Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 23 (3—4), (1972), pp. 383—388.

PACKING OF CONVEX SETS IN THE PLANE WITH A
GREAT NUMBER OF NEIGHBOURS

By
P. GACS (Budapest)

Let 4 be a convex domain in the plane. The Newton number n(A4) of 4 is defined
as the greatest number of domains congruent with 4 which can be packed around
A so as to touch A. We call a packing of domains congruent to 4 a maximal packing
[1, 2] if each domain has n(4) neighbours in the packing, i.e. denoting the packing
with ofl for each B € of there are exactly n(A4) elements of of touching B. L. FEizs
TOTH [2] conjectured that there is a universal constant K such that in each maximal
packing the number of neighbours # is less than K. Here we prove this conjecture,
making use of a theorem which seems to be of interest in itself. Our method gives
the very crude estimate K < 10%, altough nobody knows examples with # > 21.

In Section 2 we give an upper bound for the number of convex domains which
can be packed around a convex domain in terms of the lower béund of the widths
and the upper bound of the diameteres of the domains.

1

Theorem 1 intuitively says that if we have a packing of convex domains of not
very different size and shape in which every domain has a great number of neigh-
bours #, then the packing contains a ”star” consisting of approximately # domains
with a common boundary point.

THEOREM 1. Let ol be a packing of convex domains in the plane, Cy, C, > 0
positive constants for which

(i) every domain has at least n neighbours,

(ii) for every A € oA the area of A is at least Cin,

(i) for every A € oA the diameter of A is at most Cyn.

Then there is a C > 0 and an ny depending only on C,, C,, such that for n > n,
there is a point in the plane common to at least n — C./n members of oA.

Before proving Theorem 1 we show that it implies the conjecture of Fejes Téoth.
THEOREM 2. The conjecture of Fejes Toth is true.
ProoF. Let of be a maximal packing. We can choose the unit of measure so

that the area of the elements of of (being congruent in this case) should be equal
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to the Newton number # = n{(4) of an element A4 of of. Let us denote the diameter
of 4 by d and the width of 4 by w. Then the area of A4 is at least dw/2:

aw/2 < n.
On the other hand, it is obvious that the Newton number # is not less than 2d/w:
2djw £ n.

Multiplying these inequalities we obtain d <n. Thus of satisfies the conditions of
Theorem 1 with C; = C, = 1. Hence there is a C and an #, such that for every
n > n, there exists a point in which at least » — C,/n domains meet. Thus A must

. 2n )
have a vertex with an angle o < Fame L But the Newton number of a domain
- n

, . 27 n .
having an angle « is not less than [—} + [——] — 1, because at the respective vertex
o o

27 . . . .
[———} — 1 congruent domains can be placed and at the point “opposite” to this
o

vertex [—ﬁ—j' further ones. (Fig. 1)
o

Fig. 1

Hence

3 . 4
ng—z—(n~C\/77t)—-2 Le. \/ﬁ§3C+—\/—ﬁ—

This completes the proof of Theorem 2.

Norte. The idea of considering the angle « is due to TIBOR ELEKES.

In what follows we denote the number of elements of a set X by | X|. In order
to prove Theorem 1 we first prove the simple combinatorial

LemMA 1. Let both ® and § be classes of domains (they can have common elements),
D, E, y constants, and n = 1 an integer such that

) (D= Dn, 25|86 SEn
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and for each A €D there are at least yn = 2 elements of & touching A. Then there
exist two different elements By, B, of & and a subclass & of © such that B, and B,
touch every element of & and

e VD
@ 151257

n.

Proor. Let us consider the following class of pairs of domains: § = {(4, B) :
A€D, Be s, Btouches A}. Then |§| = Dyn?, but since there are only En different
B’s, there exist a domain B, € & and a subset &; of @ such that B, touches every

D o D
element of &, and | &, | = %n Putting @, = &, & =8 — {B}, D, = —E?—,

1 : .
E, = E, y; = y — —the same method gives us a domain B, € &; and a set F, < &,
n

such that By and B, touch every element of &, and

[F,] = Y

— — —|n.
E? 4 n
Thus putting & = &, and taking into consideration that yn =2 we obtain the
statement of the lemma.,
The following lemma is of topogical character.

LEMMA 2. Let Ay, . . ., Ay, By, By, By be a packing of convex domains in the plane,
k = 3. Suppose that every B; touches every A;. Then there is a finite set X of “repre-
senting” points, |X| <4 and an iy such that

@ ifi#ithen 4,0 X #0 .

(i) if x € X then x is contained in at least two B’s.

PrOOF. Suppose for a moment that B, and B, do not touch each other. Let
X;, y; be common points of 4; and By and 4; and B,, respectively. Let /, denote the
line-segment connecting x; and y;. The segments /; divide the part of the plane lying
outside B; and B, into k (possibly empty) cells. If a cell is limited by the segments
l; and [, and x;, x;, y;, y; is the order of these four points on its boundary in the
positive direction, then we denote it by (x;, x;, y,, 3;). B, must lie in one of these
cells (x;, x;,, ¥;,, »;) and if it touches an 4; other than 4;, and A4; then one of the
points x;, X;,, ¥;,, ¥,, is common to B, and 4;. In this case put X = B, {x;, x;0
Vio Vi)

If B, and B, are touching each other in a line-segment (uy, u,) (which can dege-
nerate to a point) then the /;’s not terminating in any u; divide the part of the plane
lying outside B, and B, into (not necessarily k) cells of type (x;, X, ¥, ¥;) or of type
(%35 u;, ¥;). By must lie in one of these cells. If it lies in a cell of the first type (x;,, X;,,
Yio Yi) then X = By 0 {x;, x;, y;., ;. }. If it lies in (e 4, ¥;) then X = (B, N
0 {x;,, ¥1,1) U {uy, uy}. If all the /s terminate in an u; then we choose X = {m, u,}.
It is easy to show that these choices satisfy (i) and (ii).
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COROLLARY. If the conditions of the lemma hold then there exists a point x con-

. k
tained in at least two B’s and A’s. Thus if k = 5, then x is contained in 3 A’s.

Proor oF THEOREM 1. Let B, € of. We call B € of a neighbour of B, if it touches
B,. B is said to be a second neighbour of By if it is a neighbour of a neighbour of B,
other than B,. In the first step of the proof we show that there is a point x common
to “many’” members of of. In the second step we show that the number of the domains
containing x is at least n — C/n.

1. Let © be the class of all neighbours of B, and & the class of the second neigh-
bours of B, Then | % | = n and every element of @ has at least # — 1 neighbours
in &, Evidently, all the elements of & are contained in a certain circle of radius 3Cyn
(see (iii)). So we have

(3 Cyn)’n

= E'n.
Cyn ”

®) 181=

Hence by Lemma 1 for a sufficiently large # there are two domains B, € & and B, € &,
and a set & < @D such that every element of & touches B,, B; and B, and

1 -1n?-1 S 1

Fl>n- = .
ld‘,=n 2E12 = 3E12n

Then, by Corollary of Lemma 2, for a sufficiently large » there is a point x contained
in at least

1

n--————ISE,2 =pn-D

elements of &.
2. Suppose that the number of domains containing x is less than n — yn. Let §
denote the set of elements of @ containig x and §' its complementary in &. Then

n neighbours

1
|G| = D'nand every element of § must have atleast yn — 1 = (y -

in @’. Since | C;’i < E'n, in case yn — 1 2 2 Lemma 1 guarantees the existence of
two domains Bj, B; €§ and a set &  § such that every element of &' touches
(y — UnpD’

2E"
y2D'

assures that | &' | = gz ™ If |§| =5 then we can apply the Corollary of

By, B; and B, and | §' |2 -n. If yn is not very small, the last result

Gt ’

Lemma 2 obtaining a point x’ contained at least n elements of

=92
5 = 15E”2
&'. Furthermore, we know that x’ is contained in at least two B's, so it is different
rom x. But the number of the elements containing both x and x’ cannot be more
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than 2. Hence

D’ 30 E”
yzﬁ?nél ynz\/ o Jn=CJn.

This completes the proof of the theorem.

Note. It is interesting to observe that an analogue of Theorem 1 in the space
does not hold. To show this, let us consider the following example. Put together

. 1 . .
2n* quadratic prisms with lengths of edges n, n, — according to Figure 2. They
n

l ,

V4

e ——— N
n n=2

3
—

Fig. 2

have volume » and number of neighbours n? and this is the order of magnitude of
the number of neighbours allowed by considerations of volume.

2,
We shall prove

THEOREM 3. Let E be a bounded convex domain with perimeter I. Let & be a set of
convex domains touching E which have no inner points in common with each other and
with E. For every element B of & we assume that

(1) the width of B is at least 1,

(i) the diameter of B is at most h > 1.

Then

1. there are universal constants K, C, D > 0 such that
0] | B < Kllogh + Ch + DI,

2. there are universal constants K, C, D > 0 such that for every E there exists
a B satisfying the conditions of the theorem, for which

5) || = Kllogh + Ch + DI.

PRrOOF. 1. Let us divide & into the following subclasses &y, By, . . = {BEH:
h - 277 = the diameter of B > & - 27"}, Obviously there are at most [logzh] +1
such classes. The area of the elements of &; is at least 4 - 2772, The elements
of &,; are contained in a parallel domain of E of radius /- 2% The area of this
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domain is /-h-27 4 - h?- 2% Hence | &1 £41 + 4=k - 27! showing that
6) | B| < 4l([logoh] + 1) + 8nh < 4llogeh + 87k + 4.
2. Let E be an arbitrary domain. Let 4B be one of its longest diameters. Writing

_ : ! . . .
AB = d we obviously have d = T At the points 4, B approximately 474 domains
can be placed in fan-form. Perpendicularly to the diameter 4 B approximately

l .
%al < ?—rectangles of side-length %,3 can be placed, each of them containing
T

N

w3

el et

Fig. 3

max (3, [log, 4]) triangles (as at the point C in Figure 3). So we can place around
E approximately

!
h + 4
log, 7 + 3 h

I {1 !
) >
4drh + o (?‘[logzh]—[—l]= 2a -

domains of the allowed length and width.

( Received 1 November 1971)
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