M3 can deal with 2-sparse violations of 1-sparsity (red
area above), since the cells of M1 simulating it (via φ∗2φ

∗
1) are

stretching over an area of size� ρ2.
Indeed, the the extra redundancy in the second-level colonies deals
with the information effects of the new faults, provided the faults leave
the simulation on level 1 intact.

Formal dreams

We hope to build a sequence of machines M1,M2, . . . where Mk

simulates Mk+1 via code φk = (φk∗, φ
∗
k), in the following sense.

Goal Suppose that (η,E) is a perturbed trajectory of M1, and

η1 = η, ηk+1 = φ∗kη
k, k = 1, 2,

Then (ηk,E(k)) is a perturbed trajectory of Mk for all k.

In other words, η(k) only disobeys the transition function gk in E(k),
that is in areas of really big noise.
We have not proved this yet, even for k = 1. Indeed, our 1-sparse
simulation assumed E(2) = ∅, but now we need the result for arbitrary
E.

Structure destruction

Let us see what new problems arise.

Nice faults do not change Addr and Age. Even if the faults were
not nice, in our construction the Addr and Age values were
corrected by the rules Purge, Heal .

Now faults can wipe out the structure of 3-4 consecutive colonies
of M1 (see red area again). In this case, it makes no sense to talk
about M2 simulating M3, since those cells of M2 are not even there
(they would exist only in simulation by M1).

This new problem—that the M2 cells may not exist—must still be
solved in automaton M1.

We propose two more rules.

time

Rule Decay kills a cell for which healing did not solve promptly
its inconsistency with a neighbor within its own colony. Repeated
application of this will wipe out unhealable partial colonies
(yellow cells).

Rule Grow lets a colony extend an arm of consistent cells into
nearby vacuum. If new colony creation fails within a certain
number of steps, the arm is erased.

New problem: faults can create whole bad colonies (for example, the
purple colony above is misplaced). How to get rid of these?

time

Key idea: the bad colony should eliminate itself.
To reason about this, generalize the notion of history for cellular
automata—in order that a misplaced colony of M1 could also be
viewed as simulating a (misplaced) cell of M2.

12 Generalized cellular automata

time

T

B

Generalize histories of M2 to
answer the question: what do
perturbed histories of M1 simulate?
History: Cells have disjoint bodies
of length size B (not necessarily
adjacent) and disjoint
dwell-periods of length T . The
dwell-period is what a cell spends
in a state between switchings.

Using cell body sizes (and dwell period sizes) allows a colony of Q
cells of size B to simulate a cell of size QB occupying the same space.

time

T

B

Questions

Is there a transition function for the
case of neighbor (closer than B) cells
that are non-adjacent?
No, now the “transition function” only
imposes some conditions on the
trajectory (η,E).

Do non-adjacent neighbor cells
communicate?
Yes (though not strictly necessary).

We rely on the following mechanism to eliminate bad colonies.

In case a neighbor colony does not exist (in a consistent way), the
program should still proceed. A cell x simulated by a bad colony
performs transition g2, with a program similar to g1: it also has a
Purge rule. This Purge will kill x (since it is in a small island).

When the simulated cell x of M2 dies then all elements of the
colony representing it should die. The computational part of the
simulation will take care of this: In repetition i = 1, 2, 3, a Doomedi

track records in every cell whether the colony should die—then a
last majority vote does the killing.

12.1 Forced simulation

Automaton M1 needs the following property:

Forced simulation As long as the structure (Addr, Age) variables
are in order, a colony always carries out the program of simulating a
cell of M2.

A typical cellular automaton A1 simulating some other cellular
automaton A2 would rely on some program of A2, written into
each colony of A1. The simulation performed by machine M1 must
be, on the other hand, hard-wired: it should not rely on any written
program, since that program could be corrupted.

Below, we will show how to pass on the forced simulation
property also to the simulated machine M2.

Rule language

The whole transition function can be specified as a sequence of
rules like Purge, Heal above—that is of the type

if condition on fields of self or neighbors then
assignment to some field

else. . .

The sequence can be written as a single string (say, of bits) R.

There is a couple of extra primitives in the rules. First, they have
access to a parameter k, to define the transition function

gR,k(a, b, c)

of automaton Mk.

The other important new primitive is a special instruction

Write-rules-bit .

When called, it makes the assignment Work← R(Index), where
Index is a certain field whose value is interpreted as a number. This is
the key to self-simulation: the program has access to its own bits.

Simulating the rules

Let us fix some computationally universal cellular automaton U. By
convention, program P and input X produce in it an output fU,P(X).
Since the structure of all rules is very simple, they can be read and
interpreted by U in reasonable time:

Theorem There is a constant string called Interpr with the property
that for all positive integers k, strings R, A,B,C where R is a sequence
of rules, and bit strings A,B,C ∈ Sk:

fU,Interpr(R, 0k,A,B,C) = gR,k(A,B,C).

The computation on U takes time O(|R| · |A|).

The proof parses and implements the rules. Implementing the
Write-rules-bit instruction is natural: Machine U determines the
number i represented by the simulated Index field, looks up R(i) in R,
and writes it into the simulated Work field.

Why is there no circularity in these definitions?

The instruction Write-rules-bit is written literally in R in the
appropriate place: the string R is not part of the rules (that is of
itself. . .).

On the other hand, machine U has explicit access to the string R as
one of the arguments.

Computation step in detail

In the earlier outline, there was a step saying: “apply the simulated
transition function g”. We give more detail now, to implement forced
simulation:

Onto track Work, write:
String Interpr.
String R representing the set of rules. To do this: for Index running
from 1 to |R|, execute the instruction Write-rules-bit and move right.
0k+1 (with the help of parameter k).
Strings A,B,C copied from the three neighbor colonies representing
the simulated cell states.

Simulate the universal automaton U on track Work: it computes
gR,k+1(A,B,C) = fU,Interpr(R, 0k+1,A,B,C).

This achieves the forced simulation: the correct sequence R of rules
will be used even if the corresponding part of the workspace was
completely corrupted by noise before the start of the work period.

Summary of forced simulation

On level 1, the transition function gR,1(a, b, c) is defined
completely when the rule string R is given. It has the forced
simulation property by definition, and string R is “hard-wired” into
it in the following way:

gR,1(a, b, c). Work = R(b. Index)

whenever b. Index represents a number between 1 and |R|, and
b. Age satisfies the condition under which the instruction
Write-rules-bit is called in the rules (written in R).

The forced simulation property of the simulated transition function
gR,k+1(A,B,C) is achieved by the above defined computation
step—which relies on the forced simulation property of
gR,k(a, b, c).

12.2 Conflicts

With more rules killing and reviving cells:

Purge ,Heal ,Decay ,Grow ,

it becomes harder to make sure that they do not conflict with each
other. Most of these potential conflicts are solved as follows:

Purge and Heal are fast, but are restricted to a small range.

Decay is slow.

Grow is slow and is acting only in part of the work period.

A subtlety

Delicate situation that might allow a single burst to affect events on the
colony level:

time

A bad colony’s growth, as it completes the creation of a neighbor,
bites into a good colony (due to a burst).

Two possible solutions.

If there is communication among non-adjacent neighbors, Heal is
made stronger than Grow: it kills neighboring growth cells that are
in its way.

If there is no such communication, there is a less natural solution:
let Grow work in a zigzag way: say, 2c steps forward, c steps back
for some constant c. This gives the good colony a chance to heal
after a possible faulty bite.

12.3 Communication

time

T

B

To communicate, non-adjacent
colonies extend communicating
arms. If the work periods intersect
substantially, the arms will live
long enough to carry information.
In borderline cases, there is
nondeterminism about which
work-period of your neighbor
colony you will communicate
with. See the definition of
trajectories below.

Formal details

The cell body size B and the cell dwell period lenght T become part of
the definition of a generalized cellular automaton

CA(S, g,B,T).

In the transition function g(a, b, c,L,R), the bit L says whether the left
neighbor is adjacent and aligned; R says the same about the right
neighbor.
A history consists of

A set R of starting points {(xi, ti)}∞i=1 of disjoint space-time
rectangles [xi, xi + B) × (ti, ti + T].

A map η : R→ S assigning a state to each rectangle. We say
η(x, t) is live if (x, t) ∈ R, and vacant otherwise.

The set of histories and configurations of machine M is denoted by
Histories(M) and Configs(M) respectively.

We now have to say when a history η along with exception set E is a
trajectory (η,E) of CA(S, g,B,T). In all conditions below, assume
there is no exception point (fault) near (x, t):
[x − 5B, x + 5B) × (t − 5T , t] ∩ E = ∅.

g(a,b,c,1,1)

a b c time

Simplest case: if (x − B, t), (x, t), (x + B, t), (x, t + T) ∈ R then

η(x, t + T) = g(η(x − B, t), η(x, t), η(x + B, t), 1, 1).

There are corresponding (typically non-deterministic) conditions for
neighbors that are not adjacent and aligned.

g(a,b,c,0,1)	
or	

g(a',b,c,0,1)
a'

b c time

a

Examples:
a Suppose (x, t), (x + B, t), (x, t + T) ∈ R, and there is no left

adjacent-aligned neighbor. Then still
η(x, t + T) = g(r, η(x, t), η(x + B, t), 0, 1) for some r ∈ S, but the
condition does not specify r.

b Suppose that in addition to the above, there is a left
non-adjacent-aligned neighbor B 6 B′ < 2B and a t − T < t′ 6 t
with (x − B′, t′), (x − B′, t′ + T) ∈ R.
Then the output value is based on one of the two possible left
inputs, we do not specify which:

η(x, t + T) = g(r, η(x, t), η(x + B, t), 0, 1), where

r ∈ {η(x − B, t′), η(x − B′, t′ + T)}.

13 Generalized simulation

Definition (Simulation) The pair of mappings (Φ, φ∗)

Φ : Histories(M1) × Noises→ Histories(M2) × Noises,

φ∗ : Configs(M2)→ Configs(M1)

is a simulation of machine M2 by machine M1 if for every
ξ ∈ Configs(M2), for every trajectory of η of M1 with η(·, 0) = φ∗(ξ),
the value (η∗,E∗) = Φ(η,E) is a trajectory of M2.

time

f⇤

F

Example In a block simulation with decoding function φ∗, and
empty exception sets, Φ(η1, ∅) = (η2, ∅) where we obtain η2(·, t) by
decoding η1 at time tU:

η2(·, t) = φ∗
(
η1(·, tU)

)
.

14 Amplifiers

Recall the definition of k-noise. We fix a sequence of scales
ρ1 < ρ2 < · · ·: the details are not important now. If E is a
space-time set then we denoted by E(k) its k-noise.

Our goal is to define a sequence of generalized cellular automata
and simulations:

M1
Φ1
→ M2

Φ2
→ M3

Φ3
→ · · · .

This object will be called an amplifier. If (η1,E(1)) is an initial
history then denote (η(k+1),E(k+1)) = Φk(ηk,E(k)).

The cellular automaton M1 is an ordinary, non-generalized one,
with trajectory (η1,E(1)).

We define the amplifier’s action on the exception set E
independently of η: if (η∗,E∗) = Φk(η,E) then
E∗ = D(E, βρk, ρk+1), hence

(E(k))∗ = E(k+1).

14.1 Error correcting amplifier

The simulation Φk will be associated with a block code

(φk∗, φ
∗
k),

with block size Qk, and a block simulation with work period size Uk.
The cell body size and dwell period size of cellular automaton Mk+1
satisfy Bk+1 = QkBk, Tk+1 = TkUk.
Eventually we want to make implications not only from lower levels to
higher levels, but also from higher levels to lower ones.
Then a simple result (found, say, in a 1 bit field Rider) need not be
decoded.

Definition Suppose that each cellular automaton Mk has a
distinguished field Rider. The amplifier has the error-correction
(trickle-down) property in field Rider if the following holds for each
k.

a For any symbol s, the Rider track of the encoded string φ∗k(s)
only depends on the field s. Rider.

b Let ηk+1(x, t) be live, and let
(x′, t′) = (x + aBk, t + uTk) for some 0 6 a 6 Qk, 0 6 u < Uk.
If (

(x′, t′) + [−5Bk, 5Bk) × (−5Tk, 0]
)
∩ E(k) = ∅

then ηk(x′, t′). Rider = φ∗k(ηk+1(x, t))(a). Rider.

So in the absence of recent k-noise near (x′, t′) its field Rider is
“correct” on level k: as if obtained by decoding into ηk+1. Rider and
encoding again into ηk. Rider.

time

f⇤

F

correct

Lemma (Main) For a wide range of choices of the parameters,
there is an amplifier with the error-correcting property for some field
Rider.

The amplifier is essentially given by just the program of the simulation
g1 of M2 by M1, along with the code φ1.
This program will satisfy the error-correcting property automatically:
the last step of the computation replaces information track of the
colony with the encoding of the new value of the cell represented by it.
The Rider track is a subtrack included in this.

14.2 Initialization

Assume, say, that the field Rider has the same size on all levels,
and in the encoding φ∗k the value Rider is just repeated in the
Rider field of each member cell of the colony.

Assume that we start with, say, η(x, 0). Rider = 1 for all x.

We need to construct an initial configuration with the property

M1
φ1∗
← M2

φ2∗
← M3

φ3∗
← · · ·

Trick: make first and last symbols of the string φ∗k(s) depend only
on the symbol s. Rider.
Then every finite part of the infinite initial configuration is
determined already by a finite number of hierarchy levels.

15 Pulling it together

For space-time point (x, t) let (x0, t0) = (x, t),

xk = x − (x mod Bk),

tk = t − (t mod Tk).

There is a K with tK = 0.

For b ∈ {0, 1}, assume that η(x, 0). Rider = b for all x.

Gk(b) = the event ηk(xk, tk). Rider = b. GK(b) holds.

Fk = the event

((x, t) + [−Tk+1, 0] × [−Bk+1,Bk+1]) ∩ E(k) = ∅.

Then Gk+1(b) ∧ Fk ⇒ Gk(b) by the error correction property.

The Sparsity Bound gives P(
⋂

k Fk) > 1 − O(ε). Assuming that Fk

holds for all k:

GK(b)
FK−1
=⇒ GK−1(b)

FK−2
=⇒ · · ·

F0
=⇒ G0(b),

hence η(x, t). Rider = b, so we derived the desired

P { η(x, t). Rider = b } > 1 − O(ε).

(x1, t1)

(x, t)

(x2, t2)

time

(x3, t3)

F2

F1

G3

G2

16 Some proof details

Need to show that in the absence of (k + 1)-noise, the (k + 1)-cells
decoded from existing colonies in the k-trajectory behave as they
have to in a (k + 1)-trajectory.

Most difficult part is starting from a complete mess. The current
absence of (k + 1)-noise still allows arbitrary noise in the near past.

Stages of recovery (not strictly separated in time) and reasoning about
them:

1 By induction, since we are in a k-trajectory, we can start reasoning
about the history in terms of k-cells, very soon (say, in time 3Tk)
after any big noise.

2 Partial colonies are eliminated via the Decay rule.
3 The Grow rule creates a placeholder for an adjacent big cell when

needed.
4 In full colonies, the program simulates (k + 1)-cells very soon

(say, within time 3Tk+1).
5 In all this, a single k-burst (within the space-time window

considered)
does not change much outside full colonies (due to Purge),
is corrected inside full colonies (due to Purge and Heal).

k-predictable

(k + 1)-predictable

time

Tools

Opening a gap Decay opens a gap, unbridgeable by Heal, unless Heal
succeeds promptly.

Widening gap Such a gap will widen, until reaching a colony
boundary.

Path A live cell that is free (not in the shadow of a burst) starts a
traceback path of predecessors or consistent neighbors. Such a
path will pass around any burst of faults (this uses Purge).

Finding a full colony in the past A traceback path must lead to a full
colony, otherwise it would encounter a widening gap (impossible).

Follow the colony’s development forward to see that every free live
cell belongs to an (extended) colony.

The details are tedious. . .

	Cellular automata
	Computation
	Fault tolerance

	Ergodicity
	Local voting rules
	Application to reliable computation
	Layering
	Finite versions

	Proof of Toom's theorem
	Noise
	Sparsity
	Shrinking damage triangle in noise
	Application to the Toom theorem

	Summary of previous lectures
	Resisting 1-sparse noise
	Codes

	Implementation
	Fields
	The run in space-time
	Correcting Addr and Age
	Simulation result

	Summary of previous lectures
	Hierarchy
	Generalized cellular automata
	Forced simulation
	Conflicts
	Communication

	Generalized simulation
	Amplifiers
	Error-correcting amplifier
	Initialization

	Pulling it together
	Some proof details

