LARGE-SYSTEM SCIENCE

TQNE—DIMENSIONAL UNIFORM ARRAYS THAT WASH

~ QUT FINITE ISLANDS
P. Gach, G. L. Kurdyumov, UDC 62~507:621.391.1
and L. A. Levin

Both deterministic and probabilistic one-dimensional uniform systems of finite automata with
local interaction are considered. A state of a deterministic system is called attracting if it is
maintained in time and any finite deviation from it disappears over a finite time. Three simple
examplesare given of systems with a nonunique uniform attracting state. Results of computer
simulations of probabilistic systems obtained by superimposing random noise on such.systems
are given. The simulation results indicate that the systems may be nonergodic in the case of low

noise,

§1. Introduction

A one-dimensional uniform random array S (or, briefly, an array) is a uniform chain of interacting
_ finite automata {s;} that is infinite in both directions. It operates in discrete time t=10,1,... . The state
- -of automaton si at time t + 1 (which we denote by S!:+1; s'.;Jrl € X, where X is the finite set of possible automa-

“ton states si) depends probabilistically on the states of a finite number of automata in the network at t. If the

~states of all automata s‘i1 at all points in time u =< t are specified, then the states at t{ + 1 are conditionally in-
- dependent, and their conditional probabilities are defined by the set of integers j;, . . ., jx and matrix ¢ (of

order nXnX..:Xn, where n is the cardinality of set X):
Nttt

k+l

t
Pls™ =y =gy (sissn-- - Sinsy) -

Matrix ¢ naturally generates operator S, on the space of all probability measures over the set of states
of the array Q (where Q = XZ, Z is the set of all integers) (see [1]).

Measure i is called invariant if S,u = u; the array is called ergodic if it has exactly one invariant mea-
sure. In this short paper we will deal primarily with deterministic arrays, i.e., ones such that L ST

x) €{o0, 1}. Such arrays are described by some function A: XK~ X; AK(y. . LX) =y — (py(xl, . .9 XKg) = L
Assume that for x € Q we have (S)x); = )\(Xjﬂ-l, C ey xiﬂ-k); then S, is the transition function of chainofautom—
ata s8j. We will say that array S is obtained by superimposing noise of level « on array Sy (and write Sy =
S("‘)) ifo=(—a)+ (@/ne, where n is the cardinality of X and e is a2 unit matrix. States x and y of deter-
ministic array S, are called equivalent if there exists a t for which Syx = S}y. State x is called attracting if all
_the y for which {ily; # x;} is a finite set are equivalent to it.

Paper [1] offered a hypothesis to the effect that every one-dimensional uniform array with positive tran-
~-sition probabilities is ergodic. Results of computer simulations of various uniform arrays were offered in
confirmation of this hypothesis. A major piece of evidence against this hypothesis is the example of a non-
ergodic nonuniform (either with respect to space or to time) random system with positive transition probabili-
ties, proposed by Tsirel'son in [2]. This result was strengthened by Kurdyumov, with the result that the hypo-
thesis in question was rejected. Thus there exists a nonergodic array for which all the transition probabilities
¢y, . . ., Xg) are positive. This array can be obtained by superimposing a small nojse on some (extremely
complex) deterministic array S, For Sx we setup twononequivalent attracting states x; andx,, Theyarealso ex~
tremely complex, aperiodic, and do not maintain themselves over time. On the basis of x, and x,, we can
set up invariant measures for the corresponding probabilistic array. '

A deterministic array will be called conservative if it has nonequivalent periodic attracting states. The

notion of conservative array can be naturally generalized to the case of dimensions greater than 1. Paper [3]
- cites examples of multidimensional conservative arrays. The same paper establishes a relationship between
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the conservativeness of an array and the nonergodic nature of the probabilistic array obtained from it by
adding a small random noise, while paper [4] offers examples in which this relationship is violated. The prop-
lem of finding simple conservative arrays arose in conjunction with the notion of finding a nonergodic one-
dimensional array with positive transition probabilities which would have spatially uniform invariant measureg
and would be much simpler than the one proposed by Kurdyumov. The first version of a one-dimensional con-
servative array was proposed by Gach. Subsequently, on the basis of the same ideas, Levin proposed three
simple media Sy, Spy, Syy, which will be discussed below.* Kurdyumov carried out the computer simulationg
of the behavior of these arrays with a small noise superimposed. In a number of cases, the simulation resultg
give grounds for assuming that the systems are nonergodic.

§2. Simple Conservative Arrays

Let us now define three specific conservative arrays Sy, Syy, and Syy in which the number of states ig
2, 4, and 6, respectively. Functions Aqy and A1y will be defined only partially; their values in the remaining
cases will be given supplementary definitions from considerations of symmetry.

Thus, Xy = {—, —}. Function A1 is permutable with the operation of reflection: xj goes over to x_; when
the directions of the arrows are simulfaneously reversed. If xj = <, then the direction of the arrow of (Syx);
is determined by voting; it will be the predominant direction among Xj, Xji{, Xj+3.

There are more states in Syy, but the dependence is only on the nearest neighbors. We have Xy = {—,
- 4, 1), (SpyX)i = Apv&j-1, Xjs Xj+y. Function Ayy is permutable with the reflection operation (xj —x_; when
the right and left arrows are simultaneously replaced), and is given by the following expressions:

L My, X, y) =—,ifx, y = —;

tforx t{~, t},

2. Ay, =, ¥ = { — otherwise;

3. Ay, ¥, 2z) = t,ify €{+, t} and case 1 does not occur.

THEOREM. Arrays Sif and Syy are conservative; the states xj = — and xj = < are attracting states for
them. ¥ ‘

Proof. The behavior of Sy1 and Syy are analogous if we note that zones of not less than three identical
arrows in Syy correspond to zones of the same arrows in Syy, while zones of alternating arrows correspond to
zones of + (with + at the ends). Therefore, the proof as carried out for Syy can be readily transferred to Syp.
Assume that all the signs of @ (except for a finite number) are —. Assume that L(x) is the smallest and Rx)
the greatest i for which xj = —. Segment (LX), R(x)) will be called an island (see [3]). We will show that if
n =R’ — L"), then s§¥x’ consists only of —. TLet M(x) be the smallest i for which xj = — (if it exists). By
definition, we can readily establish that: 1) R(S1yx) = R{); 2) LgS%Vx) = L&) — 1; hence the left edge of the
island cannot move to the left at a rate greater than 1/2; 3) M(Styx) > M) if M(S%Vx) exists, and therefore
the — vanish from x not later than the 2n-th step; 4) if there are no — in x, then R(Syyx) < R(x). Therefore,
an island which now has a side not greater than 2n will vanish over the next 4n steps. QED.

We will define yet another version of a conservative array with six states, Xy = {+, =, =, —, A~}
" Function Avy] is permutable with the operation that changes the plus and minus signs and the direction of.the
arrows, and also with the reflection operation (changing the direction of the arrows and carrying xj to X_i).
Each of the following equations is satisfied if the value of Ayy is not implied by the preceding ones:

1. }»vx(.‘t, u, .T) =1, 2. Kvx(‘f", x, ——)= “*
3. AVI(‘Q ., y)=", 4. AVI("', x, _’)=+;
) 5‘- Avi(+, =, ) =+; 6. Avi(—>, +, 2) =»;
For Syj the states xj = + and xj = — are attracting states.

§3. Experiments

Results of computer simulation of some uniform arrays (with the intent of clarifying the issue of their
ergodicity) are given in [5]. Below we offer simulation results for arrays S%), SI(%')’ and SI(?). We consider a
finite segment of the array (2000-5000 automata long) that was bent into a ring (to avoid any boundary effect)

*Some versions of one-dimensional conservative media were also proposed by M. G. Shnirman.
fEvidently Sy1 and Spy do not have other attracting states.
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TABLE 1. Arrays SVI

: . Rin, -
No. of trial length Initial state Value of o
1 5000 Q=1 0,01
2 2000 Q=1 . 003
3 2000 Q+=1/3; Q-=2/3 0,03
% 5000 Q=1 =005 for t<1000
5 a=0,01 for t>1000

and that operated for 1000-2000 time cycles. We employed pseudorandom numbers generated by one of the
atandard algorithms. The proportions Qx of automata in particular states x at the end of certain definite time
intervals were printed out. Arrays S%) were studied in greatest detail. Figure 1 shows the time dependence

of Qs+ and Q_ in four different trials. Different trials corresponded to different values of the ring length, noise
(o), and initial state (see Table 1). Since Sy is symmetrical with respect to replacement of + and —, when
s(a) is ergodic the limits Q. and Q_ should be equal. They should be observed to converge in simulation. In

tmals 1 and 2, for an initial state x; = +, the value of Q+ {beginning roughly with t = 200) fluctuates only ran-
domly around a certain value (much greater than 0.5). At all moments that are multiples of 100, Q, > 0.85.
“'In trial 3, the initial state was taken to be a random sequence of plus and minus signs with a probability of a
minus sign of 2/ 3. In this case, Q- increases sharply by t = 300, and then is not observed to be les§ than 0.8.
We should note, however, that in this trial Q_ is always less than Q4 in trial 2. In trial 4 the initial state was
k xi = +; the value of o was 0.05 up to t = 1000, changing thereupon to 0.01. On the interval 0 < t = 1000, Q4
dxsplayed a clear tendency to decrease; this can be regarded as an argument favorm% the ergodicity of s{0.00),
But the rapid increase in Q, after t = 1000 is an additional argument in favor of Sy * being nonergodic. We
also si mulated an array 8%15) beginning with x; = +, but even fort=100, Q, and Q were virtually equal and

subsequently their plots crossed repeatedly. The results of this trial give every reason to assume that Sglm

is ergodic. Thus the simulation results indicate that S%) is ergodic for o = 0.05 but nonergodic for o =< 0.03.

It seems very natural to assume that the ergodicity of arrays of type S%I) may result from random crea-
tion of large islands. Correspondingly, in one of the trials with S\(?i‘m we took an initial state x; = — for 10 =

{ =100 and xj = + for the remaining i. The island ceased to be "monolithic," its boundaries shifting at random,
but up to t = 1000 its dimensions did not change markedly.

Much greater noise stability is displayed by arrays Siy and Syy. In simulating SI(VOS) from the initial x; =

- for t = 2000 we did not observe Q—. values lower than 0.78; their systematic decrease ceased even for t = 100.
100. In simulating Sl(g'Z) an island of length 100 was completely eliminated over the first 420 cycles, while Q_.
was not observed to be lower than 0.66.

In concluding, we should note that, despite the simulation results, the conclusion that SI(;M), SI(%), and S%I)
are nonergodic for small o is not completely persuasive. The authors wish to allow for the possibility that all
these arrays are ergodic; this seems to be particularly plausible when the noise is asymmetrical (e.g., the
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probability of a random transition to state — for Sy is greater than the corresponding probability for state ~)
Nonetheless, even if convergence to a single invariant measure occurs, we are dealing with extremely sioy '
convergence. This "quasinonergodicity™ may be of independent interest.

The authors are deeply grateful to A. L. Toom for his attention and for a number of valuable remarkg
2
as well as to A. V. Smirnova for assistance with the computer work.
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