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Introduction

Convergence speed in the law of large numbers

Typical laws of large numbers: higher moment assumptions.
Convergence speed is an important part of the statement and
the proof.

In case of identically distributed, (pairwise) independent
variables, the law of large numbers follows already from the
existence of the expected value. In this case, the question of
convergence speed is more subtle.

One weird-sounding sentence summarizes the main result: the
convergence is effective if and only if the expected value is a
computable number.
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Introduction

Motivation

Vyugin in 1998: example of a countable Markov chain with a
computable distribution, for which the convergence of relative
frequencies to their limit, (guaranteed for example by Birkoff’s
ergodic theorem), is provably non-effective. His Markov chain
is not ergodic.

My original goal and result was that for ergodic Markov chains,
the convergence is effective. By now, this has been proved for
general ergodic dynamical systems by Avigad, Gerhardy,
Towsner and later simpler by Galatolo, Hoyrup, Rojas.

My proof for Markov chains constructivizes a standard proof via
the renewal theorem and the law of large numbers. I hope that
the findings on the convergence speed in the law of large
numbers still hold some interest, and also help illustrating the
main issues in a more elementary setting.
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Introduction

Effective convergence

We will work in constructive metric spaces (which have a
natural definition).

A sequence of functions x1(t), x2(t), . . . between constructive
metric spaces converges effectively (pointwise) to y(t) if there
is an upper semicomputable m(ε, t) (with real values) such that
for all t, all ε > 0 and every n¾ m(ε, t) we have
d(xn(t), y(t))¶ ε. We call m(ε, t) the threshold function.

We could have required m(ε, t) to be computable as well as to
take integer values (but not both).

If m(ε, t) does not depend on t then the convergence is
effectively uniform in t.
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Introduction

It is sometimes more convenient to work with the inverse, inspired
by the notion of “order function” in Schnorr:
A function b(n, t) is a shrinkorder function if: it is upper
semicomputable, with b(n, t)↘ 0 for all t.

Proposition
The sequence x1(t), x2(t), . . . converges effectively to y(t) if and only
if there is a shrinkorder function b(n, t) with d(xn(t), y(t))¶ b(n, t)
for all n, t.

For the case of a sequence of numbers xn, we can even require b(n)
to be computable.
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Introduction

Detachment

Proposition

Let zn ¾ 0, y =
∑

n zn. If zn, y are (uniformly) computable then the
convergence is effective.
More generally, if the convergence is effective relative to (zn), y.

Indeed, b(n) = y −
∑n

i=1 zn is a shrinkorder function.
Detachment: Faster computability of zn and y does not imply faster
convergence to y: these two convergences are detached from each
other. Indeed, given an arbitrary computable shrinkorder function
b(n) with b(0) = 1, the sum of the series zn = b(n− 1)− b(n)
converges as slowly as b(n).
We can make b(n) computable even in linear time without making
it decrease faster.
This remark applies to all main effectiveness results in the talk.
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Introduction

Computable distributions

There are many, equivalent, ways to define computability of
probability distributions. Our results are sufficiently interesting
even if one confines interest to integer-valued random variables. In
this case, the distribution P is computable if and only if P(x) is
computable for all integers x .

Proposition
There exists a computable distribution over the nonnegative integers,
with a non-computable expected value.

Proof. Let αi = 0 or 2−k for some k, with noncomputable
∑

i αi < 1. Construct p(n) gradually: If αi = 0 then add 2−i to
p(0). If αi = 2−k then add 2−i to p(2i−k).
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Law of large numbers

Effective stochastic convergence

A sequence of random variables X1, X2, . . . with joint probability
distribution P effectively converges to Y in probability, or
stochastically, if there is an upper semicomputable function m(δ,ε)
such that n¾ m(δ,ε) implies P[ |Xn− Y |> δ ]< ε.
We say that Xn→ Y almost surely, effectively, if the last inequality
is replaced with P[ supn¾m(δ,ε) |Xn− Y |> δ ]< ε.

Proposition

The sequence Xn converges to Y in probability effectively if and only if
there are shrinkorder functions b1(n), b2(n) with the property

P[ |Xn− Y |> b1(n) ]¶ b2(n)

for all n. Similar characterization holds for almost sure convergence.

Of course, we could make b1(n) = b2(n).
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Law of large numbers

The easy direction

It is not surprising that an effective law of large numbers allows to
compute the expected value:

Proposition
Let X1, X2, . . . be a sequence of identically distributed random
variables with distribution P and expected value µ. If 1

n

∑n
i=1 X i

converges to µ effectively in probability, then µ is computable from P.

Corollary
If µ is not computable then even if the distribution P is computable,
the convergence to µ in the weak law of large numbers is not effective.

We have seen a computable distribution P over the nonnegative
integers, with a non-computable expected value.
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Law of large numbers

Main result

Theorem (Constructive strong law)

Let X1, X2, . . . be a sequence of identically distributed, pairwise
independent random variables with distribution P. Let
E|X |= µ <∞. Let Sn =

∑n
i=1 X i . The average Sn/n converges to EX

effectively in (P,µ).

The earlier remark on detachment applies to this result, too: the
speed of computability of µ does not influence directly the speed of
convergence in the law of large numbers.
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Law of large numbers

Proof sketch

Straightforward constructivization of a textbook proof. The
truncated variables

Yn = Xn1[ |Xn|<n ].

have variances, and even
∑

n>0 VarYn/n
2 <∞ (due to identical

distribution), effectively. Prove the strong law for Yn first.
Bound the difference Xn− Yn using

P[ (∃ k ¾ n) Yk 6= Xk ]¶
∑

k¾n

P[ |Xk|¾ k ] =
∑

k¾n

P[ |X1|¾ k ].

The latter sum is a tail of
∑

k¾0 P[ |X1|¾ k ], related to the tails of

∫ ∞

0

P
�

|X1|¾ t
�

d t = E|X1|.
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Law of large numbers

Renewal theory

Let T0, T1, T2, . . . be integer random variables in [0,∞], where T0
has distribution Q over Z∩ [0,∞), and for i > 0 the values
Ti − Ti−1 > 0 are identically distributed with distribution R and
E(Ti − Ti−1) = µ <∞, and independent (also from T0). Define

Xm = 1 if (∃ i) m= Ti , and 0 otherwise .

X0, X1, . . . is called a (positive recurrent) delayed renewal
sequence.

Theorem
1
n

∑n
i=1 X i converges to 1/µ almost surely, effectively in (Q, R,µ).

The proof is rather routine from the law of large numbers.
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Markov chains

Markov chains

Let T n(x , y) = P
�

Xk+n = y | Xk = x
�

be the n-step transition
matrix of a Markov chain X0, X1, . . . with a countable state
space.

Let P x be the conditional distribution when starting from x
(this is determined by T (x , y)).

The chain is irreducible if all states are mutually accessible:

πx ,y = P x[ (∃n) Xn = y | X0 = x ]> 0.

The chain is aperiodic if the smallest period of the return time
distribution, when starting from any state, is 1.

If the expected return time mx of state x is finite then x is
called positive recurrent.
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Markov chains

Theorem
Assume that the chain with transition matrix T is irreducible,
aperiodic and positive recurrent. Then ( px = 1/mx : x ∈ X ) is a
probability distribution, and

lim
k→∞

T k(x , y) = py .

Computability of T (x , y) does not imply the computability of the
equilibrium distribution px , as the following example shows. Let
T (0, i) = 2−i . For i > 0 let T (i, 0) = αi , T (i, i) = 1−αi for some
0< αi < 1 to be determined. We have the expected return time

m0 =
∑

i>0

2−i/αi .

Choose computable αi while still making m0 uncomputable,
similarly to the example of non-computable expected value.

Péter GácsBoston University () Constructive law New Orleans 2011 14 / 15



Markov chains

The sequence Yn that is 1 if Xn = y and 0 otherwise, is a delayed
renewal sequence. By the law of large numbers for these,
∑n

i=1 Yn/n converges to py = 1/my effectively almost surely
relative to (T (·, ·), py). From this, it is routine to conclude:

Theorem (Computable ergodic theorem)
Let the stationary countable Markov chain X0, X1, X2, . . . be
irreducible, aperiodic and positive recurrent, with distribution P (this
includes both T (x , y) and px). Then for an arbitrary bounded
computable function f ,

1

n

n
∑

i=1

f (Xn)→ E f (X0)

almost surely, effectively in P.
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