PACKING OF CONVEX SETS IN THE PLANE WITH A GREAT NUMBER OF NEIGHBOURS

Bу

P. GÁCS (Budapest)

Let A be a convex domain in the plane. The Newton number n(A) of A is defined as the greatest number of domains congruent with A which can be packed around A so as to touch A. We call a packing of domains congruent to A a maximal packing [1, 2] if each domain has n(A) neighbours in the packing, i.e. denoting the packing with \mathcal{A} for each $B \in \mathcal{A}$ there are exactly n(A) elements of \mathcal{A} touching B. L. FEJES TOTH [2] conjectured that there is a universal constant K such that in each maximal packing the number of neighbours n is less than K. Here we prove this conjecture, making use of a theorem which seems to be of interest in itself. Our method gives the very crude estimate $K < 10^8$, altough nobody knows examples with n > 21.

In Section 2 we give an upper bound for the number of convex domains which can be packed around a convex domain in terms of the lower bound of the widths and the upper bound of the diameteres of the domains.

1

Theorem 1 intuitively says that if we have a packing of convex domains of not very different size and shape in which every domain has a great number of neighbours n, then the packing contains a "star" consisting of approximately n domains with a common boundary point.

THEOREM 1. Let \mathcal{A} be a packing of convex domains in the plane, $C_1, C_2 > 0$ positive constants for which

(i) every domain has at least n neighbours,

(ii) for every $A \in \mathcal{A}$ the area of A is at least C_1n ,

(iii) for every $A \in \mathcal{A}$ the diameter of A is at most C_2n .

Then there is a C > 0 and an n_0 depending only on C_1 , C_2 , such that for $n > n_0$ there is a point in the plane common to at least $n - C\sqrt{n}$ members of \mathcal{A} .

Before proving Theorem 1 we show that it implies the conjecture of Fejes Tóth.

THEOREM 2. The conjecture of Fejes Tóth is true.

PROOF. Let \mathcal{A} be a maximal packing. We can choose the unit of measure so that the area of the elements of \mathcal{A} (being congruent in this case) should be equal

to the Newton number n = n(A) of an element A of \mathcal{A} . Let us denote the diameter of A by d and the width of A by w. Then the area of A is at least dw/2:

 $dw/2 \leq n$.

On the other hand, it is obvious that the Newton number n is not less than 2d/w:

 $2d/w \leq n$.

Multiplying these inequalities we obtain $d \leq n$. Thus \mathscr{A} satisfies the conditions of Theorem 1 with $C_1 = C_2 = 1$. Hence there is a C and an n_0 such that for every $n > n_0$ there exists a point in which at least $n - C\sqrt{n}$ domains meet. Thus A must have a vertex with an angle $\alpha \leq \frac{2\pi}{n - C\sqrt{n}}$. But the Newton number of a domain having an angle α is not less than $\left[\frac{2\pi}{\alpha}\right] + \left[\frac{\pi}{\alpha}\right] - 1$, because at the respective vertex $\left[\frac{2\pi}{\alpha}\right] - 1$ congruent domains can be placed and at the point "opposite" to this vertex $\left[\frac{\pi}{\alpha}\right]$ further ones. (Fig. 1.)

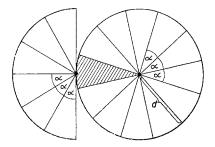


Fig. 1

Hence

$$n \ge \frac{3}{2}(n - C\sqrt{n}) - 2$$
 i.e. $\sqrt{n} \le 3C + \frac{4}{\sqrt{n}}$

This completes the proof of Theorem 2.

NOTE. The idea of considering the angle α is due to TIBOR ELEKES.

In what follows we denote the number of elements of a set X by |X|. In order to prove Theorem 1 we first prove the simple combinatorial

LEMMA 1. Let both \mathfrak{D} and \mathfrak{G} be classes of domains (they can have common elements), D, E, γ constants, and $n \geq 1$ an integer such that

(1)
$$|\mathfrak{D}| \ge Dn, \quad 2 \le |\mathfrak{E}| \le En$$

Acta Mathematica Academiae Scientiarum Hungaricae 23, 1972

and for each $A \in \mathfrak{D}$ there are at least $\gamma n \geq 2$ elements of \mathscr{E} touching A. Then there exist two different elements B_1 , B_2 of \mathscr{E} and a subclass \mathscr{F} of \mathfrak{D} such that B_1 and B_2 touch every element of \mathscr{F} and

(2)
$$|\mathfrak{F}| \ge \frac{\gamma^2 D}{2E^2} n.$$

PROOF. Let us consider the following class of pairs of domains: $\mathscr{D} = \{(A, B) : A \in \mathfrak{D}, B \in \mathfrak{S}, B \text{ touches } A\}$. Then $|\mathscr{D}| \ge D\gamma n^2$, but since there are only En different B's, there exist a domain $B_1 \in \mathfrak{S}$ and a subset \mathscr{F}_1 of \mathfrak{D} such that B_1 touches every element of \mathscr{F}_1 and $|\mathscr{F}_1| \ge \frac{D\gamma}{E}n$. Putting $\mathfrak{D}_1 = \mathscr{F}_1$, $\mathscr{E}_1 = \mathscr{E} - \{B_1\}$, $D_1 = \frac{D\gamma}{E}$, $E_1 = E$, $\gamma_1 = \gamma - \frac{1}{n}$ the same method gives us a domain $B_2 \in \mathfrak{E}_1$ and a set $\mathscr{F}_2 \subset \mathscr{F}_1$ such that B_1 and B_2 touch every element of \mathscr{F}_2 and

$$|\mathscr{F}_2| \geq \frac{D}{E^2} \gamma \left(\gamma - \frac{1}{n} \right) n.$$

Thus putting $\mathscr{F} = \mathscr{F}_2$ and taking into consideration that $\gamma n \ge 2$ we obtain the statement of the lemma.

The following lemma is of topogical character.

LEMMA 2. Let $A_1, \ldots, A_k, B_0, B_1, B_2$ be a packing of convex domains in the plane, $k \ge 3$. Suppose that every B_j touches every A_i . Then there is a finite set X of "representing" points, $|X| \le 4$ and an i_1 such that

- (i) if $i \neq i_1$ then $A_i \cap X \neq 0$
- (ii) if $x \in X$ then x is contained in at least two B's.

PROOF. Suppose for a moment that B_1 and B_2 do not touch each other. Let x_i, y_i be common points of A_i and B_1 and A_i and B_2 , respectively. Let l_i denote the line-segment connecting x_i and y_i . The segments l_i divide the part of the plane lying outside B_1 and B_2 into k (possibly empty) cells. If a cell is limited by the segments l_i and l_j , and x_i, x_j, y_j, y_i is the order of these four points on its boundary in the positive direction, then we denote it by (x_i, x_j, y_j, y_i) . B_0 must lie in one of these cells $(x_{i_0}, x_{j_0}, y_{j_0}, y_{i_0})$ and if it touches an A_i other than A_{i_0} and A_{j_0} then one of the points $x_{i_0}, x_{j_0}, y_{j_0}, y_{i_0}$ is common to B_0 and A_i . In this case put $X = B_0 \cap \{x_{i_0}, x_{j_0}, y_{j_0}, y_{i_0}\}$.

If B_1 and B_2 are touching each other in a line-segment (u_1, u_2) (which can degenerate to a point) then the l_i 's not terminating in any u_j divide the part of the plane lying outside B_1 and B_2 into (not necessarily k) cells of type (x_i, x_j, y_j, y_i) or of type (x_i, u_j, y_i) . B_0 must lie in one of these cells. If it lies in a cell of the first type $(x_{i_o}, x_{j_o}, y_{j_o}, y_{i_o})$ then $X = B_0 \cap \{x_{i_o}, x_{j_o}, y_{j_o}\}$. If it lies in $(x_{i_o}, u_{j_o}, y_{i_o})$ then $X = (B_0 \cap \{x_{i_o}, y_{i_o}\}) \cup \{u_1, u_2\}$. If all the l_i 's terminate in an u_j then we choose $X = \{u_1, u_2\}$. It is easy to show that these choices satisfy (i) and (ii).

COROLLARY. If the conditions of the lemma hold then there exists a point x contained in at least two B's and $\frac{k-1}{4}$ A's. Thus if $k \ge 5$, then x is contained in $\frac{k}{5}$ A's.

PROOF OF THEOREM 1. Let $B_0 \in \mathcal{A}$. We call $B \in \mathcal{A}$ a neighbour of B_0 if it touches B_0 . B is said to be a second neighbour of B_0 if it is a neighbour of a neighbour of B_0 other than B_0 . In the first step of the proof we show that there is a point x common to "many" members of \mathcal{A} . In the second step we show that the number of the domains containing x is at least $n - C\sqrt{n}$.

1. Let \mathfrak{D} be the class of all neighbours of B_0 and \mathfrak{E} the class of the second neighbours of B_0 . Then $|\mathfrak{D}| \ge n$ and every element of \mathfrak{D} has at least n-1 neighbours in \mathfrak{E} . Evidently, all the elements of \mathfrak{E} are contained in a certain circle of radius $3C_2n$ (see (iii)). So we have

(3)
$$|\mathfrak{E}| \leq \frac{(3 C_2 n)^2 \pi}{C_2 n} = E' n.$$

Hence by Lemma 1 for a sufficiently large *n* there are two domains $B_1 \in \mathcal{E}$ and $B_2 \in \mathcal{E}$, and a set $\mathcal{F} \subset \mathfrak{D}$ such that every element of \mathcal{F} touches B_0 , B_1 and B_2 and

$$|\mathscr{F}| \ge n \cdot \frac{(1-1/n)^2 \cdot 1}{2E'^2} \ge \frac{1}{3E'^2} n.$$

Then, by Corollary of Lemma 2, for a sufficiently large n there is a point x contained in at least

$$n \cdot \frac{1}{15E'^2} = n \cdot D'$$

elements of F.

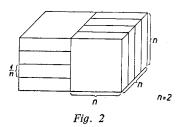
2. Suppose that the number of domains containing x is less than $n - \gamma n$. Let \mathcal{G}_{d} denote the set of elements of \mathfrak{D} containing x and \mathcal{G}' its complementary in \mathfrak{E} . Then $|\mathcal{G}_{d}| \geq D'n$ and every element of \mathcal{G} must have at least $\gamma n - 1 = \left(\gamma - \frac{1}{n}\right)n$ neighbours in \mathcal{G}' . Since $|\mathcal{G}'| \leq E'n$, in case $\gamma n - 1 \geq 2$ Lemma 1 guarantees the existence of two domains $B'_{1}, B'_{2} \in \mathcal{G}'$ and a set $\mathfrak{F}' \subset \mathcal{G}$ such that every element of \mathfrak{F}' touches B_{0}, B'_{1} and B'_{2} , and $|\mathfrak{F}'| \geq \frac{(\gamma - 1/n)^{2}D'}{2E'^{2}} \cdot n$. If γn is not very small, the last result assures that $|\mathfrak{F}'| \geq \frac{\gamma^{2}D'}{3E'^{2}}n$. If $|\mathfrak{F}'| \geq 5$ then we can apply the Corollary of Lemma 2 obtaining a point x' contained at least $\frac{|\mathfrak{F}'|}{5} \geq \gamma^{2} \frac{D'}{15E'^{2}}n$ elements of \mathfrak{F}' . Furthermore, we know that x' is contained in at least two B's, so it is different rom x. But the number of the elements containing both x and x' cannot be more

than 2. Hence

$$\gamma^2 \frac{D'}{15E'^2} n \leq 2, \qquad \gamma n \leq \sqrt{\frac{30 E'^2}{D^2}} \sqrt{n} = C \sqrt{n}.$$

This completes the proof of the theorem.

NOTE. It is interesting to observe that an analogue of Theorem 1 in the space does not hold. To show this, let us consider the following example. Put together $2n^2$ quadratic prisms with lengths of edges n, n, $\frac{1}{n}$ according to Figure 2. They



have volume n and number of neighbours n^2 and this is the order of magnitude of the number of neighbours allowed by considerations of volume.

2.

We shall prove

THEOREM 3. Let E be a bounded convex domain with perimeter l. Let \mathcal{B} be a set of convex domains touching E which have no inner points in common with each other and with E. For every element B of \mathcal{B} we assume that

(i) the width of B is at least 1,

(ii) the diameter of B is at most h > 1.

Then

1. there are universal constants \overline{K} , \overline{C} , $\overline{D} > 0$ such that

$$|\mathfrak{B}| \leq \overline{K}l \log h + \overline{C}h + \overline{D}l,$$

2. there are universal constants K, C, D > 0 such that for every E there exists a \mathcal{B} satisfying the conditions of the theorem, for which

$$(5) \qquad |\mathscr{B}| \ge Kl \log h + Ch + Dl.$$

PROOF. 1. Let us divide \mathscr{B} into the following subclasses $\mathscr{B}_0, \mathscr{B}_1, \ldots : \mathscr{B}_i = \{B \in \mathscr{B}: h \cdot 2^{-i} \ge the diameter of <math>B > h \cdot 2^{-i-1}\}$. Obviously there are at most $[\log_2 h] + 1$ such classes. The area of the elements of \mathscr{B}_i is at least $h \cdot 2^{-i-2}$. The elements of \mathscr{B}_i are contained in a parallel domain of E of radius $h \cdot 2^{-i}$. The area of this

P. GÁCS

domain is $l \cdot h \cdot 2^{-i} + \pi \cdot h^2 \cdot 2^{-2i}$. Hence $|\mathcal{B}_i| \leq 4l + 4\pi h \cdot 2^{-i}$ showing that (6) $|\mathcal{B}| \leq 4l([\log_2 h] + 1) + 8\pi h \leq 4l \log_2 h + 8\pi h + 4l$.

2. Let *E* be an arbitrary domain. Let *AB* be one of its longest diameters. Writing $\overline{AB} = d$ we obviously have $d \ge \frac{l}{4\pi}$. At the points *A*, *B* approximately $4\pi h$ domains can be placed in fan-form. Perpendicularly to the diameter *A B* approximately $\frac{2d}{3} \le \frac{l}{6\pi}$ rectangles of side-length *h*, 3 can be placed, each of them containing

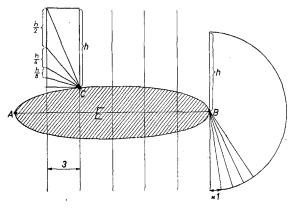


Fig. 3

max (3, $[\log_2 h]$) triangles (as at the point C in Figure 3). So we can place around E approximately

$$4\pi h + \frac{l}{6\pi} \left(\frac{1}{2} \left[\log_2 h \right] + 1 \right) \ge \frac{l}{12\pi} \log_2 h + \frac{l}{12\pi} + 4\pi h$$

domains of the allowed length and width.

(Received 1 November 1971)

MTA MATEMATIKAI KUTATÓ INTÉZETE BUDAPEST V., REÁLTANODA U. 13–15

References

- [1] L. FEJES TÓTH, Remarks on a theorem of R. M. Robinson, Studia Sci. Math. Hung., 4 (1969), pp. 441-445.
- [2] L. FEJES TÓTH, Scheibenpackungen konstanter Nachbarzahl, Acta Math. Acad. Sci. Hung., 20 (1969), pp. 375-381.

Acta Mathematica Academiae Scientiarum Hungaricae 23, 1972