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EXACT EXPRESSIONS FOR SOME RANDOMNESS TESTS

by PETER G.Acsin Rochester, New York (U.S.A.)

o. Introduction

The notion of randomness which v. MISESattempted to formalise first has received
a long time only moderate attention in contemporary probability theory. It was hard
to find a convincing distinction between random and nonrandom elements of a prob­
ability space and, for most probabilists, it has been up to now not clear how much
would one be happier finding it. Though for a statistician nothing seems ,to be more
interesting than the question about randomness. Given an element w of the event
space Q as the outcome of an experiment, and a distribution P he wants to find out
how justified it is to suppose that the underlying distribution to the experiment was
P; i.e. that w is random w.r.t. P. However, his model is slightly different because in
the typica,l cases he has an access to a large number of independently repeated experi­
ments pn = P X P X . . • x P and what he wishes to decide on the basis of
w= (WI' ... , wn) is only the question about P, the product structure taken for granted.
The decisions can then be made on the basis of central limit theorems, and it is, roughly
said, the investigation of the conditions of such decisions to which most of mathe­
matical statistics is devoted.

There are some highly interesting statistical situations where the product-space
framework is not applicable: e,g. prediction problems or testing of pseudo-random
sequences.

After its revival in the sixties by the work of KOLMOGOROVand MARTIN-LoF(con­
tinued by LEVIN, CHAITIN,SCHNORR)the modern theory of randomness approaches
now to a satisfiable form and its solutions to these problems are of convincing simplicity
and generality.

Unfortunately, to understand them one has to learn some computability theory, and
if later one tries to apply them one notes with some disappointment the large gap
between theoretical and practical computability.

The present paper does not bridge this gap, either. It gives some more exact relations
between complexity and randomness and one can only hope that when the theory
using general computability will be more perfect then the chances to find its practical
extension increase.

In Section 1 we give the necessary definitions, in Section 2 some known results on
MARTIN-Lcm'stests. In Section 3 apriori probability and its known relation to random­
ness is described. Section 4 is devoted to various definitions of complexity and their
estimates. In Section 5 we give some exact expressions for MARTIN-Lcm'stest in terms
of different types of complexities. The possibility of such expressions shows once again
the technical flexibility of the complexity apparatus. Finally, in Section 6, we follow
up the connections of LEVIN's uniform tests to the previous theory and introduce a
somewhat modified uniform test and a simple one having the conservation property.
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1. Basic definitions

Nota tions. All logarithms are to the base 2. N is the set of natural numbers,
Nk = {O,1, ... , k - I}. Q is the set of rational numbers, R the set -of real numbers,
R+ = Rr\(O, co), R = Rv{co}, R+ = R+v{c:o}. N~ = UN~v{A}, where A is the
so-called empty word. We fix a recursive one-to-one correspondence ,,: N~ -> N with
,,(x) ~ l(x), where l(x) is the length of the word x. Q = N; = the set of infinite binary
sequences. For x, y E N~, xy is the concatenation of x and y, x c Y iff 3z. xz = y. For
WE N2', W= WlW2, •• (Wi E N2) and wn = Wl •.. Ww

For two nonnegative functions f, g let f ;5 g mean that a c > 0 exists with cf ~ g.
f ~ g iff f ;5 g andg ;5 f, f ~ g iff exp(f) ;5 exp(g), j >-< g iff f -< g and g ~ f·

We consider N2' with its usual topology determined by the basis {xN2' I X.E N~},
R with the (usual) topology determined by {h, r2) Irl, r2 E Q, rl < r2}.

Let vii be the set of all probability measures over Q, with its (weak) topology deter­
mined by the subbasis of sets of the form {,u E vii I r1 < ,u(x) < r2}. Here for x E N~,
,u(x) = ,u(xN;), and r1, r2 E Q.

Sometimes N, N~ will also be considered as discrete topological spaces (essentially
equivalent by the correspondence ,,). In any of these (locally compact) topological
spaces X a basis {Ui liE N} is given with a fixed enumeration. New spaces can be
constructed by products.

Definition. An element of the space X will be called computable if {i I x E Ud is
enumerable. An open set G c X is called constructively open if {i I Vi cG} is enumer­
able. F c X is called constructively closed if Fe, the complement of F, is constructively
open. A function f: X -> R is called semicomputable (from below) if {(r, x) IrE R,

x EX, f(x) > r} is constructively open. f is called computable if f and - fare semi­
computable. Especially, a measure is called computable iff it is computable as an
element of vii. It is easy to see that this is equivalent to the condition that ,u: N~ --+ R

be computable as a function.

2. Martin·LOr's tests

MARTIN-LoFdeclared for nonrandom those elements W of Q which belong to some
constructively definable set of measure O.Since rather different approaches to random­
ness lead to an equivalent definition, there is a wide agreement that .MARTIN-LoF'S
random elements are convenient to be considered as "the" random ones. Every ele­
ment of positive probability (in discrete spaces typically every element) is random,
and one can only speak of their degree of nonrandomness (deficiency of randomness).
Different "tests" assign different degrees of nonrandomness. It is hard to vote for
one test as the most natural but most proposed tests are asymptotically equal to
MARTIN-LoF'S(in the case of computable measures). .

Definition ([1]). Let ,u be a computable measure. A Martin-Lortest (ML-test) is

a semicomputable function d: N2' --+ R with Vk.,u{w I d(w) > k} < 2-k•

Theorem 2.1 (MARTIN-LoF).Among the MDtests there is a maximal one in the sense
of the ordering ::S.

Definition. We fix a maximal ML-test once for all for each,u and call it dM(w l,u),
a universal ML-test. A sequence w will be called random iff dM(w I ,uT < co.
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The notion of a random sequence is more invariant than ML-tests. One can imagine
rather different reasonable ways of measuring nonrandomnesses present in sequences
but the question which sequences are random at all will be answered equivalently by
most of them. We generalize now the notion of a test.

Definition. Given a computable measure fh, a semicomputabll} function d: Q --+ R
is a test if !im fh(w Id(w) > m) = 0 recursively, i.e. a recursive function m(k) exists

m

with fh(w Id(w) > m(k)) < 2-k• For a test d we have

{w I d(w) = <Xl} ~ {w I du(w) = oo}. (2.1)

Definition. In case of equality in (2.1) the test is called universal. (Every universal
test d giving in the folIo-wing is asymptotically equal to du, i.e. lim dM(w)jd(w) = 1
holds.) d ...• 00

3. Apriori probability

Apriori probability ",ill not be itself a measure, rather the lower bound of the set
of measures satisfying a r.e. set of simple conditions, a semimeasure. Our definition
of a semimeasure is here more elementary than the final one given in [llJ-and used
in Section 6.

Definition ([2J). A semimeasure over Q is a function cp: N~ ~ R+ with
cp(x) ~ cp(x 0) + cp(x 1), cp(A) ~ 1.

The set of semimeasures will be denoted by Y. Y can be given the same topology
as ..d thus ..d being a subspace of Y. It is easy to prove that for any semimeasure cp,

cp(x) = inf {fh(x) I fh ~ cp,fh E ..d}, and that the lower bound of any set of measures
is a semimeasure.

A semimeasure is called semicomputable if it is semicomputable as a function from
Nt to R+. It is not hard 'to see that cp is semicomputable iff the set {fh E..d I fh ~ cp}
is constructively closed in ..d. Semimeasures over the discrete spaces N, Nt will also
be considered. (A semimeasure over Nis given by a function cp: N --+ R+; cp must
satisfy the condition I:xCP(x) ~ 1.) Semimeasures over N~ correspond to those over N
by"'.

Theorem 3.1 (LEVIN[2J). In the set of all semicomputable semimeasures there is a

maximal element with respect to the relation ;;5.

Let us call a fixed ~aximal semimeasure M = MQ the apriori probability over () .
The apriori probabilities over N, N~ will be denoted by MN, MN2• (writing freely
MN(x) for MN(",(x)); we do not write out the subscript if no misunderstanding may
arise). LEVIN'Sfollowing theorem establishes the role of apriori probability in determin­
ing randomness.

Theorem 3.2 (LEVIN[3J, see also SCHNORR[4J for a special case of a related result
of [3]). ds(w I fh) = sUPn log MQ(wn) - log fh(wn) is a universal test tor any computrtble

measure fh.
Remarks 1. log (Mg(wn)ffh(wn)) is bounded from below for every fixed comput­

able fh, so w is random w.r. to fh iff fh(wn) ~ MQ(wn).

2. ds is defined also for noncomputable fh and for all fh ~ MQ one has ds{w I fh) ~ O.

In other words, if we measure nonrandomness by ds, we find that" all sequences are
random with respect to the apriori probability". This statement was proved to be
true also for any reasonable "uniform tests" (see Section 6).

25*
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4. Complexity

The numbers

HN(x) = -logMN(x), . HrAx) == -log.ll{Q(x)

can by many reasons be considered as a measure of the complexity of the finite se­
quence x.

Definition ([5]). Kolmogorov's complexity of the sequence x given y with respect
to a partial recursive function A: N: x N~ ~ N: is defined as

KA(x I y) = min {l(p) I A(p, y) = x}.

Put KA(x) = KA(x IA).
Kolmogorov proved that there is a p.r. function U v"ith Ku;;; KA for any other

p.r. A. Fixing such a U, we define K as Ku. K(x I y) is called Kolmogorov's complexity
of x given y. A slight modification in KOLMOGOROV'sdefinition of complexity proved
very useful in the applications.

Definition ([6-8, 12]). A set E c N: is said to be prefix-free if

Vx, y. x, Y E E -+ x $ y.

If we confine us to the set of p.r. functions ff = {A I Vy.{p I A(p, y) is defined} is
prefix-free} then in this class a function T can be found with KT ;;; KA for all A E.f7.

Definition. KT(x I y) is called the complexity of x given y.

Notation. We will sometimes use T' instead of T defined by

T'(p, x) = y iff 3q ~ p. T(q, x) = y.

Fixing such a T we have
Theorem 4.1 (LEVIN [61). HN(x)::=:.KT(x).

We define here M.Q(q:: I y) only for y as an element of the discrete space N:' For
th~s we take a maximal (w.r. to ;$) one among the conditional semicomputable semi­
measures, i.e. semicomputable functions rp: N~ x N: ~ R+, where rp(x I y) is for each
y a semimeasure over Q.

The three kinds of complexity defined before are numerically close to each other.
Indeed, it is easy to see (and well-known) that

Theorem 4.2.

(a) K -< HN -< K + 2 . log K, (b) HQ;;; HN,

(0) for any prefix-free r.e. set E ~ Nt 3c. Vx EE, YEN:. HN(x I y) ~ H.Q(x I y) + c.

By u, K and HN are defined on N as well as on N: and their order of magnitude
can be estimated. There is no nontrivial p.r. lower estimate to them (see [2]). As to
the upper estimates, the least monotone ones can be found. For any function f: N ~ N
its least monotone upper bound is f*(n) = maxk;:;;n f(k).

Theorem 4.3 ([5, 7, 9]).

K*(n) ::=:. log n, HN(n) ::=:. log n + H([log n]).

Note that H is not computable, only semioomputable from above. It gives rise to
a number of somewhat weaker computable upper estimates like

log n + log log n + 2 log log log n.
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Theorem 4.4 (LEVIN).K(x) x min {i I HN(x , i) ~ i}, K(x) X HN(x I K(x».

Remark. K(x I y) is similarly expressible.

Proof. HN(x I K(x» ~ K(x) is obvious from the definition of these quantities. Hav­
ing an i with HN(x I i) ~ i we have K(x) ~ i. To show this, let us define the function:

A(p) ~ T'(p, Z(p» (see (4.0».

For any i, p, x with l(p) ~ i, T'(p, i) = x we have A(p Oi-l(p» = x. Hence

K(x) ~ KA(x) ~ i.

o. Tests expressed by complexities

Though by Theorem 3.2 we have a most satisfiable characterization of randomness
by the behavior of the apriori probability (whose logarithm is a sort of complexity),
two questions are of some technical interest:
a) to express MA.RTIN-LoF'stest by SDmecomplexity,
b) to see how the other complexities are suitable to express randomness.

For our characterisation of MARTIN-LoF'stest we introduce an auxiliary complexity.

Definition. !I(x; k) = min {i I H(x I k - i) ~ i}.

This definition has sense for both Hn and HN. !I(x; k I y) can be defined similarly,
with y everywhere in the condition. Then we have by Theorem 4.4:

!IN(x; k I k) xK(x I k).

Thus 1IN can be considered as a generalization of K.
Remarks.

1. lIn-<: !IN' This follows easily from the relation Hn(x' k - i) ~ HN(x I k - i).
2. 1I is obviously semicomputable from above.
3. Similarly to (4.1) we have

!I(x; k) xH(x' k -lI(x; k». (5.2)

As we have seen in Theorem 3.2 the testing of the randomness of w w.r. to fl naturally
involves a comparison of -log fl(wn) with some complexity of wn.

Notation. l/l(wn) = [-log fl(wn)].

Theorem 5.1. For a fixed computable measure fl,

dM(w / fl) x sup" l/l(wn) - !In(wn; l/l(wn» x sUPn l/l(wn) - lIN(wn; l/l(wn».

Proof. Let us denote the expressions in Theorem 5.1 by dML and dMC respectively.
By the remark following the definition of 1I we have dMC ::SdJVL' We have to show
dML ~ dM and dM :S dMC'

dML ~ dM will be proved if we show that dML is semicomputable (this is clear from
the definition) and that

fl{w , dML(W I fl) > m} ;:5 2-m.

Now by (5.2) we have with a c > 0

{w I djJ,g(w I fl) = m} ~ {w I :In.l/l(wn) - Hn(wn I m) ~ m - c}

= {w' :In. Mn(wn I m)/fl(wn) ~ 2m-c}.
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The following simple lemma holds for any semimeasure cp and measure p,.

Lemma 5.1. p,{w I 3n. cp(wn)/p,(wn) > iX} < iX-I.

Proof. Put n(w) the first n (if it exists) with cp(wn)/p,(wn) > iX. The set of finite
sequences

A = {x 1 3w. x = wn(W)}

has the prefix property, hence L'xeACP(X);£ 1 by the definition of semimeasures. On
the other hand, for x E A we have p,(x) ;£ cp(x). iX-I, hence'

,u{w I 3n. cp(wn)/,u(wn) > iX} = LxeA,u(X) ;£ iX-I.

Applying the lemma to the semimeasures 1VIQ(wn I m) we get

,u{w 1 dML(W I ,u) = m} ;£ 2-m+c•

Now we prove dM ~ dMC' By the semicomputability of dM there is a recursive
sequence {(mt. Xt)1teN of elements of N x N~ with

{(mt, Xt) I tEN} = {(m, x) I Yw E xN2'. d.'vI(WI ,u) > m}.

Let t(m, w) be the first tEN (if it exists) with m;£ mt and WE XtN2'. The
set U = {(m, x) 13w. x = xt(m,w)} is easily seen to be recursively enumerable, Um =
= {x I (m, x) E U} is a prefix set of finite sequences, UmN2' ~ {w I dML(W l,u) > m}.

Hence Lxeum,u(x) ';£ 2-m. But then

{ ,u(x) . 2m for (m, x) E Ucp(x I m) = 0 otherwise'

is a "conditional semicomputable semimeasure" over N~,and we have MN(x I,m) ~

~ cp(x, m).

Hence for all w with dM(w I ,u) > m there exist an i.e. n( = l(xt(m,(J))) such that
HN(wn I m) ~ lJl(wn) - m; fIN(wn; lJl(wn)) ~ lJl(wn) - m

(take i = lJl(wn) - m in the definition of II). 0
We can deduce from this theorem the first 4:nown exact relation between tests and

complexity established in [10]. Denote by nn the equidistribution over N2. A universal
ML-test dlvAx I nn) can be defined as a greatest (w.r. to ~) semicomputable (in (x, n))

function d(x I nn) with Yn,k. nn{x I d(x I nn) ~ k} ;£ 2-k•

Corollary 5.1 (see [10]). dM(x I nn) ~ n - K(x In).

Proof. The proof of Theorem 5.1 is analogous (even simpler) over the space N:
instead of £2, and even if we let n as parameter everywhere in the equations. We thus
have for any x E N2

dM(x I nn) ~ -log nn(x) - fIN(wn; [-log nn(x)] In)

= n - fIN(x; n I n) ~ n - K(x In),

by (5.1). 0
From the first part of Theorem 5.1 one can reprove Theorem 3.2. We have by defini­

tion ds(w I ,u) ~ sup" - log ,u(wn) - HQ(wn).

Corollary 5.2. ds is asymptotically equal to dM•

Proof. Let H be HN or HQ. We use the obvious inequality

H(x) -< H(x I j) + HN(j) -< H(x I j) + 2· logz j.
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Now put k = [-log .u(wn)], Ll = k - lI(wn; k). We have by (5.2)
k - H(wn) -< k - H(wn I Ll) x k - lI(wn; k),

hence ds -< dM. But k - lI(wn; k) x k - H(wn ILl) :S k - H(wn) + 2 'log2Ll
hence Ll - 2 . log2Ll ~ k - H(wn), dM - 2 . log2dM -< ds ~ dM, i.e. the tests ds and
dM are asymptotically equal. 0

Since the proof does not make any difference between Hn and HN, we have also
proved the following

Corollary 5.3. dc(w l.u):= SUPnl.u(wn) - HN(wn) is a universal test, asymptotically

equal to dM(w I .u).

In the special case of the equidistribution this test coincides with the one proposed
by CHAITIN[7J and proved to be universal by SCHNORR.

The test dc(w I .u) has some other meaningful characterisations.

Put tc(w l.u) = 2da(wl!t) = SUPnMN(wn)!.u(wn).

Theorem 5.2. For any fixed computable measure .u, tc(w l.u) is -:5-maximal among

the semicomputable functions t(w) with property J t(w) .u(dw) ;;; 1.

Remark. We must fix .u, because the constants in -:5 are depending on it.
gx(w)

Proof. We have SUpnMN(Wn)!.u(wn) ;;;LnMN(wn)!.u(wn) =LXEN2·MN(x)· J (w) (dwwhere rJx .u )

{I for x f;; wgx(w) = 0 other,rise.
Hence

J dc(w l.u) .u(dw) ;;; LxMN(x) ;;; 1.
It remains to show that for any semicomputable function t(w) with J t(w) .u(dw) ;;; 1
we have t(w) -:5 tc(w I .u). For t(w) one always has recursive sequences Xi' ki with

SUPi2lrirJXi;:;:;Li 2lrirJXi;:;:;t.

Hence2Iri.u(xi) -:5 MN(i), 2lri -:5 MN(i)!.u(xi) because of Li2Iri.u(Xi);;; 1. We have
MN(i) MN(x)

t(w) -:5 sUPi-(-)-' rJx,(w) -:5 supx (). gx(w) = tc(w l.u)· 0.u Xi .u X

We can use for the expression of the main term in MARTIN-LOF'Stests KOLMOGOROV's
complexity too, as shown by the following theorem.

Theorem 5.3. Put Ll(wn I .u) = lJL(wn) - K(wn I n, lJL(wn)). Then

dM(w l.u) x sUPnLl(wn l.u) -1I(n, lJL(wn); Ll(wn l.u))·

As in the Corollary of Theorem 5.1, we get a simpler universal test espressed by K
,if we do not require it being a ML-test.

Corollary 5.4. dK(w I .u) := sUPnLl(wn I .u) - H(n, lJL(wn)) is a universal test, asym­
ptotically equal to dML.

Especially for the Lebesgue measure A we have the test:
dK(w I A) = sUPn(n - K(wn I n) - H(n)).

Remark. This corollary uses LEVIN'Sremark in 1972 on the authors unpublished
work. '
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Proof of Theorem 5.3. Let us first prove that the expression dMK in the theorem
defines a test. Its semicomputability is clear from the definition. We have to prove
,u{w I dMK(W l,u) > m} ~ 2-m. Like in the proof of Theorem 5.1 we have with somee:

{w 1 dMK(W I ,u) = m} ~ {w I 3n. Ll(wn I p) - H(n, lfL(Wn) 1 m) ~ m - e}

~ U {w IlfL(Wn) = k, k - K(wn 1n, k) - H(n, k I m) ~ rn - e}.
Now n,k

,u{w IlfL(Wn) = k, K(wn In, k) ~ k - m - H(n, k I m) + e}

~ 2-k # {x E N~ I K(x In, k) ~ k - m - H(n, k I m) + e} ~ 2-m+cM(n, k 1 m)

by well-known properties of KOLMOGOROV'Scomplexity. Hence

,u{w I dMK(W l-,u) = m} ~ .En,~-m+cM(n, k I m) ~ 2-'-m+c.

This proves dMK ~ dM. The proof of dM::s dMK is based on the following estimate
which readily follows from the definition of KOLMOGOROV'Scomplexity. For any
x E N~,w E xN2', n ~ l(x)

K(wn I n, x, lfL(Wn)) :$ lp(wn) + log ,u(x). (5.3)

Let us make use now of the enumerability of the set U defined in the proof of The­
orem 5.1. We define the conditional semicomputable semimeasure rp over N2 by

J 2m-l,u(u-l(n)) if (m, u-1(n)) E U
rp(n, k 1 m) = and 2-k-1 < p(u-1(n)) < 2-k+l

10 otherwise.

If dM(w I ,u) > m then for some x E U m with n = u(x), k = lfL(Wn) we have by (5.3)
K(wn 1 n, k) ~ k + log rp(n, k I m) - m -< k - H(n, k 1 m) - m, _

H(n, k I m) ~ Ll(wn I ,u) - m.

E(n, k; Ll(wn I ,u)) ~ Ll(wn I ,u) - m follows now by the trick used at the end of the
proof of Theorem 5.1. 0
6. Uniform tests

In the previous sections we spoke about tests d(w l,u) depending both on wand ,u,

but ,u was always a fixed computable measure and d was required to have certain
properties only with respect to w. The restriction to computable measures would seem
to many probabilists injustified since e.g. having the outcome of an experiment it
would not be natural to look for a distribution fitting it only among the computable
ones. LEVINdefined a general uniform test dL(w l,u) in [11] which is a universal test
for each fixed computable measure ,u. Let us note that any of the expressions of tests
by complexities given in the previous section could be taken as the definition of a
uniform test. They are all semicomputable in (w, ,u), have some normedness property
for each fixed ,u, and are in some sense equivalent as long as only computable measures
are concerned. But this is not obvious for noncomputable ,u, and, in fact, LEVIN'Stest
dL(w I ,u) discovers more nonrandom sequences than, say, ds(w I ,u). We do not want
to repeat all the definitions from [11] necessary to a self-contained definition of the
notion of a uniform test (L-test). Note that in [11] a semimeasure is defined as a con­
cave functional on C(Q) and in this section we adopt this definition, differing from
that of Section 2. A semimeasure in the old sense is a restriction of a semimeasure in
the new sense.
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LEVIN'Smaximal (in the sense of ~) uniform test dL as defined in [II] has the
properties desirabl: of any test (we state them in terms of tL = exp dL): '

(i) t(w I fh) is semicomputable in (w, fl); (ii) J t(w I fl) fh(dw) ~ 1 for ~ll fh·

These properties imply that for any computable distribution fh there exists a constant
ell < 00 with dL(w I fl) ~ dc(w / fl) + cll' Here de is the test defined in Corollary 3 of
Theorem 5.1. On the other hand, it is easy to show that the test

q;(gx)

dc(q; I 'lfJ) = sUPxeN.*MN(x)-( -)'lfJ gx

for semimeasures q;, 'lfJ (0/0 = 0 by definition) is a uniform L-test. Hence one has
Theorem 6.1. For any computable measure fl there exists a constant cll with

IdL(w I fl) - dc(w I fl)/ ~ cll'

Now I introduce a somewhat modified universal uniform test. Its definition is more
explicit and semimeasures do not enter into it. Then I prove that this test also has
the properties stated for LEVIN'Stests in [II]. .

Definition. The function t(w I fh) is a P-test if (i), (ii) are satisfied and further
(iii), (iv) holds.

(iii) For any c > 0, w, flc > v => t(w I fl) < ct(w I v).

In other words, l/t(w I fl) can be extended to the set of all finite (unnormed) measures
to a homogenuous, monotone function of fl.
(iv) l/t(w I fl) is concave.

Remark. All L-tests are P-tests when restricted to (w, fl). The concavity require­
ment seems to be unmotivated but a consequence of it is acceptable as a general
feature of tests: t(w I fl) ~ C, t(w I v) ~ c implies t(w I tfl + tv) ~ c.

For a P-test we define t(q; I fl) = q;(t(· I fl)), t(q; 1'lfJ)= SUP/L6;'!'t(q; I fl). (q;, 'lfJ are
semimeasures, fl a measure.) Note that the integral q;(f) of a lower semicontinuous
function f by a semimeasure q; has a natural definition. Then we have

Theorem 6.2. There exists a P-test tp(w I fl) maximal with respect to ;S.
The proof of this theorem does not differ from the proof of any other theorem of

this type, so it can readily be omitted.
The relation between tL and tp is clear for measures: one has tL(fll v) ~ tp(fll v).

The apriori probability Mg will retain its remarkable property for tp:

Theorem 6.3. tp(q; I MQ) is bounded trom above by a universal constant c < w.
This theorem is proved analogously to Theorem 2 of [II].
Finally, we show that tp also has the conservation property. A stochastic operator

is a monotone linear operator A: C(Q) ~ C(Q) with A(l) = 1. Any stochastic operator,
defined originally only on continuous functions, can easily be extended to all upper
semicontinuous functions f: Q ~ R+.

Theorem 6.4. For any computable (see [II]) stochastic operator A one has

tp( q;A I 'lfJA) ;S tp( q; I 'lfJ) •

Proof. Let us define for any wand measure fl
tA(w I fl) = (Atp(' I p,A)) (w).

It is not very hard to see that tA is a P-test. (To prove the concavity requires some'
computation.) Hence we have tA ;S tp. Applying q; to this inequality we obtain

tp(q;AI flA) = tA(q; I fl) ;S tp(q; I fl)·
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Now we are finished if we can show that tp(<pA l'lpA) = tA(<p I 'lp). We have~
tp(<pA l'lpA) = sUPp;;;!pA tp(<pA Ip), tA(<p l'lp) = sUPP;;;!p tp(<pA I flA).

By (ni) it is enough to show therefore that fl ~ 'lpA implies the existence of a v ~ 'lp
with fl ~ vA. Put Vf! = flf for all f! of the form Af. We have then fl = vA. The defini­
tion of v is unambiguous because Ah = 0 ~ flh ~ 'lpAh = O. Hence fl ~ 0 on KerA,

which implies fl = 0 on KerA, i.e. flf depends only on Af. v is positive (because of
v ~ 'lp) and linear on ImA, v(l) = 1. Hence it is also continuous and it can be extended
continuously to a measure onD while retaining the properties y ~ 'lp, ,u = vA. 0

1
Remark. tL(<p 1 'lp) also has the property that .( I ) is concave in 'lp for anytL <p 'lp

1
semimeasure <po As to tp, we can only assert that (I) is concave for any meas-
ure p. tp fl 'lp ./

Finally we give a P-test (not necessarily maximal) which also has the conservation
property and can be defined explicitly by a formula: Let {ti}ieN be a recursive enumera­
tion of all positive continuous functions f i: Q -4 Q assuming only a finite set of values.
Let fi > 2-i. Then the test is defined as

. /i(w)

to(w I fl) = EiMN(t) . flUi) •

The proof of the conservation property is straightforward.
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