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GREAT N U M B E R  OF NEIGHBOURS 

By 
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Let A be a convex domain in the plane. The Newton number n(A) of A is defined 
as the greatest number of domains congruent with A which can be packed around 
A so as to touch A. We call a packing of domains congruent to A a maximal packing 
[1, 2] if each domain has n(A) neighbours in the packing, i.e. denoting the packing 
with o_g for each B C ~c~ there are exactly n(A) elements of oJ~ touching B. L. FEJES 
T6TH [2] conjectured that there is a universal constant K such that in each maximal 
packing the number of neighbours n is less than K. Here we prove this conjecture, 
making use of a theorem which seems to be of interest in itself. Our method gives 
the very crude estimate K < l0 s, altough nobody knows examples with n > 21. 

In Section 2 we give an upper bound for the number of convex domains which 
can be packed around a convex domain in terms of the lower bdund of the widths 
and the upper bound of the diameteres of the domains. 

1 

Theorem 1 intuitively says that if we have a packing of convex domains of not  
very different size and shape in which every domain has a great number of neigh- 
bours n, then the packing contains a "star"  consisting of approximately n domains 
with a common boundary point. 

THEOREM 1. Let o~ be a packing o f  convex domains in the plane, C1, C 2 > 0 
positive eonstants for  which 

(i) every domain has at least n neighbours, 
(ii) for  every A C o9~ the area o f  A is at least Cln, 
(iii) for  every A C o~ the diameter of  A is at most C2n. 
Then there is a C > 0 and an n o depending only on C1, Ca, such that for  n > no 

there is a point in the plane common to at least n - Cx/~ members o f  o,g. 

Before proving Theorem 1 we show that it implies the conjecture of Fejes T6th. 

THEOREM 2. The conjecture o f  Fejes T6th is true. 

PROOF. Let o):d be a maximal packing. We can choose the unit of measure so 
that the area of the elements of d~ (being congruent in this case) should be equal 
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to the Newton number n = n(A) of an element A of eft. Let us denote the diameter 
of A by d and the width of A by w. Then the area of A is at least dw/2: 

dw/2 < n. 

On the other hand, it is obvious that the Newton number n is not less than 2d/w: 

2d/w < n. 

Multiplying these inequalities we obtain d < n .  Thus ~ satisfies the conditions of 
Theorem 1 with (71 = Ca = 1. Hence there is a C and an n o such that for every 
n > no there exists a point in which at least n - Cx/'~ domains meet. Thus A must 

2~ 
have a vertex with an angle ct < But the Newton number of a domain 

= n -  C x / n "  

having an angle c~ is not less than [ - ~ ]  + [ ~ ] -  1, because at the respective vertex 

[ - ~ ]  1 domains can be placed and at the point "opposite" to this congruent 

vertex[~---] further ones. (Fig. 1.) 

Fig. 1 

Hence 

3 4 
n => ~-(n - Cx/n-) - 2 i.e. x/'h < 3C + 

This completes the proof  of Theorem 2. 
NOTE. The idea of considering the angle ~ is due to TIBOR ELEKES. 
In what follows we denote the number of elements of a set X by [ X[. In order 

to prove Theorem 1 we first prove the simple combinatorial 

LEMMA 1. Let both | and ~ be classes of  domains (they can have common elements), 
D, E, 7 constants, and n > 1 an integer such that 

(1) [ ~ l > O n ,  2 < [ ~ [ < E n  
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and for each A ~ | there are at least 7n >= 2 elements of ~ touching A. Then there 
exist two different elements B1, B 2 of ~ and a subclass g: of | such that B 1 and Bz 
touch every element of o~ and 

(2) l o5 1 ~ ~ n.  

PROOF. Let us consider the following class of pairs of domains: g = {(A, B) : 
A C | B ~ g, B touches A}. Then [ g [ > Dyn 2, but since there are only En different 
B's, there exist a domain Ba E $ and a subset g"l of | such that B 1 touches every 

D? D 7 
element of ffl and I~l[  > ~ n .  Putting |  $ 1 = $ -  {B1}, D I = - ~ - ,  

1 
E1 = E, 71 = ? - - -  the same method gives us a domain B 2 C $1 and a set goz c go1 

n 
such that B~ and B 2 touch every element of if2 and 

I~'21 > ~ - ~ '  7 -  n. 

Thus putting 05 = o~ 2 and taking into consideration that yn > 2 we obtain the 
statement of the lemma. 

The following lemma is of topogical character. 

LEMMA 2. Let A1 . . . . .  A~, Bo, B1, B 2 be a packin9 of convex domains in the plane, 
k > 3. Suppose that every Bj touches every A i. Then there is a finite set X of "repre- 
senting" points, [X I <  4 and an i 1 such that 

(i) i f  i #  il then A i N X # 0 
(ii) i f  x C X then x is contained in at least two B's. 

PROOF. Suppose for a moment that B1 and B 2 do not touch each other. Let 
x~, Yi be common points of Ai and B 1 and A~ and B 2, respectively. Let I i denote the 
line,segment connecting x~ and Yi. The segments li divide the part of the plane lying 
outside BI and B 2 into k (possibly empty) cells. If  a cell is limited by the segments 
1 i and lj, and xi, xj, yj, Yi is the order of these four points on its boundary in the 
positive direction, then we denote it by (x~, x~, yj, y~). B 0 must lie in one of these 
ceils (X~o, Xio, yj,, Yio) and if it touches a n A i  other than A~, and Aj, then one of the 
points xio, Xjo, yjo, Y,o is common to B 0 and A i. In this case put X = B 0 f) {Xio , Xjo, 
J)0, Yi0}. 

If  B1 and B2 are touching each other in a line-segment (ul, u2) (which can dege- 
nerate to a point) then the l[s not terminating in any uj divide the part of the plane 
lying outside B 1 and B 2 into (not necessarily k) cells of type (xi,)9, yj, Yi) or of type 
(x~, uj, y~). Bo must lie in one of these cells. If  it lies in a cell of the first type (X~o, x~o, 
Yjo, Yi~ then X = Bo f') {Xio, x;o, yjo, y~o}. If  it lies in (Xio, uj~ Yi~ then X = (B 0 f) 
N {Xio, Yio}) U {u~, u2}. If  all the l[s terminate in an u~ then we choose X = {ul, uz}. 
It is easy to show that these choices satisfy (i) and (ii). 
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COROLLARY. I f  the conditions of  the lemma hoM then there exists a point x con- 

tained in at least two B' s and A' s. Thus i f  k > 5, then x is contained in -~  A ' s. 

PROOF OF THEOREM 1. Let Bo E eg. We call B E oX a neighbour of B 0 if it touches 
B o. B is said to be a second neighbour of B o if it is a neighbour of a neighbour of  Bo 
other than B o. In the first step of the proof  we show that there is a point x common 
to "'many" members of or In the second step we show that the number of the domains 
containing x is at least n - C ~ / ~ .  

1. Let @ be the class of all neighbours of  Bo and $ the class of the second neigh- 
bours of Bo. Then I | I --> n and every element of | has at least n - 1  neighbours 
in 6. Evidently, all the elements of $ are contained in a certain circle of radius 3C2n 
(see (iii)). So we have 

(3) I $t  < - E'n. 
C2n 

Hence by Lemma 1 for a sufficiently large n there are two domains B1 E $ and B~ E $, 
and a set $ c @ such that every element of o~ touches B0, B1 and B~ and 

(1  - l /n) ~ 1 1 
[g"l > n "  2E,2 = > ~ n .  

Then, by Corollary of Lemma 2, for a sumciently large n there is a point x contained 
in at least 

1 
n �9 - n ' D '  

1 5E '2 

elements of o~. 
2. Suppose that the number of domains containing x is less than n - ?n. Let 

denote the set of elements of  @ containig x and ~' its complementary in $. Then 

 o'  odeve ye emontof m s   voat east, - = ( , -  
in ~'. Since I ~'I < E'n, in case ?n - 1 > 2 Lemma 1 guarantees the existence of 
two domains B[, Bs E 9' and a set o~' c ~ such that every element of  o~' touches 

B0, B~ and Bs and l o f ' l >  (7 - 1/n) 2D' 2E,2 - �9 n. I f  ?n is not very small, the last result 

assures that [o~'1 > ?2D' o~' 3E,2 n. I f  ] [ >  5 then we can apply the Corollary of  

D' 
Lemma 2 obtaining a point x '  contained at least I o~'] > ?2 elements of 5 = ~ n  

g:'. Furthermore, we know that x '  is contained in at least two B's, so it is different 
tom x. But the number of the elements containing both x and x'  cannot be more 
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than 2. Hence 

D !  
7 2 ~ n  < 2, 

15E = 
7n < / 30E'2 ~/-fi = C~/-fi. 

y D 2 

This completes the proof  of the theorem. 

NoT~. It is interesting to observe that an analogue of  Theorem 1 in the space 
does not hold. To show this, let us consider the following example. Put together 

1 
2n 2 quadratic prisms with lengths of edges n, n , -  according to Figure 2. They 

n 

n 

n=2 

Fig. 2 

have volume n and number of neighbours n 2 and this is the order of magnitude of 
the number of neighbours allowed by considerations of volume. 

. 

We shall prove 

THEOREM 3. Let E be a bounded convex domain with perimeter l. Let g3 be a set o f  
convex domains touching E which have no inner points in common with each other and 
with E. For every element B o f  g3 we assume that 

O) the width of  B is at least 1, 
(ii) the diameter o f  B is at most h > 1. 

Then 

1. there are universal constants K, C, D > 0 such that 

(4) Ig31 < K7 log h + Ch + DI, 

2. there are universal constants K, C, D > 0 such that for every E there exists 
a g3 satisfying the conditions o f  the theorem, for which 

(5) I g3 1 > KI log h + Ch + DI. 

PRooF. 1. Let us divide g3 into the following subclasses ~0, g31 . . . .  : g3t = {BEg3: 
h �9 2 -i  = the diameter of B > h �9 2-i-1}. Obviously there are at most [logzh] + 1 
such classes. The area of the elements of  g3i is at least h �9 2 -i-e. The elements 
Of g3i are contained in a parallel domain of E of radius h �9 2 - (  The area of  this 
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domain is 1 �9 h �9 2 -i + rc �9 h 2 �9 2 -2i. Hence t g3il < 41 + 4rch �9 2 -i showing that 

(6) ] g3 [ <__ 4l([log2h ] + 1) + 8zch < 41 log2h + 8~zh + 41. 

2. Let E be an arbitrary domain. Let A B  be one of its longest diameters. Writing 

l 
A B  = d we obviously have d > - ~ - .  At the points A, B approximately 4~zh domains 

can be placed in fan-form. Perpendicularly to the diameter A B approximately 

2d l 
< - - r e c t a n g l e s  of side-length h, 3 can be placed, each of  them containing 

i 

Fig. 3 

max (3, [log 2 h]) triangles (as at the point C in Figure 3). So we can place around 
E approximately 

4nh + ~  [log 2h] + 1 > ~ l o g  zh + ~ +  47rh 

domains of the allowed length and width. 

(Received 1 November 1971) 

MTA MATEMATIKAI KLTTATO INTEZETE 
BUDAPEST V., RE/~LTANODA U, 13~15  

R e f e r e n c e s  

[1] L. FI~JEs T6TH, Remarks on a theorem of R. M. Robinson, Studia ScL Math. Hung., 4 
(1969), pp. 441--445. 

[2l L. F~Es T6Tr~, Scheibenpackungen konstanter Nachbarzahl, Acta Math, Acad. ScL Hung., 
20 (1969), pp. 375--381. 

Acta Mathematica Academiae Sr 23, 1972 


